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ABSTRACT: This paper presents a dual-resolution local sensor 
based planning method for hyper-redundant robot mechanisms. 
Two classes of sensor feedback control methods, working at dif- 
ferent sampling rates and different spatial resolutions, are consid- 
ered: ful l  shape modification (FSM), and partial shape modifica- 
t ion  (PSM). FSM and PSM cooperate to utilize a mechanism’s 
hyper-redundancy to enable both local obstacle avoidance and 
end-effector placement in real-time. These methods have been 
implemented on a thirty degree of freedom hyper-redundant nia- 
nipulator which has eleven ultrasonic distance measurement sen- 
sors and twenty infrared proximity sensors. The implementation 
of these algorithms in a dual CPU real-time control computer, an 
innovative sensor bus architecture, and a novel graphical control 
interface are described. Experimental results obtained using this 
test bed show the efficacy of the proposed method. 

1. Introduction 

This paper presents preliminary experimental results in the area 
of local sensor based planning for hyper-redundant robot manipu- 
lators. Recall from [ChBSOb] that a “hyper-redundant” manipula- 
tor is a kinematically redundant manipulator in which the degree 
of redundancy is very large or infinite. Such robots are analogous 
in morphology to  tentacles or snakes. “Sensor based planning” 
incorporates sensory information into some stage of a robotic mo- 
tion planning, whether it be navigation, locomotion, grasping, etc. 
Based on information gathered from sensors, “local sensor based 
planning” modifies the robot’s plan over a span which is short in 
time or distance. 

Due to their high degree of articulation, hyper-redundant robots 
are potentially superior for operations in highly constrained and 
unusual environments encountered in applications such as inspec- 
tion of nuclear reactor cores, chemical sampling of buried toxic 
waste, and medical endoscopy. Hyper-redundant robots can also 
be used as tentacle-like grasping devices for capturing and manip- 
ulating floating satellites [ChBSOc] or to enable complex “whole 
arm manipulation.” Mobile hyper-redundant robots also offer 
novel means for locomotion [ChBSla., ChB93a, ChBSSb, ChB93cI 
in complex environments. 

The aforementioned applications axe characterized by environ- 
ments which are difficult to precisely model and which are time 
varying. Thus, local sensor-based motion planning schemes are 
vital to the realistic deployment of hyper-redundant robots in 
these applications. While hyper-redundant robots have many 
advantages for the above described applications, they have one 
disadvantage. Since hyper-redundant manipulators have a large 
number of joints or actuators, small joint displacement errors 
can accumulate to reasonably large errors in the position of the 
tip relative to the base. Thus, the effective acwracy of hyper- 
redundant robots could be improved by distributing sensors along 
their length and employing sensor based planning schemes. 
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Thus, local sensor based planning can be used to: (1) account 
for spatial uncertainty or inaccuracies in the world model used 
by a “global” planner to construct a robot plan; (2) increase the 
effective accuracy of a hyper-redundant robot mechanism; and (3) 
locally adapt to rapid environmental variations, such as movin 
obstacles, tliat can not be easily or rapidly handled by a global 
planner. 

In this paper, the local sensor b a e d  planning algorithms of hyper- 
redundant manipulators are based on the hyper-redundant kine- 
matic analysis found in [ChBSOb, ChBSla, ChB92a, ChB92c, Ch]. 
More importantly, we demonstrate these algorithms on an actual 
30 degree-of-freedom hyper-redundant robot system. A more de- 
tailed account of this mechanism and its capabilities can be found 
in [ChB92b]. These experiments demonstrate that local sensor 
based planning is not only useful, but also implementable in real 
time with very reasonable computing power and simple sensors. 

Robotic motion planning has been an import ant area of research. 
Since the introduction o,f configuration space methods (LoWes], 
several other theories have been published, some of which are 
summarized in [Sh,Latombe]. However, these methods assume 
that complete knowledge of the environment is available prior to 
planning. More recently, methods have been developed which as- 
sume the robot explores the environment to gather information 
for the planning process [CaLi]. These approaches assume that 
the sensors provide perfect information about the environment. 
There has been little work devoted exphcitly to motion plannlng 
for robot snakes. One approach is based on the construction of 
tunnels through the (obstacle field, through wluch the manipulator 
“slithers” [ChBSOa, Ch]. In another work, sensor based planning 
for highly redundant robots is based on a tactrix [ReLu]. However, 
this work assumes tltat there are perfect sensors on the robot; nor 
has it been implemented on a real robot. Hirose [HiU] imple- 
mented an “active cord” mechanism, whicli used tactile sensors 
to guide its motion. Our work presents preliminary strategies 
for local sensor based planning, which are implementable in real 
time, can employ a variety of sensors, and exploit the benefits of 
hyper-redundancy. 

The structure of this paper is as follows. Section 2 reviews the ba- 
sic framework of hyper-redundant manipulator kinematics which 
is based on “backbone curves.” The backbone curve and its defor- 
mation is the basis for the algorithms of Section 3. We primarily 
consider algorithms for planar mechanisms, as the experiniental 
verification of these ideas was performed on a planar robot. Many 
of these algorithms can be extended to the spatial case. Section 
4 describes the experimental setup, while Section 5 described the 
actual results of these experiments. 

B/ 

2. Background 

This section reviews a hyper-redundant robot kinematic analysis 
framework that forms the basis of this work Recall from [ChBSOb] 
tliat we assunie that (regardless of mechanical implementation) 
the important macroscopic features of a hyper-redundant robot 
can be captured by a backbone curve. A backbone curve para- 
metrization and an associated set of reference frames which evolve 
along the curve are collectively called the backbone refereme set. 
In this paradigm, inverse kinematics and task planning reduces to 
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the determination of the proper time varying behavior of the back- 
bone reference set (ChBSOb]. Similarly, local sensor based plan- 
ning is equivalent in this approach to modification of the backbone 
curve shape in order to accommodate impinging obstacles. 

In [ChB92c],many techniques are introduced for parametrizing the 
backbone curve. In this paper, we will assume that the Cartesian 
position of points on a backbone curve can be parametrized in the 
form: 

Z(s,  t )  = /’ Z(n,t) C(o, t)dn (2.1) 

where s E [ O , l ]  is a parameter measuring distance along the back- 
bone curve at  time t .  The backbone curve base is the point s = 0. 
.‘(s,t) is a vector from the backbone curve base to point s. By 
convention, ?(O, t )  = 0. Z(s, t )  is the unit tangent vector to the 
curve at  s. Z(s, t )  is the length of the curve tangent and assumes 
the general form: 

Z ( s , t ) =  l+E(S, t )>O.  (2.2) 
e(s, t )  is the local extenszbzlity of the manipulator, which expresses 
how the backbone curve locally expands or contracts relative to 
a fixed reference state. The parametrization of Eq. (2.1) has the 
following interpretation. The backbone curve is “grown” from the 
base by propagating the curve forward along the tangent vector, 
which is varying its direction according to C(s, t )  and varying its 
magnitude (or ‘growth-rate’) according to Z(s, t ) .  
Our experiments have been performed on a device with planar 
geometry. In the planar case, the backbone curve is the locus of 
points: 

where 
F(S, t )  = h ( S ,  t ) ,  Q(S, t)lT 

rl(s,t) = /* I(u,t)sinO(u,t)da (2.3) 

+,t) = qu, t )  cos @(U, t)dn. (2.4) 

O ( s , t )  is the angle, measured clockwise, which the tangent to 
the curre a t  s makes with the zz-axis a t  time t .  By conven- 
tion (2.4), O(0) = 0, and q ( 0 )  = ~ ~ ( 0 )  = 0. By comparing 
equations (2.1) with equations (2.3) and (2.4), it easy to see that 
. i i(s,t) = [sinO(s,t), cos8(s,t)lT in the planar case. Z(S) and e($)  
are termed “shape functions,” as they control they shape of the 
backbone curve through the forward kinematic relations (2.3) and 
(2.4). 

Within the context of this modeling technique, the inverse kine- 
matic problem, or “hyper-redundancy resolution” problem, re- 
duces to the determination of the time varying behavior of back- 
bone curve shape functions that satisfies task requirements. Dif- 
ferent hyper-redundancy resolution techniques can be found in 
[ChBSOa, ChBSla, ChB92a, ChB92c, Ch]. In one approach, uvhich 
is relevant to the algorithms of Section 3, the backbone curve 
shape functions are restricted to a “modal fosm” 

Ne N I  

r = l  r=N*+I 
O(s, t) = a,(t) aZ(s) I(s, t )  = a,(t) @*(s )  (2.5) 

where @,(s) is a “mode function,” and a,( t )  is the associated 
“modal participation factor.” N = NG + Ni is the total number 
of modes, which must equal or exceeds the number of task con- 
straints. Hyper-redundancy is resolved in the modal approach by 
constraining the backbone curve to A’ effective DOF. The {@,} are 
predetermined functions chosen by the programmer, and can often 
be selected to incorporate physical characteristlcs of the task [Cll]. 
Thus, the backbone curve geometry becomes solely a function of 
the {a,). The inverse kinematics problem reduces to finding the 
( U , }  which satisfy task constraints. 

uma 0 ” l p i d m b -  
lnfOnn.l,.m 
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In (ChBSla, ChB92c1, closed form solutions are given for several 
choices of mode functions. However, this method can also be 
used when closed form modal solutions do not exist. This com- 
putational scheme, which is analogous to the resolved rate trajec- 
tory planning method, is based on a modal Jacobian, 3, which 
relates infinitesimal changes in a‘ to infinitesimal changes in the 
end-effector position: 

Eee = 36a‘ (2.6) 
where 

-3 

(2.7). 

[ E S M I r a  
’ 

Figure 1: Dual-resolution local sensor based plan- 
ning method 

The FSM determines the entire backbone curve shape using po- 
sition and task constraints from a high level planner and infor- 
mation about nearby obstacles which is derived from sensor data. 
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The generated backbone curve shape is passed to the PSM as a 
reference shape. In response to changes detected by sensors, the 
PSM stage modifies the reference backbone curve shape in a lo- 
cal neighborhood around the sensor. Finally, actuator commands 
are generated to realize the modified shape. The PSM sends the 
modification result to FSM. This information is used in the next 
FShf planning cycle. 

The FSM planner is expected to be more computationally inten- 
sire than the PSM. First, the FSM stage must satisfy some global 
task constraints, such as fixed end-point positioning. In addition, 
the FSM planner may use sensors, such as vision or ultrasound, 
which require non-trivial computation. Thus, the cycle rate of 
FSM is slower than the mechanism servo rate, and perhaps not 
fast enough to respond to rapid changes. Conversely, PSM algo- 
rithms, wLich only consider localized sensor information, can be 
quite simple, and thus computationally efficient. Further, since 
the PSM response is localized, the PSM computation can be per- 
formed in parallel by processors distributed along the mechanism. 
Finally, the PSbd stage can use rapid response simple sensors or 
simply processed data from more complex sensors. This enables 
the PSRI stage to be computed at a rapid rate-often at the mech- 
anism servo rate. Thus, the FSM/PSM decomposition takes max- 
imum advantage of practical considerations in algorithm compu- 
tation and sensor processing. 

While the PSM enables rapid local modification, it has limitations. 
For example, when the actuators in the vicinity of a particular 
sensor are unable to carry out local modifications because they 
are near their limits (or a local mechanism singularity), the PSM 
detects this condition, and informs the FSM to modify the entire 
backbone curve. This is an important feature of our approach-an 
explicit indication when a particular strategy is required. 

3.2. Sensor Models 

The algorithms described below use a very simple sensor model. 
We assume that the sensors are rigidly attached to the backbone 
curve at  a fixed point. That is, they move with the backbone 
curve, and their orientation is a function of the backbone curve 
tangent a t  the point of attachment. The sensors are assumed to  
measure, along a fixed direction termed the sensor measurement 
azis, the distance to a nearby obstacle. The sensor measurement 
axis is a function of the sensor and the backbone curve geometry 
(See Fig. 2). Our sensors do not  measure the distance to the point 
on the obstacle which is nearest to the backbone curve. Rather, 
they measure the distance which would actually be computed by 
realistic sensors. This simple model is representative of the in- 
frared and ultrasonic sensors discussed in Section 4. In addition, 
there is often some directional ambiguity due to  the finite width of 
a typical sensor’s beam pattern. We assume that the sensor mea- 
surement axis is the centerline of the beam pattern. The distance 
measurement returned by the sensor is the nearest point of the 
obstacle lying within beam pattern cone. Since it is inipossible 
to resolve the angular ambiguity, we assume that nearest point of 
the obstacle lies along the beam pattern centerline. 

3.3. Full-shape modification (FSM) control method 

There are a variety of techniques for implementing an FSRiI plan- 
ner. Described below is one approach based on the modal inverse 
kinematic method of [ChB92c, Ch]. The goal is to determine how 
to vary the modal participation factors, using both task and sen- 
sor data, so as to satisfy both end point positioning and obstacle 
avoidance. 

Let the manipulator end point velocity vector be denoted 2. For 
a manipulator constrained to a set of modes, {@$I, 2 is related to  

6 3 8  

Figure 2: Simplified Distance Measurement Sensor 
Model 

the time derivative of modal participation factor vector $by: 

(3.3.1) 

If m = d im(Z) ,  3 is an m x N matrix, where N is the number 
of modes. N is typically much less than the number of actual 
mechanical degrees of freedom. When AT = m, the positioning 
control equation i s  non-redundant in modal participation factor 
space, even though a hyper-redundant manipulator is being con- 
trolled. 

Obstacle avoidance and end-effector placement is achieved by add- 
ing T additional mode functions to the minimal mode function set, 
where T is greater than or equal to the number of extra constraints 
imposed by obstacle avoidance. However, if T is not large enough, 
the algorithm below will try to  satisfy constraints in a least squares 
sense. 

In this method, a modal participation factor null-space projection 
improvement scheme based on the modal Jacobian pseudo inverse 
[Liegeois] is adopted. Let .T ’ denote the Moore-Penrose pseudo 
inverse [Pel of t h e m  x (m+r) modal Jacobian matrix. The general 
solution to  Eq.(3.3.1) for given 2 is [Gr]: 

a; = 3 t i +  ( I  - 3 ‘3): (3.3.2) 

where, I is aa ( m  + T) x (m  + T) identity matrix and 2 is an 
arbitrary vector in ;-space. We now consider how to compute 
z’ based on sensor data and modally constrained backbone curve 
kinematics. 

Yoshikawa [Yo] has implemented a model based obstacle avoid- 
ance scheme by selecting z’ as a collision-free joint space vector. 
Maciejewski[MaI<l] has proposed a real time scheme by introduc- 
ing an obstacle avoidance vector to  determine 2. Nakamura [Nak] 
has developed task priority redundancy resolution met hods when 
there are multiple objectives. Our method is a variant of these 
approaches, but in the modal participation factor space. 

In this method, an “obstacle point”, 6,  is a point on the backbone 
curve which has to avoid nearby obstacles. In practice, we choose 
0 to be the location of a sensor along the _backbone curve. The 
backbone curve distance measure to point U is denoted by SO. 

The differential kinematics of the end point and obstacle point 
are: . .  

LT7,ii = i (3.3.3) 

.To;= 0 (3.3.4) 
. -  

where 3, is the end-point modal .Jacobian and .TO is the modal 
Jacobian associated with the “obstacle-point.” 3 0  is a matrix 



of size o x ( m  + I.), where o is the dimension of the obstacle 
avoidance task. 0 is the “obstacle-point velocity vector,” which is 
the direction the obstacle point should move to avoid the obstacle. 
As suggested by Section 3.2, this direction is collinear with sensor 
measurement axis and its magnitude is a function of the distance 
to the obstacle. 

Substituting Eq.(3.3.2) into Eq.(3.3.4), yields 

- 

3037,’if LTo(1- 363,)2= 0’ (3.3.5) 

Solving Eq.(3.3.5) for ;and substituting Lack into Eq.(3.3.2), the 
time derivative of the desired modal participation factor vector is: 

where the matrix equality B[CB] 1 = [CBI 1 was used. If 2 = 0. 
Eq. (3.3.6) computes the variation in a‘ which causes the end- 
effector to remain fixed while modifying the backbone curve shape, 
thus moving the obstacle point in the desired direction. If r is not 
sufficiently large, obstacle avoidance will be satisfied in a least- 
squares manner. Also this equation easily generalizes to multiple 
obstacle points, allowing illultiple sensors located along the back- 
bone curve. squares sense. 
For some complicated time varying obstacle trajectories, the in- 
tegration of Eq. (3.3.6) may cause the hyper-redundant mecha- 
nism to become entangled after many cycles of computation. This 
problem can be avoided by introducing a “pseudo-spring” which 
tends to pull the backbone curve back to  its original shape when 
the obstacles are removed. Eq. (3.3.6) is divided into two parts 
to realize pseudo spring computation. In discrete time units, the 
modal participation factor control law is described by: 

6u“,(t + 1) = 6ui ( t )  + 3 J 6 2  (3.3.7) 

a‘(t+l) = ~(t)+6u~(t+1)+1([30(1-3,‘~P,)] ‘ (5 -303663c)  
(3.3.8) 

where, ba,(t) is the modal participation factor modification for 
end-point positioning and I< is an ( m  + r )  x o matrix of “pseudo 
spring constants.” Eq. (3.3.7) updates and holds the modal par- 
ticipation factors to perform end-point positioning. The modal 
participation factors for positioning are modified by the second 
term for object avoidance in Eq. (3.3.8). The modified result is 
used to determine the backbone curve. Since the modification for 
obstacle ai-oidance affects the change of modal participation fac- 
tors at time t through the spring constant I(, once the obstacles 
are gone, the backbone curve returns back to its original shape. 

As an example, consider a system with three sensors distributed 
along the nonextensible planar manipulator backbone curve. In 
this case, Z(s) = 1 Vs and e(s) is constrained to  the five modes: 

1 2n 
27r L 
1 2n 

2a L 

Qi(s) = - sin( -3) 

Q P ( S )  = - cos(-s) 

(3.3.9) 

1 6n 
69 L 

@&) = - cos(-s) 

where L is the total length of the mechanism. Practically speak- 
ing, the first three functions mainly contribute to the end-effector 
positioning and orientation, while the other two contribute to ob- 
stacle avoidance capability. 

T h e  obstacle points in Eq. (3.3.4) correspond to sensor points, 
which are located at  distances L/4, L/2, 3L/4 along the back- 
bone curve. The obstacle avoidance vector is selected parallel to 
the sensor measurement axis. We assume that the sensors are 
rigidly attached to the mechanism, so that the direction of this 
vector is configuration dependent. Simulation results are shown 
in Fig. 4 and Fig. 3. Three obstacles (denoted by circles in figure) 
are located close to the backbone curve. The end-point location, 
position and orientation, is specified first. Next, the backbone 
curve is determined using Eq. (3.3.1). Then the curve is modified 
using Eq. (3.3.7) and Eq. (3.3.8) based on the simulated sensor in- 
formation. In both figures, triangles show the sensor-points. The 
dotted lines show the original curve which is generated by end- 
point positioning. The solid lines represent the modified curve 
with obstacle avoidance. Both modified curves avoid the obsta- 
cle, while the original curve touches them. This result shows the 
efficacy of this method to full-shape modification control method, 

The difference between Fig.4 and Fig.3 is in one obstacle loca- 
tion. In this task, the required total degree of freedom is nine, 
three for positioning and six (2 x 3) for the obstacle-point mo- 
tion. Although using only five different modal function, this nine 
degree of freedom task requirement is satisfied. The result shows 
the least-square nature of this algorithm. 

3.4. Partial-shape Modification Control 

More than one PShf strategy has been implemented on our test- 
bed. This section describes one PSM planning strategy in which 
the backbone curve is approximated by a large number, nd, of 
discrete endpoints. The sensors are assumed to be rigidly at- 
tached at  points along the discretized backbone curve. There are 
typically many approximating segments between adjacent sensor 

Figure 3: FSR4 I Figure 4: FSM I1 

attachments. When a sensor detects the presence of an obstacle, 
the backbone curve shape locally deforms in a region around the 
sensor. In our simulations and experiments, n d  - 100, and there 
were about 10 discrete points between sensor points. 

The actual response, a displacement of the approximating points, 
is determined by a local sensor response function (LSRF), which is 
assumed to be a discrete unimodal function. A unimodd function 
is one which has one local maximum, the global maximum, over 
its domain. The response function is “added“ to the backbone 
curve, locally drawing it away from an obstacle. In Figure 5, a 
triangle LSRF is added to a straight backbone curve, deforming 
the backbone curve away from an unacceptably close obstacle. 

Since the robot only detects the obstade at  a sensor point, the 
reaction to the obstacle should be greatest at  the sensor point, 
and should monotomically decrease at  points away from the sensor 
point. Therefore, the sensor point is the center of this unimodal 
function, and is assumed to be farthest away from the obstacle. 

The LSRF should also look like the beam pattern of the sensor 
associated with the sensor point. TypicaUy, beam patterns have a 
central lobe along the sensor axis, in which the obstacle likely lies. 
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In the experimental setup, the spatial resolution of the robot's ac- 
tuators is much lower than the azimuth resolution of the sensors 
on the robot. Therefore, a simple triangle (or cone) is a sufficient 
approximation to the main lobe of the beam pattern, and thus, 
a reasonable choice for a LRSF. Later on, it is shown that a tri- 
angle response function leads to a trivial and efficient solution to  
LSBP for planar hyper-redundant manipulators. So, the example 
displayed in Figure 5 is a good example of a LSRF. 

The half width of the LSRF is slightly larger than the distance 
between two adjacent sensors on the backbone curve. This way, 
if two adjacent sensors detect the same obstacle, their cumulative 
response function is still unimodal. 

/ I l  0 0 0 ... 0 0 U: 0 0 ... 0 \ 
0 lI 0 0 ... 0 0 u1 0 0 ... 0 I II  0 12 0 ... 0 0 U, U2 0 ... 0 
0 1 1 0 1 2  ... 0 o u a u ;  0 ... 0 

rl o r2 o ... o o ... o 
o rl o r2 ... o o u l  u3 ... o 

o o ... r,, o ... 
\ o  rl  o i2 ... o I ,  ... .;/ 

. . . . . . . . . . . .  _ . .  . . . . . . . . . .  - . . . . . . . . . . . .  
sp; - 

Deformed Backbone Curve 
L 

d U 1  Y bu, 
sui 

su: 
SU;  
6 1 ~  
u2 
si, 

: 

Figure 5: Backbone Curve, Response Function, 
and Deformed Backbone Curve 

In this approximation method, the position of the discrete seg- 
ment endpoints can be approximated by the discretization of the 
continuous forward kinematics integral (Eq. (2.1)): 

k=r 

F(s*,t) = q S k , t ) q s k , t )  (3.4.1) 

Z(s) and G(s) are continuous shape functions which are specified 
by the FSM or a global planner. They need not assume a modal 
form. Also, an endpoint may or may not coincide with a sensor 
point. 

A small differential change in $(st) is: 

k = O  

k=* 
6&?(s,,t) = al(s,,t)a(s,,t) + l(sk,t)6c((sk,t) (3.4.2) 

L=O 

' s p : '  JP: 
' 0  1 0  0 ... 0 0 0 0 

6P: 1 0 1 0 ... 0 0 0 0 
6P: 

6p2-2 
6pC-2 

0 1 0 1 ... 0 0 0 0 

1 0 1 0 ... 1 0 0 0 
0 1 0 1 ... 0 1 0 0 
1 0 1 0 ... 1 0 1 0 
0 1 0 1 ... 0 1 0 1/ 

. . . . . . . . .  - . . . . . . . . .  . . . . . . . . .  - 

0 

where Sk = 5, where n d  is the number of discrete points dong 
the back bone curve. SI iz a local change in the backbone curve 
tangent direction, while SI represents a local stretch. 

The goal of this PSM method is to compute the local perturba- 
tions, 6G and 6f, which deform the backbone curve away from 
obstacles. The changes in backbone curve tangent and stretch are 
determined from 63, which in turn is determined by the LSRFs. 
The modified backbone curve shape is then used by the fitting 
algorithms to  determine the appropriate actuator displacements. 

Assume that at some initial time, the FSM specifies a global 
backbone curve shape. Thus, 65 = 0 initially. For each sensor 
point along the backbone curve that detects an obstacle within 
its response envelope, a discrete unimodal LSRF is added to (or 
subtracted from, depending upon from which direction an obsta- 
cle appears to be) 6 p ,  the vector which contains the prescribed 

6 4  
au: 
6712 

Ju2-2 

6$-2 

sui-1 

changes to  the backbone curve. Setting 6p(snrt) = 0, guaran- 
tees that, within the limits of the discretization approximation, 
the end effector position will n e  change. Setting 6p(s,,t) = 0, 
S~(S,-~ , t )  = 0, and 6ii(s,, t )  = 0 guarantees that the end effector 
position and orientation will not zhange. The new backbone curve 
can be computed after 6; and 6Z are determined from (3.4.1). 

-.- .  
wheredj' = dp'(s,,t), 6 2  = b Z ( s , , t ) ,  61: = 6 r ( s , , t ) ,  1, = Z(s,), and 
2 = C(s,, t ) .  The x and y components of 6$(sl. t )  are respectively 
denoted Sp: and 6pb. Similary, the x,y components of 6a(s , , t )  
are 6u: and Sui. 65 and 6ti each have 2n elements, and 6ihas  n 
elements. 

For given 65, there is not a unique solution to Eq. (3.4.3). A 
simplified (and unique) solution for (3.4.3) is obtained by setting, 
Z(sz, t )  = 1 V,5,5, (i.e 6Z(s,, t )  = 0). Although all of the Z(s;, t )  = 
1, the snake can still use its extensibility to avoid obstacles be- 
cause 118 + 62(I # l. In other words, the length of the tangent 
vectors are no longer constrained to  have unit length in this ap- 
proximation unless additional restrictions are employed. After set- 
ting 6Z(s,, t )  = 0 and enforcing the end effector constraints,(3.4.3) 
becomes: 

U: = p t  - pL-1 (3.4.5) 

U' = p:, - &-I (3.4.6) 

The discretized backbone curve is then used, via a fitting proce- 
dure, to  compute the local actuator displacements which imple- 
ment the desired deformation. Figure 6 displays a PSM defor- 
mation of a 30 DOF variable geometry truss manipulator (kine- 
matically identical to the real system described in Section 4) in 
response to  an impinging obstacle. The backbone curve is ap- 
proximated by 100 segments. The manipulator is originally in a 
straight configuration, which locally deforms to avoid a simulated 
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Figure  6: Original Config- F igure  7: Resulting 
uration Configuration 

obstacle in Figure 7. In this simulation, the response function is 
shaped like a triangle. 

4. Exper imenta l  S e t u p  

To prove the feasibility of the proposed algorithms, a distributed 
sensor system was developed for the 30 degree-of-freedom hyper- 
redundant robot system described in [ChI192b]. Figure 8 shows 
the structure of this testbed. This section describes the test bed 
structure in detail. 

4.1. Hyper redundant  manipula tor  a n d  control  sys tem 

The hyper-redundant manipulator is a modular Variable Geom- 
etry Truss design [Ch]. The 30 degree-of-freedom (DOF) planar 
robot consists of ten modules (also called bays) of 3 DOF each 
(Fig. 8). Each DOF consists of a D.C. servo motor which drives a 
lead screw. Each lead screw is instrumented with a linear poten- 
tiometer. The real time system controller is based on a VhlE-bus 
multiprocessing computer, currently consisting of two Heurikon 
(68030 and 68020) single board processors, and the VxWorks real 
time operating system. One processor is dedicated to the closed 
loop feedback control of the actuator positions. The other proces- 
sor is dedicated to processing of sensor data and real time com- 
putation of the PSM algorithms. 

To enable flexible, modular, and easily expandable experimenta- 
tion with sensor based planning, a novel 34 wire “Sensor Bus” 
architecture was developed for the sensor system. One end of the 
sensor bus is connected to  the PSM processor via a parallel port. 
The sensor bus consists of an eight bit outgoing data path, a four 
bit status line, a two bit strobe and one interrupt request line. 
The data path and the two strobe lines enable the CPU to ac- 
cess up to 256 sensors and to send eight bits of information to 
the sensor peripherals for possible sensor control purposes. The 
interrupt request line is connected to  the hardware counter on the 
CPU board so that accurate timing measurements can be made 
in real time. 

Sensors can be added to the system via “Sensor Interface Mod- 
ules.” This module decodes the sensor bus address and generates 
signals to control sensors. Up to two ultrasonic sensor modules 
and six sets of sensors which produce data with 4 bit (or less) 
quantization can be controlled. Currently, only four infrared sen- 
sors per board are present, though up to eight infrared sensors and 

eight mechanical switchs can be directly connected. The sensor 
interface module circuitry is mounted on a printed circuit board 
which is 15cm by 12cm in size. Fig. 9 shows a photograph of the 
sensor interface module. ‘The sensor bus is physically connected in 
the bottom of the module in a daisy-chain fashion. In the figure, 
two ultrasonic transducers are shown above the module. Also the 
infrared proximity sensor is shown on the side of the module. 

F igure  8: Hyper Redundant Robot Test Bed 

4.2. Sensors  

Currently, the robot has two types of sensors: infrared (IR) and 
ultrasonic (US). There are five sets of two US sensors. Each set 
is rigidly attached to alternate bays so that each sensor points 
outward from the backbone curve (or the centerline of the mech- 
anism). An additional US sensor will be mounted at  the front of 
the mechanism, pointing forward. Twenty IR sensors, again two 
at each the ten bays facing outward, are currently mounted on 
the snake. In the near future, twenty-four additional IR sensors 
will be added, two more at each bay, and four in front. Fig. 10 

F igure  9: Sensor Interface Module 

schematically shows how these sensors are distributed throughout 
the mechanism. 

Electrostatic type ultrasonic sound transducers determine dis- 
tance by measuring the time of fiight of the ultrasound pulse leav- 
ing the transducer, bouncing off an object and returning to the 
sensor. A 5OkHz sonar wave burst is transmitted when the sonar- 
ranging module is triggered [Ci]. The ranging module output is 
connected to the sensor bus interrupt request line. The echo re- 
turn time is computed by the CPU hardware counter. Since the 
sixteen bit resolution distance measurement result is read from 
the hardware counter, no result is ever sent through the sensor 
bus, This design greatly simplifies the hardware required. 
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Figure 10: Sensor Arrangement 

The US sensors are activated sequentially (at 16 millisecond inter- 
vals) to prevent interference between sensors. These sensors are 
calibrated to measure distances ranging from lOcm to Z.h, with 
a 2% accuracy. There is about twenty degrees of conical ambi- 
guity for direction, because of the transmitting beam pattern of 
the transducer [Ci]. In this work, it is assumed that the obsta- 
cle lies along the cone's centerline, which is locally normal to the 
backbone curve at the point of sensor attachment. 

The IR sensors yield binary proximity information-i.e., the pres- 
ence or absence of the obstacle in some pre-set range. An infrared 
LED emits modulated infrared light, and if an obstacle is near the 
robot, the IR sensor will detect the reflected light. The range of 
the 1R system can be adjusted by setting potentiometers on the 
sensor boards. Currently, the IR system is set up to detect the 
presence of obstacles up to four inches away from the robot. Like 
the US, the location of an obstacle is not precisely known, but lies 
somewhere in a cone emanating from the IR sensor. 

Each sensor has its own advantage. The IR sensors have a very 
fast response and can be sampled at extremely high rates. They 
are thus suitable for the PSM system. The US sensors provide pro- 
portional obstacle distance, rather than binary proximity informa- 
tion. They are thus more useful for accurate planning. However, 
since the US sensors are sequentially polled to prevent interfer- 
ence, the minimum sampling period is 176 milliseconds. The IR 
sensors are sequentially polled in a similar fashion, but at a signif- 
icantly higher rate. To maximize the use of both types of sensors, 
the sensor interface module is designed to operate both US and 
IR sensors simultaneously in different interxds. 

4.3. R e m o t e  Operat ion Console 

The real time computers are connected to Sun workstations via 
the ethernet. Via software sockets, information can be transferred 
through the ethernet between the real time computer running Vx- 
Works and the Sun workstations running Unix. C programs and 
many software packages, such as Matlab, are able to directly com- 
municate with the real time computers via the sockets. Therefore, 
these programs can control the snake. The FSM and higher levels 
of control are implemented on the SUN workstation. 

Experimental robot control programs are developed in a combina- 
tion of C and Matlab. Via an X-Window interface, these programs 
graphically display and continually update the robot's configura- 
tion and sensor measurements. Fig.11 shows the X-Window op- 
eration console window. In addition, many motion planning and 
sensing commands can be executed using a graphical menu inter- 
face. End-effector via points of a hyper-redundant trajectory can 
be specified by a mouse, and the trajectory is then executed by 
the real-time system. 

In addition to graphically depicting the current configuration of 
the manipulator. this system displays US and IR sensor measure- 
ments. The solid cones emanating from the maniDulator remesent 

US sensor data. In this representation scheme, the closet point 
to an obstacle in the sensor beam pattern lies somewhere on the 
distal arc of the cone. The dashed arcs much closer to the mecha- 
nism indicate that the IR sensors have detected nearby obstacles 
at these locations. 
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Figure 11: Operation Console 

5 .  Resu l t s  

The PSM algorithm described in Section 3.4 and the FShl al- 
gorithm of Section 3.1 have been implemented on our hyper- 
redundant robot test-bed. Photographs of one experiment are 
shown below. In this experiment, the backbone curve, dictated by 
some high level planner, was a straight line. The backbone curve 
was passed to an FSM which guaranteed that the end effector was 
placed at the desired location while avoiding walls and other ob- 
stacles in the laboratory. Two obstacles were moved into an unac- 
ceptably close proximity (about lOcm or 4in) to the mechanism, 
and the manipulator locally deformed away from each obstacle 
while maintaining constant end-effector position. Truthfully, the 
end-effector was displaced slightly from its original position (less 
than a 1 inch displacement over a distance of -1F feet). The 
current implementation of the discrete approximation algorithm 
employs only IR sensors, because there are many more IR sensor 
distributed along the snake. 

This experiment showed the local shape modification capability 
of the PSM algorithm proposed in this paper. In real time, this 
PSM reliably works, especially when the actuators in the section 
of the robot that is deforming are not near their joint limits. AS 
actuators limits are approached, local deformation may become 
infeasible. In this case, the FSM planner should be invoked to 
redistribute actuator displacements along the manipulator so as 
to move away from the joint limits. This ability is currently being 
implemented in our system. 
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6. Conclusion 

In this paper, a local sensor based planning method for hyper- 
redundant robots is proposed. This method is based on a back- 
bone curve kinematic framework and a dual-resolution decom- 
position of hyper-redundancy resolution into two classes of local 
sensor based planning methods: full shape modification (FSXII) 
and partial shape modification (PSM). An algorithm for an FSM 
planner based on a null-space projection improvement in a modal 
space was introduced. This algorithm has a least squares charac- 
teristic for satisfying end-effector and multiple obstacle avoidance 
constraints. A novel “pseudo-spring’’ feature, which tends to re- 
turn the backbone curve to its original shape, is also incorporated. 
However, other schemes are also possible. 

These methods were implemented on an actual 30 DOF hyper- 
redundant manipulator test bed. An innovative sensor bus arclii- 
tecture and a graphical programming and display interface were 
reviewed. Experiments using this system showed the applicability 
and effectiveness of the proposed methods to real hyper-redundant 
manipulators. A reasonable amount of computer power was re- 
quired for real-time implementation of these algorithms. 

As suggested in the previous section, me are currently working to 
improve the FSM planner so that it can better interpret and react 
to exceptional conditions indicated by the PSM level. In addition, 
we intend to develop better sensor fuction methods which prop- 
erly combine ultrasonic and infrared sensor readings from adjacent 
sensors. The highly distributed nature of sensors on a hyper- 
redundant mechanism also point to the need for new theories on 
deploying and using massively redundant sensor arrays. Finally, 
future work will focus on using sensor data for higher level hyper- 
redundant robotic plmning. 
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