
Abstract — Inverse kinematics is computationally expensive and can re-
sult in significant control delays in real time. For a redundant robot, ad-
ditional computations are required for the inverse kinematic solution
through optimization schemes. Based on the fact that humans do not com-
pute exact inverse kinematics, but can do precise positioning from heuris-
tics, we developed an inverse kinematic mapping through fuzzy logic. The
implementation of the proposed scheme has demonstrated that it is feasi-
ble for both redundant and nonredundant cases, and that it is very com-
putationally efficient. The result provides sufficient precision, and
transient tracking error can be controlled based on a fuzzy adaptive
scheme proposed in this paper. This paper discusses (1) the automatic gen-
eration of the Fuzzy Inverse Kinematic Mapping (FIKM) from specifica-
tion of the DH parameters, (2) the efficiency of the scheme in comparison
to conventional approaches, and (3) the implementation results for both
redundant and nonredundant robots.

I. INTRODUCTION1

One of the major problems of robot manipulator control today is that of
calculating inverse kinematics in real time. Calculating inverse kinematics
is computationally expensive and generally consumes a large percentage of
time in the real-time control of robot manipulators.

The problem of inverse kinematics may be summarized as follows: Given
the 6x1 position/orientation vectorr of the end-effector in Cartesian space,
calculate thenx1 vector of joint angles required to place the end-effector
at the desired position and orientation. Here,n represents the number of de-
grees of freedom (DOF) of the manipulator. In general, inverse kinematics
does not result in one-to-one mapping between Cartesian and joint space,
and closed-form solutions to the inverse kinematic problem exist only for a
very small class of kinematically simple manipulators [2].

In the case of redundant manipulators and nonredundant manipulators in
singular configurations, the problem is compounded by the fact that
throughout the workspace of the manipulator, multiple solutions (perhaps
even an infinite number of solutions) exist. The inverse kinematics of redun-
dant manipulators therefore requires that a choice be made among the set of
all possible solutions. Arriving at such a decision through some optimization
scheme is difficult and the time-consuming computations can result in sig-
nificant control delays.

Humans do not, however, have to calculate exact inverse kinematics every
time we move an arm or a leg. Experience and knowledge, rather than com-
plex computations, allow humans to effectively move with ease. In this pa-
per, we propose to characterize this human knowledge by proposing a
general method of computing the inverse kinematics for an arbitraryn-DOF
manipulator through a fuzzy logic approach. The method applies equally
well for redundant and nonredundant manipulators, is computationally effi-
cient, and robust at or near singular configurations. The scheme has been im-
plemented in the real-time control of a teleoperated space robot [7], and the
results have shown that the scheme is very efficient, especially in teleoper-
ation.

In this paper, we first present an algorithm which automatically generates
the fuzzy model for an arbitrary manipulator based only on the Denavit-
Hartenberg (DH) parameters [2]. Second, we analyze the generated fuzzy
model characteristics and present a very efficient method of indirectly cal-
culating the fuzzy model output. Third, we present simulation results for two
redundant and one nonredundant manipulator. Fourth, we analyze the com-
putational efficiency of our method and compare it to other current methods.

1. This material is based upon work partially supported under a National Sci-
ence Foundation Graduate Research Fellowship.

II. FUZZY MODEL GENERATION

A. Overview

As shown in Fig. 1, our fuzzy inverse kinematic mapping (FIKM) takes as
input the actual and desired locations of the end-effector, and the current
joint variable values. From these inputs, the fuzzy controller generates as
output the necessary trajectories for the joint variables, so that the actual and
desired end-effector locations converge to zero steady-state error.

The Jacobian matrix relates the differential Cartesian ratesdr to the
differential joint rates , such that

(Eq. 1)

Essentially, we want to solve the inverse problem to (Eq. 1), namely,

, (Eq. 2)

There are many reasons why we cannot solve (Eq. 2) analytically, howev-

er. First, exists only whenn = 6, and therefore is not suited for re-

dundant manipulators. Second, even when we can solve for , the
solution will degenerate at and near singularities. Third, the computations
involved in inverting a 6x6 matrix in real time are time consuming. There-
fore, we propose a fuzzy logic approach to solving the problem. Fig. 2 out-
lines the overall algorithm we use to generate the fuzzy mapping
automatically, with only the DH parameters as input to the algorithm.

Consider each term in the Jacobian separately along with, the ith

component of the vector. We define a new variable which relates

 and ,

(Eq. 3)

Therefore, relates how much contributes to . This relationship

gives a good understanding of which joints will contribute more to reducing
 and which ones will contribute less. Thus, with proper scaling of each

of the ’s the fuzzy mapping can arrive at an intelligent set of joint angles

that will drive the end-effector to the desired position. The function that we
will actually apply the fuzzy mapping to is given by,

(Eq. 4)

The following sections discuss in detail each of the steps described briefly
in Fig. 2.

B. Jacobian Calculation and Range Determination

There are many computationally-efficient methods for calculating the for-
ward Jacobian [6]. Orin and Schrader present several methods, one of which

Θ

Fig. 1. Overall signal flow for the fuzzy controller.

dr
Robot Manipulator

r
-

Forward
Kinematics

rd

FIKM
θdesired

θmeasured

J Θ()
dθ

dr J Θ()dθ=

dθ J
1– Θ()dr=

J
1– Θ()

J
1– Θ()

Jij dri

dr dθi j

dri Jij

Jij dθi j dr≈

dθi j dθ j dri

dri

dθi j

dθi j

dri

Jij
-------≈

FUZZY INVERSE KINEMATIC MAPPING: RULE
GENERATION, EFFICIENCY, AND IMPLEMENTATION

YANGSHENG XU and MICHAEL C. NECHYBA
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

USA

requires (30n - 55) multiplications, (15n - 38) additions, and (2n -2) sine/co-
sine evaluations for both position and orientation tracking. Here and
the twist angle in the DH parameters is restricted to or .

In order to minimize the inference error of the fuzzy model, we want to
fuzzify relationship (Eq. 4) over the full range of values that may assume.
Therefore it is useful to determine, before the fuzzy mapping, the range for
each element , , , in . Each will be of
the form,

(Eq. 5)

where each , , is a constant, each , is
an offset distance in the DH parameters which may be variable, and each of
the , , is a product of sine and cosine terms.

Note, of course, that any (or all) of the coefficients and may be equal
to 0 or 1.

The maximum and minimum values for the cosine and sine functions are
,

(Eq. 6)

Therefore, it follows that for , , the maximum and

minimum values for each are,

(Eq. 7)

In addition, for a given manipulator, we also know the range of allowable
values for each variable a priori. Then, the minimum and maximum val-

ues for each , are,

(Eq. 8)

so that for all possible and .

C. Generation of Input/Output Data Table:

In preparation for generating the fuzzy model, we require that a table of
input/output data be generated for each . Each input/output vector in the

table must be of the form , where, of course, and are

considered the inputs and is the output of the fuzzy model.

For the fuzzy mapping presented in this paper, we generated the input/out-
put data by computing a table of vectors of the form,

(Eq. 9)

where was swept from to in /1000 increments, and

 was swept from -0.1/ to 0.1/ in 0.04/ increments.

Therefore, the ranges for the input variables were,

(Eq. 10)

The range for indicates our expectation that the end-effector will move
less than 10 cm (0.1 m) in each direction per control cycle. We later see that
we can expand the range for without any loss in accuracy.

D. Generation of Fuzzy Inference Rules and Membership Functions

Fig. 3 outlines the algorithm that was used to generate the rule base and
membership functions for the ’s. A similar approach for generating the

fuzzy model can be found in [1]. The algorithm takes as input the table of
input/output data generated in the previous section.

Fig. 2. Algorithm to automatically generate the fuzzy model
from the DH parameters.

Calculate the Jacobian
matrix J(Θ).

Denavit-Hartenberg
parameters

Determine the minima and
maxima for each of the Jij

elements of J(Θ).

Generate p input/output data
vectors (dri , Jij, dθij).

Apply fuzzy mapping to the
relation: dθij = dri /Jij

Combine weighted dθij terms to
form the dθi terms.

Fuzzy Model
Complete

n 3≥
α 0° 90°±

Jij

Jij i 1 … 6,{ , }∈ j 1 …, n{ , }∈ J Θ() Jij

Jij l1 f 1 θ1 … θn, ,() l2 f 2 θ1 … θn, ,() …+ +=

… l k f θ1 … θn, ,() d1 f k 1+ θ1 … θn, ,() …+ + +

… d+ m f k m+ θ1 … θn, ,()

l i i 1 … k, ,{ }∈ di i 1 … m n≤, ,{ }∈

f i θ1 … θn, ,() i 1 … k m+, ,{ }∈
di l i

x∀ ∞– ∞,{ }∈

1– x()sin 1≤ ≤ 1– x()cos 1≤ ≤

0 θ≤ i 2π< i 1 … n, ,{ }∈
f i θ1 … θn, ,()

f i θ1 … θn, ,()min 1–= f i θ1 … θn, ,()max 1=

di

Jij

Jijmin l p
p 1=

n

∑ dq max
q 1=

m

∑+
 
 
 

–= Jijmax Jijmin=

Jijmin Jij Jijmax≤ ≤ θi di

dθi j

dri Jij dθi j, ,() dri Jij

dθi j

Jij dθi j Jij dθi j, ,×()p

Jij Jijmin Jijmax Jijmax

dθi j Jijmax Jijmax Jijmax

0.1– dri 0.1≤ ≤

Jijmin Jij Jijmax≤ ≤

dri

dri

dθi j

Fig. 3. Detailed algorithm for generating fuzzy mapping for
.dθi j

Initialize membership functions
for dri and Jij and set p = 0.

Input/Output Data

Set p = p + 1. Read in pth vector of
input/output data (dri , Jij , dθij).

Determine fuzzy reasoning for
dθij and update rule base.

End of I/O Data?

einf < emax ?

|∆einf | < |∆emax|?∆einf > 0?

Calculate einf for regions divided by
adjoining membership functions and
generate a new membership function
and new rules in the region with the

largest inference error.
Initialize p = 1.

Fuzzy Model
CompleteYES

NO

NO

YES YES

NO

YES

NO

Initially, we generate three evenly spaced membership function per input
variable, i.e., and , for the ranges that were determined previously.

The sum of the membership functions at each value for and add up 1.

Let = current number of membership functions for , and =

current number of membership functions for . Denote ,

, as a membership function of and denote ,

, as a membership function of . Also, let = ,

, and = , , where m de-

notes the position of themth letter in the alphabet.
The initial rule base for the fuzzy control model takes the following form

where denotes thekth rule:

: If is and is then is .

: If is and is then is .

: (Eq. 11)

: If is and is then is .

Here,N = total number of rules (equal to 9 at initialization) but in general,

(Eq. 12)

: If is and is then is

(Eq. 13)

We further initialize the real numbers of the consequent part ,

, to 0, and the maximum inference error to 0.0013.
This number was arrived at iteratively after tries with various different stop
values. When the inference error < , then the fuzzy model is com-

plete to desired specifications for that .

Furthermore, we set a minimum threshold value = for the
change in the inference error in consecutive iterations of the algorithm. This
is used to decide whether or not to further reduce the inference error without
generating new rules. If > 0 or then a new member-

ship function and new rules will be generated; if not, then further reduction
of will be accomplished by adjusting with repeated reading of the
input/output data.

For each new input/output data vectorp, we first calculate the truth value
 for each of the rules for that particular combination of inputs. For exam-

ple,

(Eq. 14)

Second, the output of the fuzzy model is calculated by,

(Eq. 15)

The real numbers of the consequent part are updated by,

(Eq. 16)

where = 0.6. This value was determined experimentally, and increases
the speed of convergence to the smallest possible inference error with the
least number of additional rules and membership functions being generated.

Once, the end of the input/output data has been reached, the average infer-
ence error is calculated by comparing the fuzzy-model output with the actual
output for every input/output data vector,

(Eq. 17)

Furthermore, the change in the inference error from the previous cycle is
also calculated,

(Eq. 18)

As can be observed from Fig. 3, if < = 0.0013, then the fuzzy
model is complete. If the negative change in the inference error is still sig-
nificant without generating new membership functions, the are refined

more by reprocessing the input/output data table. If, however, the is
positive or negligibly negative, then new membership functions have to be
generated in order to further reduce the inference error. Fig. 4 shows by ex-

ample how new membership functions are generated and how consequently,
new rules are formed. First, the - plane is divided into x

 regions. The region borders are generated where two adjoining
membership functions meet. The top part of Fig. 4, for example, has region

 shaded. Second, the inference error is calculated for each region. This

is done by summing up only those terms in (Eq. 15) for thep where

and fall within that specific region. We then select the region

with the greatest inference error where a new membership function is to be
generated. Fig. 4 assumes that region = .

 will be divided into two equal halves as is shown in Fig. 4 if both of
the resulting regions contain at least one data vector in the input/output data
table. If all input/output data is concentrated in one half of , then, how-

ever, no reduction of would occur by splitting the region into two equal

halves. In this case, the half of that contains all the data points would

be divided into equal halves so that would be divided into two regions

of 1/4 and 3/4 . Here, it must be verified again that both resulting
regions contain at least one data point. Otherwise, the above procedure

dri Jij

Jij dri

Ndri dri NJij

dθi j M1x

x A B …, ,{ }∈ dri M2y

y A B …, ,{ }∈ Jij M1 m, M1x

m 1 2 … Ndri, , ,{ }∈ M2 m, M2y m 1 2 … NJij, , ,{ }∈

R
k

R
0

dri M1A Jij M2A dθi j w0

R
1

dri M1A Jij M2B dθi j w1

R
N 1–

dri M1C Jij M2C dθi j wN 1–

N Ndri NJij×=

R
q 1–()NJij r 1–+

dri M1 q, Jij M2 r, dθi j

w q 1–()NJij r 1–+

wk

k 0 … N 1–, ,{ }∈ emax

einf emax

dθi j

∆emax 5 6–×10

∆einf ∆emax ∆einf<

einf wk

µk

µ0 M1A dri()pM2A Jij()p=

µ1 M1A dri()pM2B Jij()p=

µ2 M1A dri()pM2C Jij()p=

µ3 M1B dri()pM2A Jij()p=

µ4 etc…=

dθi j()p
∗

dθi j()p
∗ µk wk×

k 0=

N 1–

∑=

wk

wk
new

wk
old

cwµk dθi j()∗p dθi j()p–[]–=

cw

einf
1

pmax
----------- dθi j()∗p dθi j()p–

p 1=

pmax

∑=

∆einf einf
new

einf
old–=

einf emax

wk

∆einf

Fig. 4. A new membership function is generated by splitting
the region where the inference error is the highest.

M1A M1B M1C

M2C

M2B

M2A

R10 R11

R21

R20

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

M1A M1B M1D

M2C

M2B

M2A

R10 R11

R21

R20

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 9

k = 10

k = 11

M1C

R12

k = 6

k = 7

k = 8

dri

dri

Jij

Jij

dri Jij Ndri 1–()
NJij 1–()

R11

dri()p

Jij()p Rmax

R11 Rmax

Rmax

Rmax

einf

Rmax

Rmax

Rmax Rmax

would be iterated again.
When a new membership function is generated for , then new

rules are created. Similarly, when a new membership function is generated
for , then new rules are created.

The for the updated rules corresponding to will be weighted aver-
ages of the adjoining rules. In Fig. 4, for example,

(Eq. 19)

(Eq. 20)

In general, when the newly generated membership function is cre-

ated for , then the updated ’s will be,

(Eq. 21)

Similarly, when the newly generated membership function is creat-

ed for , then the updated ’s will be,

(Eq. 22)

Now, the input/output data must again be processed to adjust the so as

to reduce . This procedure is repeated until is reduced to 0.0013 for

the fuzzy model output

E. Scaling of Fuzzy Model Output

The values for , , must be derived from the 6n

terms. Define the following terms:

(Eq. 23)

(Eq. 24)

Thus, is the sum of the absolute values of the terms in theith row of the

Jacobian, and is the sum of the absolute values of the terms in thejth col-
umn of the Jacobian.

Now, scale each of the terms by row and column and form the effec-

tive joint angle by,

(Eq. 25)

This choice of scaling the individual ensures that (1) will not be

too large, and (2) the joint angles that can contribute the most to the motion
in a given direction will in fact contribute the most [7].

F. Further Modifications

We further modify our scheme to improve performance in two ways: (1)
Reduce the tracking error by introducing an adaptive fuzzy gain, and (2) De-
tect and suppress certain types of oscillations. The modifications themselves
also apply fuzzy logic.

If the tracking error becomes too large, we would like the fuzzy controller
to correct the problem quickly. This can be done by amplifying the errordr
by a gainK so that the fuzzy model will take greater corrective measures
than the error itself would prescribe. If, however, the error grows very large,
there may be a potentially catastrophic problem and the fuzzy controller
should proceed cautiously. Also, if oscillations are detected, this may be an
indication that the gainK is too large and the fuzzy controller should once
again proceed with greater caution.

Oscillations in our modified scheme are detected by monitoring sign

changes in the , . We monitor the previous ten values for

each of the , and suspect oscillatory behavior when 4 or more sign

changes occur.
Fig. 5 and Fig. 6 show the membership functions we use to achieve an

adaptive fuzzy gain in order to control the tracking error and oscillations.
Table I shows the rule base we use for the membership functions in Fig. 5
and Fig. 6.

The membership functions in Fig. 5 have a dynamic range based on the
average error, for over the last ten control cycles. In other words,
if the present error is greater than the averaged error over the last ten cycles,
we consider the error big (“B”). All other errors are considered medium
(“M”) or small (“S”). Note from Table I that we suppress the gainK signif-
icantly when oscillations are detected.

Finally, we apply two low-pass filters to the input of the fuzzy model. First
we apply low-pass filtering to the gainK,

(Eq. 26)

Second, we apply low-pass filtering to the resulting ,

(Eq. 27)

These two measures provide additional oscillation protection.

III. FUZZY MODEL CHARACTERISISTICS

 The algorithm that we use to generate the fuzzy model for the pro-

duces 3 membership functions for and typically 15 membership func-

dri NJij

Jij Ndri

wk R
k

w5
new w3 w6

old+

2
-----------------------=

w6
old

w9→

M1 m,

dri wk

wNJij q 1–()
new 1

2
--- wNJij q 2–() wNJij q 1–()

old+()=

wNJij q 1–()
old

wNJijq
→ q m m 1 … m, NJij+,+,{ }∈

M2 m,

Jij wk

wqNdri m+
new 1

2
--- wqNdri m 1–+ wqNdri m+

old+()=

wqNdri m+
old

wqNdri m 1+ +→ q 0 1 … NJij 1–, , ,{ }∈

wk

einf einf

dθi j

dθ j j 1 … n, ,{ }∈ dθi j

r i Jij
j 1=

n

∑= i∀ 1 … 6, ,{ }∈

cj Jij
i 1=

6

∑= j∀ 1 … n, ,{ }∈

r i

cj

dθi j

dθ j
1
cj

Jij

r i
-------- Jij dθi j×

i 1=

6

∑=

dθi j dθ j

dri

dθ j j 1 … n, ,{ }∈
dθ j

Fig. 5. Membership functions used to select an adaptive
gain based upon the average tracking error over the last 10
sample periods.

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Error Membership Functions

1/davg

SMB BM

Fig. 6. Membership functions for detecting oscillations.
When 4 or more of the last 10 ’s have changed sign, we
consider oscillations to be “ON”.

dθ j

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Oscillation Detection

osc

OFF ON

Table I. Rule Base for Adaptive Gain/Oscillation

K S M B

ON

OFF 1.00 2.60 0.80

0.10 0.40 0.03

davg dri

Kapplied
1
3
---K fuzzy

2
3
---Kapplied previous,+=

dri

dri
1
3
---Kdri

2
3
---dri previous,+=

dθi j

dri

tions for . Fig. 7 shows the membership functions generated for , and

Fig. 8 shows the membership functions generated for a typical case of ,

where varies from -1.5 to 1.5.

Table II shows the rule base that was generated for the above case. A total
of 15x3 = 45 rules were generated. Thus, the generated fuzzy model is rela-
tively simple.

As was noted previously, we can trivially extend the range of fuzzification
for . Suppose that instead of assuming that varies from -0.1 to 0.1,

we let vary from -0.2 to 0.2 in the fuzzy mapping. Then the in the

rule base are adjusted by multiplying each , , by 2.

This can be done without loss of accuracy, since is linearly related to

.

IV. SIMULATION RESULTS

A. Efficient, Indirect Calculation of Fuzzy Model Output

The fuzzy model we have proposed thus far provides an intuitive basis for
our approach and may be calculateddirectly with relative efficiency. As we
demonstrate below however, (Eq. 28) leads to an alternate,indirect method
of evaluating the fuzzy model which is roughly three times as efficient asdi-
rect evaluation of the fuzzy model

Observe that in the scaling of the terms, each is multiplied by

. Furthermore, note from (Eq. 4) the relation we originally fuzzified.

We now propose to include the scaling multiplication of in the fuzzy
mapping so that,

(Eq. 28)

(Eq. 29)

(Eq. 30)

(Eq. 28) no longer degenerates for any value of an and is equivalent
to calculating the fuzzy mappingdirectly. (Eq. 28), (Eq. 29), and (Eq. 30)
provide an extremely efficient and robust algorithm for calculating the fuzzy
inverse kinematic mapping of any redundant or nonredundant manipulator.
The computational efficiency of (Eq. 28) through (Eq. 30) for calculating in-
verse kinematics will be evaluated and compared to other methods in a later
section.

B. Simulation Implementation

We perform two different types of simulations. In the first case, we give
as input to the fuzzy model only an initial value for and a final desired
position. We then let the manipulator move by repeatedly updating so as
to reach the final position. In the second case, we give as input to the fuzzy
model an initial value for , and a series of position data points that define
the desired trajectory. Here, we update once for every new data point.
That is, the sampling frequency is equal to the control frequency . For
the simulations presented in this paper, we assume,

 = = 50 Hz (Eq. 31)

All simulations were run using both the direct and the indirect method for
calculating the fuzzy model. Results are nearly identical for both calculation
schemes, where slightly smaller tracking errors and faster error convergence
are observed for the indirect scheme. For the results presented below, the in-
direct, more efficient method of calculating the fuzzy model was used.

Below, we present simulation results for one two-DOF, planar manipula-
tor, one four-DOF, planar manipulator, and one seven-DOF, 3-D manipula-
tor.

C. Single, Large-Step Tracking

1) Two-DOF, Planar Manipulator: For this simulation run, we require the
fuzzy mapping to independently generate the joint trajectories required to go
from a position of (1.5 m, 0.0 m) to (0.0 m, 1.5 m). Note that both the initial
and final positions specified are singular configurations for the manipulator.
The simulation time is specified to be 1 sec. Fig. 9 shows the resulting tra-
jectory generated by the fuzzy mapping. The manipulator converges to with-
in 1 mm absolute error in 1 sec.

2) Four-DOF, Planar Manipulator: For this simulation run, there are two
redundant DOF’s, and we require the fuzzy mapping to generate the joint
trajectories required to go from a position of (1.5 m, 0.0 m) to (0.0 m, 1.0
m). The simulation time is specified to be 1 sec.

Fig. 10 shows the resulting trajectory generated by the fuzzy mapping.
The manipulator converges to within 0.1 mm absolute error in 1 sec. Numer-
ous other large-step trajectories were simulated with equal or better results.
For all attempted large-step trajectories, the steady-state position error con-
verges to zero.

D. Multiple, Small-Step Tracking

Below, we present results for the second type of simulation, which re-
quires the fuzzy controller to track a desired trajectory. In each case, the sim-
ulation runs for seconds, where denotes the duration of the

trajectory, and 0.4 seconds is the steady-state time that we allow the manip-
ulator to converge to the desired position. In all trajectory plots, the solid line
represents the generated trajectory and the dotted line represents the desired

Jij dri

Jij

Jij

Fig. 7. Membership functions generated for .dri

-0.1 -0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

Generated Membership Functions

dri

Fig. 8. Membership functions generated for .Jij

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Generated Membership Functions

Jij

dri dri

dri wk

wk k 0 1 … 44, , ,{ }∈
dθi j

dri

dθi j dθi j

Jij
2

Jij
2

dθ̂i j
Jij

2
dri

Jij
-------------------≈

Jij
2
dri

Jij
---------------- Jij dri= =

dθ j
1
cj

dθ̂i j

r i

i 1=

6

∑= i∀ r i 0 cj 0≠,≠,

dθ j 0= cj 0=

Jij dri

Θ
Θ

Θ
Θ

f s f c

f s f c

t1 0.4+ t1

Table II. Rule Base Generated fordθi j

M1A

M1B

M1C

M2A M2B M2C

0.0667

0.0000

-0.0667

0.1163

0.0000

-0.1163

0.2502

0.0000

-0.2502

0.4749

0.0000

-0.4749

1.1398

0.0000

-1.1398

1.5197

0.0000

-1.5197

1.6174

0.0000

-1.6174

-1.7134

0.0000

1.7134

-1.6174

0.0000

1.6174

-1.5197

0.0000

1.5197

-1.1398

0.0000

1.1398

-0.4749

0.0000

0.4749

-0.2502

0.0000

0.2502

-0.1163

0.0000

0.1163

-0.0667

0.0000

0.0667

M2D M2E M2F M2G M2H M2I M2J M2K M2L M2M M2N M2Odri
Jij

trajectory.
1) Two-DOF, Planar Manipulator: For this simulation, we require the

manipulator to follow a curved path with the following characteristics:

(Eq. 32)

where = length of the path, and = average speed of the trajectory. The
results of the simulation are,

(Eq. 33)

where = maximum deviation from the desired path, = average de-

viation from the desired path, and = steady-state error after . sec-

onds.
The desired trajectory is tracked very closely by the generated trajectory

and, hence, part of the instantaneous error is partially due to a small time lag.
In addition, the generated joint paths are smooth functions of time. We ex-
amine the joint paths more closely for the redundant manipulators.

2) Four-DOF, Planar Manipulator:For this simulation, we require the
manipulator to follow a curved path with the following characteristics:

(Eq. 34)

The results of the simulation are shown in Fig. 11, Fig. 12, and Fig. 13, with,

(Eq. 35)

3) Seven-DOF, Manipulator: Here, we present simulations for position
tracking of a seven-degree of freedom robot. Here three position coordinates

 are mapped to seven joint angles .

Hence, there are four redundant DOF’s and the dimensions of are
3x7. When = (0, 0, 0, 0, 0, 0, 0), the end-effector

is located at (0.2 m, -0.6 m, 0.6 m). We chose not to include orientation
tracking for the end-effector for simplicity and in order to demonstrate
tracking for a hyper-redundant manipulator.

For the first simulation, we require the manipulator to follow a complex
path with the following characteristics:

(Eq. 36)

The results of the simulation are shown in Fig. 14 and Fig. 15, with,

: (Eq. 37)

For the second simulation, we require the manipulator to follow a curved
path with the following characteristics,

Fig. 9. Trajectory generated to move from an initial position
(1.5 m, 0.0 m) to a final position (0.0 m, 1.5 m) for a 2-DOF
manipulator.

0.2 0.4 0.6 0.8 1 1.2 1.4

x (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
y

(m
)

Manipulator Position

Fig. 10. Trajectory generated to move from an initial position
(1.5 m, 0.0 m) to a final position (0.0 m, 1.0 m) for a 4-DOF
manipulator.

0.2 0.4 0.6 0.8 1 1.2 1.4

x (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y
(m

)

Manipulator Position

l path 3.99m= t1 6s= v 66
cm
s

-------=

l path v

emax 2.27cm= e 0.61cm= ess 0.00cm=

emax e

ess t1 0.4+

l path 3.63m= t1 3s= v 1.21
m
s
----=

emax 3.49cm= e 1.06cm= ess 0.00cm=

Fig. 11. This is the path that the fuzzy controller chooses for the
4-DOF manipulator.

-0.5 0 0.5 1 1.5

x (m)

0

0.2

0.4

0.6

0.8

1

1.2

y
(m

)

Manipulator Position

Fig. 12. Instantaneous error between the actual and desired
paths for the 4-DOF manipulator.

0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E
rr

or
 (

m
)

Error vs. Time

Fig. 13. The joint angle trajectories for the 4-DOF manipulator
are all smooth, near constant velocity trajectories.

0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ng

le
 (

ra
d)

Theta(1)

0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.25

0.5

0.75

1

1.25

1.5

A
ng

le
 (

ra
d)

Theta(2)

0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ng

le
 (

ra
d)

Theta(3)

0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.2

0.4

0.6

0.8

A
ng

le
 (

ra
d)

Theta(4)

x y z, ,() θ1 θ2 θ3 θ4 θ5 θ6 θ7, , , , , ,()
J Θ()

θ1 θ2 θ3 θ4 θ5 θ6 θ7, , , , , ,()

l path 5.28m= t1 12.6s= v 42
cm
s

-------=

emax 1.98cm= e 0.70cm= ess 0.08cm=

(Eq. 38)

The results of the simulation are,

(Eq. 39)

For the last simulation of the 7-DOF manipulator, we require the manipu-
lator to follow a straight path with starting coordinates of (0.2, -0.6, 0.6) and
final coordinates of (0.7, -0.35, -0.15) and the following characteristics:

(Eq. 40)

The resulting joint trajectories are shown in Fig. 16. The various tracking er-
rors for the trajectory are:

(Eq. 41)

V. DISCUSSION

A. Comments on Simulation Results

Here, we note some of the main characteristics about the fuzzy controller
performance. First and most important, the fuzzy controller produceszero
steady-state error. In the simulation results presented in Section V, all sim-
ulations converged to within 1 mm of the desired position in 0.4 seconds af-
ter the desired trajectory had stopped changing. In all instances, the steady-
state error converged to zero in less than 1 second.

The average tracking error is a function of the average speed of the end-
effector during tracking and the complexity of the trajectory. The highest av-
erage tracking error of 1.06 cm occurred in the simulation of the four-DOF

planar manipulator, where the average trajectory speed was 1.21 m/s. The
lowest average tracking error of 0.45 cm occurred in the simulation of the
complex trajectory for the seven-DOF robot. Here the average speed of the
end-effector was only 7.90 cm/s.

To get a better understanding of the relationship between the average
speed of the end-effector and the tracking error, we simulated the straight-
line trajectory for the seven-DOF manipulator at various speeds. Table III
reports the results. Note that although the speed is increased by 400% from
9.35 cm/s to 46.77 cm/s, the average tracking error increases by only 78%
from 0.59cm to 1.05 cm. The maximum tracking error increases by 279%
from 1.10 cm/s to 3.07 cm/s. Also note that the average tracking error for a
speed of 46.77 cm/s for the seven-DOF manipulator is roughly equivalent to
the tracking error for the four-DOF planar manipulator at a speed of 1.21 m/
s. This is a consequence of the fact that straight-line paths are, in general,
more difficult to track than curved paths

The maximum error during tracking occurs in general (but no always) near
the beginning of the trajectory, when the manipulator is still adjusting the
joint angles to track the generated path more easily. Furthermore, the maxi-
mum error does not necessarily represent the maximum deviation from the
desired path, but may, at least in part, reflect some time lag.

Note that increasing the speed of the end-effector is equivalent to reducing
the control frequency and vic versa. Therefore, the above discussion ap-
plies equally well to variations in the control frequency.

Second, we examine the actual joint trajectories generated by the fuzzy
controller. Fig. 13 and Fig. 16 show the joint angle trajectories generated for
the four-DOF and seven-DOF simulations respectively. Note that in both in-
stances, the joint trajectories generated by the fuzzy controller are smooth,
non-oscillatory functions of time.

For the four-DOF simulation, we see that the generated trajectories vary
nearly linearly with time. This means that the manipulator will move at near-
constant velocities and little or no acceleration. For the seven-DOF straight-
line simulation, we see that the joint trajectories no longer vary linearly with
time but are still smooth functions of time. Also, the change in slope of the
joint trajectories (i.e. the acceleration of the joints) increases with joints that
are further away from the base. The joint trajectories for , , and ex-

hibit much higher accelerations than do the trajectories for , , , and

. When given a choice, the fuzzy controller seems to prefer moving links

Fig. 14. The generated trajectory tracks the desired path with
good accuracy even through sharp turns for the 7-DOF
manipulator.

Tracking Complex Trajectory

-0.2
0

0.2
0.4x (m)

-0.5

-0.25

0

0.25

0.5

y (m)

-0.25

0

0.25

0.5

z (m)

-0.2
0

0.2
0.4x (m)

-0.5

-0.25

0

0.25

0.5

y (m)

-0.25

0

0.25

0.5

l path 31.55cm= t1 4.0s= v 7.90
cm
s

-------=

emax 0.71cm= e 0.45cm= ess 0.09cm=

l path 93.5cm= t1 10.0s= v 9.35
cm
s

-------=

emax 1.10cm= e 0.59cm= ess 0.09cm=

Fig. 15. Instantaneous error between the desired path and the
generated trajectory for the first simulation of the 7-DOF
manipulator.

0 2 4 6 8 10 12

time (sec)

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

E
rr

or
 (

m
)

Error vs. Time

Fig. 16. Joint trajectories for
straight line path in 3-space
of 7-DOF manipulator.

0 2 4 6 8 10

time (sec)

-0.05

0

0.05

0.1

0.15

0.2

0.25

A
ng

le
 (

ra
d)

Theta(1)

0 2 4 6 8 10

time (sec)

-0.8

-0.6

-0.4

-0.2

0

A
ng

le
 (

ra
d)

Theta(2)

0 2 4 6 8 10

time (sec)

0

0.05

0.1

0.15

0.2

A
ng

le
 (

ra
d)

Theta(3)

0 2 4 6 8 10

time (sec)

-0.5

-0.4

-0.3

-0.2

-0.1

0

A
ng

le
 (

ra
d)

Theta(4)

0 2 4 6 8 10

time (sec)

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

A
ng

le
 (

ra
d)

Theta(5)

0 2 4 6 8 10

time (sec)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

A
ng

le
 (

ra
d)

Theta(6)

0 2 4 6 8 10

time (sec)

-0.2

-0.1

0

0.1

0.2

0.3

A
ng

le
 (

ra
d)

Theta(7)

Table III. Relationship Between Speed and Tracking
Error

vavg (fs = 50 Hz) emax eavg

9.35 cm/sec

18.71 cm/sec

46.77 cm/sec

1.10 cm

1.57 cm

3.07 cm

0.59 cm

0.82 cm

1.05 cm

f c

θ5 θ6 θ7

θ1 θ2 θ3

θ4

closer to the end-effector over links that are closer to the base. This is a de-
sirable characteristic in that links that are closer to the end-effector require
less torque to move and are easier to control.

Third, the simulations of single, large-step tracking indicate that the fuzzy
controller is able to converge quickly to a desired position even when the ini-
tial error is very large. If the speed of the desired trajectory should suddenly
change, the fuzzy controller will still be able to overcome any large error
without much problem.

Fourth, we note that the simulations were performed near or at singulari-
ties at various points in the trajectory. In all cases, the fuzzy controller
proved robust and handled the singularities without much difficulty.

Finally, when the modifications to the fuzzy scheme in Section III-G are
removed, we observe significant increases in the maximum error, mean er-
ror, and oscillations. Schacherbauer and Xu [7] treat this topic in significant
detail for similar input modifications to another fuzzy inverse kinematic
scheme. Their results show that the low-pass filtering applied at the input of
the fuzzy controller contributes the most to reduction in error.

B. Computational Efficiency Analysis

In order to demonstrate the usefulness of our scheme for real-time control,
we analyze the computational efficiency of our method for calculating the
inverse kinematics of ann-DOF manipulator. We restrict the twist angleα
to 0° and±90°.

Including the Jacobian, the proposed method requires a total of,

43n - 55 multiplications/divisions
31n - 44 additions/subtractions (Eq. 42)
2n - 2 sine/cosine function evaluations [8].

The Puma 560 manipulator is kinematically very simple in that only the
link lengths , and , and the link offsets and are nonzero [5]. Be-

cause of its kinematic simplicity, a closed form solution for the inverse ki-
nematics exists. In total, the closed-form solution requires,

53 multiplications/divisions
26 additions/subtractions
2 square root function evaluations (Eq. 43)
6 arctan function evaluations
2 arcsin/arccos function evaluations
10 sine/cosine function evaluations [5][8].

Including the Jacobian calculations, our method requires,

93 multiplications/divisions
64 additions/subtractions
6 sine/cosine function evaluations.

To compare the calculations required for the closed-form solution and our
fuzzy model approach more directly, we will make the following assign-
ments for each arithmetic operation in terms of “units of computing power
required,”

1 multiplication = 1 unit
1 addition/subtraction = 1/3 units
1 sine/cosine evaluation = 5 units (Eq. 44)
1 inverse function evaluation = 7 units
1 square root evaluation = 4 units [2].

The first two entries in Table IV show that even for a kinematically simple
manipulator like the Puma 560, our proposed method is marginally more ef-
ficient.

For more kinematically complex manipulators, our method fares much
better than other solutions. Below, we compare the computational efficiency
of our proposed method to the most efficient solution for the inverse kine-
matics of a redundant manipulator presented by Nakamura [4]. Since both
methods require calculation of , we only compare the additional arith-
metic operations required to calculate the inverse kinematics once is
calculated.

Nakamura presents an inverse kinematic solution for the case of redundant
manipulators using the pseudo-inverse of the Jacobian matrix. As a function

of n, this method requires,

(33n + 112) multiplications/divisions (Eq. 45)
(33n + 64) additions/subtractions.

In comparison, our method requires,

13n multiplications/divisions (Eq. 46)
(16n-6) additions/subtractions.

Therefore, our method is roughly two and a half times more efficient than
the pseudo-inverse method. Table IV summarizes the results.

VI. CONCLUSION

Calculating exact inverse kinematics in real-time is computationally too
burdensome for all but the most simple kinematic configurations. For a wide
class of robot tasks such as teleoperation, however, we do not require exact
inverse kinematics during global positioning and trajectory following. Here,
we have presented a method of calculating inverse kinematics which has
been shown to be robust to singular configurations, and is applicable to both
redundant and nonredundant manipulators. The inverse kinematic mapping
proposed trades off small tracking error for computational efficiency and ro-
bustness, and allows robot redundancy to be exploited rather than averted.
The fuzzy method is much more efficient for redundant manipulators than
other currently available methods and has been shown to be marginally
more efficient even for a simple robot where a closed-form solution to the
inverse kinematic problem exists. Furthermore, the method converges
quickly in steady state and produces zero steady state error in position and
orientation of the end-effector.

REFERENCES

[1] S. Araki, H. Nomura, I. Hayashi and N. Wakami, “A Self-Generating
Method of Fuzzy Inference Rules,” inProceedings: 1991 IFES Confer-
ence, pp. 1047-1058, 1991.

[2] J. J. Craig,Introduction to Robotics: Mechanics and Control, 2nd ed.
New York, Addison-Wesley Publishing Company, 1989.

[3] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller,
Parts I and II,” inIEEE Transactions on Systems, Man and Cybernetics,
vol. 20, no. 2, pp. 404-435, 1990.

[4] Nakamura, Yoshihiko,Advanced Robotics: Redundancy and Optimiza-
tion, New York, Addison-Wesley Publishing Company, 1991.

[5] R. P. Paul and Hong Zhang, “Computationally Efficient Kinematics for
Manipulators with Spherical Wrists Based on the Homogeneous Trans-
formation Representation,” inThe International Journal of Robotics Re-
search, vol. 5, no.2, pp. 32-44, 1986.

[6] D. E. Orin and W.W. Schrader, “Efficient Jacobian Determination for
Robot Manipulators,” inRobotics Research: The First International
Symposium, M. Brady and R. P. Paul, Editors, MIT Press, 1984.

[7] A. Schacherbauer and Y. Xu, “Fuzzy Control and Fuzzy Kinematic
Mapping for a Redundant Space Robot,” Technical Paper, CMU-RI-
TR-92-12, Carnegie Mellon University, 1992.

[8] Y. Xu and M. Nechyba, “Fuzzy Inverse Kinematic Mapping: Rule Gen-
eration, Efficiency, and Implementation,” Technical Paper, CMU-RI-
TR-93-02, Carnegie Mellon University, 1993.

a2 a3 d3 d4

J Θ()
J Θ()

Table IV. Computational Efficiency

Add./Sub. Sin/Cos Inv. Func. Sqrt.Mult./Div. “UCP”4

P5601

7DOF3

7DOF2

8DOF3

8DOF2

P5602

53 26 10 8 2

93 64 6 0 0

246

498

289

561

173

362

204

410

12

12

14

14

0

0

0

0

0

0

0

0

176

144

679

364

768

427

1Closed-form inverse kinematics
2Fuzzy inverse kinematic mapping
3Inverse kinematics through pseudo-inverse of Jacobian
4UCP = Units of Computing Power

