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Abstract — Inverse kinematics is computationally expensive and can re- II. Fuzzy MoDEL GENERATION
sult in significant control delays in real time. For a redundant robot, ad-
ditional computations are required for the inverse kinematic solution A. Overview
through optimization schemes. Based on the fact that humans do not com-

ute exact inverse kinematics, but can do precise positioning from heuris- . -
P p p 9 nput the actual and desired locations of the end-effector, and the current

tics, we developed an inverse kinematic mapping through fuzzy logic. The ! - .
P pping 9 y1og joint variable values. From these inputs, the fuzzy controller generates as

implementation of the proposed scheme has demonstrated that it is feas! ) A o :
ble for both redundant and nonredundant cases, and that it is very com-output the necessary trajectories for the joint variables, so that the actual and

putationally efficient. The result provides sufficient precision, and desired end-effector locations converge to zero steady-state error.
transient tracking error can be controlled based on a fuzzy adaptive
scheme proposed in this paper. This paper discusses (1) the automatic gen-
eration of the Fuzzy Inverse Kinematic Mapping (FIKM) from specifica-
tion of the DH parameters, (2) the efficiency of the scheme in comparison
to conventional approaches, and (3) the implementation results for both
redundant and nonredundant robots.

As shown in Fig. 1, our fuzzy inverse kinematic mapping (FIKM) takes as

Robot Manipulator

Omeasured

. INTRODUCTION!

One of the major problems of robot manipulator control today is that of Fig. 1. Overall signal flow for the fuzzy controller.
calculating inverse kinematics in real time. Calculating inverse kinematics
is computationally expensive and generally consumes a large percentage dfhe Jacobian matrid(©) relates the differential Cartesian dateshe

time in the real-time control of robot manipulators. differential joint ratesl® , such that
The problem of inverse kinematics may be summarized as follows: Given
the 6x1 position/orientation vectoof the end-effector in Cartesian space, dr = J(©)dé (Ea. 1)

calculate thex1 vector of joint angle®  required to place the end-effectozssentially, we want to solve the inverse problem to (Eg. 1), namely,
at the desired position and orientation. Herepresents the number of de-

grees of freedom (DOF) of the manipulator. In general, inverse kinematics de = J_l(G))dr , (Eq. 2)
does not result in one-to-one mapping between Cartesian and joint spac%,
and closed-form solutions to the inverse kinematic problem exist only for a o
very small class of kinematically simple manipulators [2]. er. First,J (©) exists only whem= 6, and therefore is not suited for re-

In the case of redundant manipulators and nonredundant manipulatorsgiindant manipulators. Second, even when we can solvé_ﬁf)t-)) , the
singular configurations, the problem is compounded by the fact thabjution will degenerate at and near singularities. Third, the computations
throughout the workspace of the manipulator, multiple solutions (perhapgvolved in inverting a 6x6 matrix in real time are time consuming. There-
even an infinite number of solutions) exist. The inverse kinematics of redufgre, we propose a fuzzy logic approach to solving the problem. Fig. 2 out-
dant manipulators therefore requires that a choice be made among the seffls the overall algorithm we use to generate the fuzzy mapping
all possible solutions. Arriving at such a decision through some optimizatiogytomatically, with only the DH parameters as input to the algorithm.

2§hceelr;]t'ec:i§n(iigilcclijlt|:nd the time-consuming computations can result in sig-consiger eacll; term in the Jacobian separately alongoiwitithe ith

ifi rol delays.

y . . . component of thelr  vector. We define a new varialfig which relates
Humans do not, however, have to calculate exact inverse kinematics every

time we move an arm or a leg. Experience and knowledge, rather than cof; andJ;; ,

plex computations, allow humans to effectively move with ease. In this pa- _

X ) > J;de; =dr (Eg. 3)

per, we propose to characterize this human knowledge by proposing a [

general method of computing the inverse kinematics for an arhitGF Therefored®; relates how mudt;  contributesitp . This relationship

manipulator through a fuzzy logic approach. The method applies equall ives a good understanding of which joints will contribute more to reducin,

well for redundant and nonredundant manipulators, is computationally e g 9 ) 9

cient, and robust at or near singular configurations. The scheme has been §Hfi-2nd which ones will contribute less. Thus, with proper scaling of each
plemented in the real-time control of a teleoperated space robot [7], and Wighed8;; 's the fuzzy mapping can arrive at an intelligent set of joint angles
results have shown that the scheme is very efficient, especially in teleopeat will drive the end-effector to the desired position. The function that we

here are many reasons why we cannot solve (Eq. 2) analytically, howev-

ation. will actually apply the fuzzy mapping to is given by,
In this paper, we first present an algorithm which automatically generates
the fuzzy model for an arbitrary manipulator based only on the Denavit- de. = % (Eq. 4)
ij .

Hartenberg (DH) parameters [2]. Second, we analyze the generated fuzzy J

model characteristics and present a very efficient method of indirectly cal- . . . . . ) .
culating the fuzzy model output. Third, we present simulation results for twi he_followmg sections discuss in detail each of the steps described briefly
redundant and one nonredundant manipulator. Fourth, we analyze the chn'—:'g' 2.

putational efficiency of our method and compare it to other current methods. . . o

B. Jacobian Calculation and Range Determination

1. This material is based upon work partially supported under a National Sci-There are many computationally-efficient methods for calculating the for-
ence Foundation Graduate Research Fellowship. ward Jacobian [6]. Orin and Schrader present several methods, one of which

ij




Denavit-Hartenberg
parameters
Calculate the Jacobian
matrix J(©).

L

Determine the minima and
maxima for each of the Jj;
elements of J(©).

L

Generate p input/output data

vectors (drj , J;, d6j}).

L

Apply fuzzy mapping to the
relation: d9|j =dr; /Jij

L

Combine weighted d6j; termsto
formthedg terms.

Fuzzy Model
Complete

Fig. 2. Algorithm to automatically generate the fuzzy model

from the DH parameters.

requires (30 - 55) multiplications, (15 - 38) additions, and (2-2) sine/co-

sine evaluations for both position and orientation tracking. Her8 and l
the twist anglex  in the DH parameters is restricte@to +96°

In order to minimize the inference error of the fuzzy model, we want to Setp=p+ 1. Read in pth vector of
fuzzify relationship (Eq. 4) over the full range of values fijat  may assume. input/output data (dr; , Jj , d&; ).
Therefore it is useful to determine, before the fuzzy mapping, the range for
each elemenlij i,0{1...,6 j0{1,..,% ,id(®) l

the form,

Jij = 12F2(8y, ..., 6) +15F5(8y, ..., 6) + ...
1 F By e 8) + Ty Ty 1By ) .

ot dpf (650,60,

where each; i,0{1,...,k} ,isaconstant, eachi {1, .., m<n}
an offset distance in the DH parameters which may be variable, and each of
thef;(8,, ...,0,),i0{1,...,k+m} ,is aproduct of sine and cosine terms.

Note, of course, that any (or all) of the coefficietits
toOorl.

The maximum and minimum values for the cosine and sine functions are

Ox 0 { -, »} ,
—-1<sin(x)< 1 -l1<cos(x)< 1
Therefore, it follows that fod< 6; <2mt {0{1, ..., n}

minimum values for each(6,, ...,0,) are,

1@y O = -1 fi(8y,...,8))

max

In addition, for a given manipulator, we also know the range of allowable adjoining membership functions and
values for each variably a priori. Then, the minimum and maximum val-

ues for eacld;; , are,

gpn m O
Jljmln = _Dz “p‘ + z ‘dq‘ma% ‘]Ilmax = ‘Jljmln‘ (Eq. 8)
B=1 " o=1

S0 thatljjyin < Jjj < Jjjmax for all possible;  ard)

hnd may be equal

, the maximum and

=1

C. Generation of Input/Output Data Table:

In preparation for generating the fuzzy model, we require that a table of
input/output data be generated for ed6f . Each input/output vector in the
table must be of the forrfdr;, J;;, d8;;) , where, of couddg,  &pd  are
considered the inputs an@;  is the output of the fuzzy model.

For the fuzzy mapping presented in this paper, we generated the input/out-
put data by computing a table of vectors of the form,

P(3;; % d6y, Iy,

dey) (Ea.9)
whereJ;; was swept fromkjnin  Wjmax  Mjmax /1000 increments, and
de;; was swept from -0.3f,.,  t0 0Jfpac i 0.044,,  increments.
Therefore, the ranges for the input variables were,

-0.1<dr;<0.1

<Ji;<J

ijmin ij = Yijmax

Eqg. 10
3 (Eq. 10)
The range fodr; indicates our expectation that the end-effector will move
less than 10 cm (0.1 m) in each direction per control cycle. We later see that
we can expand the range fbr,  without any loss in accuracy.

D. Generation of Fuzzy Inference Rules and Membership Functions
Fig. 3 outlines the algorithm that was used to generate the rule base and
membership functions for tr#6; 's. A similar approach for generating the

fuzzy model can be found in [1]. The algorithm takes as input the table of
input/output data generated in the previous section.

@ Input/Output Data

Initialize membership functions
fordrj and Jjj andset p=0.

Determine fuzzy reasoning for
d6j and update rule base.

End of I/0 Data?

YES YES

Calculate g for regions divided by

generate a new membership function
and new rulesin the region with the
largest inference error.
Initidizep = 1.

Fig. 3. Detailed algorithm for generating fuzzy mapping for
de;; .
i



Initially, we generate three evenly spaced membership function per inpEtrthermore, the change in the inference error from the previous cycle is
variable, i.e.dr; andj; , for the ranges that were determined previouslgiso calculated,

The sum of the membership functions at each valug;for dgnd add up 1. new _old

Let Ngy; = current number of membership functionsdey &g~ = Beint = Cint ~Eint (Ea. 18)
current number of membership functions fd@ij . Dendik,, + As can be observed from Fig. 3€jf; €5, = 0.0013, then the fuzzy
xO{A B ..}, as a membership function afr; and denddg, ,model is complete. If the negative change in the inference error is still sig-
yO{A B ..}, as a membership function 8f . Also, Mt , Mg, . nificant without generating new membership functionsmpe  are refined
mO{1, 2 ..., Ngq} ,andM, , M, ,mO{1,2 ..., Ny} ,wheremde- ~ more by reprocessing the input/output data table. If, howevefehe is
notes the position of trathletter in the alphabet. positive or negligibly negative, then new membership functions have to be

The initial rule base for the fuzzy control model takes the following formfienerated in order to further reduce the inference error. Fig. 4 shows by ex-
whereR® denotes theh rule:
R%: Ifdr,is My, andJ; isM,, themi8; isv, .
R':If dr;is My, andd; isMpg them;; isv

i k=2 k=5 k=8
Mo QD

Ro1
(Eq. 11) My k=1 k=7

R'™Y 1 drjis Myc andJ; isM, themiB; isvy_; .
Here,N = total number of rules (equal to 9 at initialization) but in general, Rag
N = Ny x NJlj (Eq. 12) Moa k=0 k=6
dr;
—1)Ny;i -1 . . .
ROTINuTTL g driis M; 4 andJ;; isM,, therd®; is '
W _ (Eq. 13)
(@-Ny+r-1 M M M
- \M—llB\—llc
We further initialize the real numbers of the consequent pgrt s Rio Ry
kO{0,...,N—-1} ,to 0, and the maximum inference eregr,,  to 0.0013.
This number was arrived at iteratively after tries with various different stop
values. When the inference eregf; €5, . then the fuzzy model is com- Ji K2 " K8 ke 11
plete to desired specifications for thi; Mo = "
Furthermore, we set a minimum threshold valesg, ., 5x207° for the R
change in the inference error in consecutive iterations of the algorithm. This 2 B
is used to decide whether or not to further reduce the inference error without Mg k=1 k=4k= 7/ k=10
generating new rules. e, >0 @e,,| <|Ae,| then a new member-
ship function and new rules will be generated; if not, then further reduction Rao
of g,,; will be accomplished by adjusting,  with repeated reading of the k=0 k=3 k=6 k=9
input/output data. Maa o
For each new input/output data veqgtowe first calculate the truth value drj
u, for each of the rules for that particular combination of inputs. For exam-
ple, Mia Mg Mic Mgp
| | N |
Mo = Mya(dr) ;Maa(Ji), Rio Rip R

= M,A(dr;) Mog(J::
M1 1a(dri)pMag (i), Fig. 4. A new membership function is generated by splitting

My, = Mya(d ri)pM 2C(.]”-)p (Eq. 14) the region where the inference error is the highest.
Hz = Myg(dr) M2a(J5),
W, = etc... ample how new member;hip functions are gen_erat_eq anq how consequently,
new rules are formed. First, tiog; J;-  plane is divided ifft; — 1) X
Second, the outputd®;;) I of the fuzzy model is calculated by, (Nj;;—1) regions. The region borders are generated where two adjoining
N1 membership functions meet. The top part of Fig. 4, for example, has region
(deij)pD =3 WX w (Eq. 15) R, shaded. Second, the inference error is calculated for each region. This
k=0 is done by summing up only those terms in (Eg. 15) fopmbere(dri)p
The real numbers of the consequent pgrt  are updated by, and (Jij)p fall within that specific region. We then select the re&gg,
new old with the greatest inference error where a new membership function is to be
W= W —cwpk[(deij)Dp—(dGij)p] (Eq. 16)

generated. Fig. 4 assumes that redop R 3,

wherec,, = 0.6. This value was determined experimentally, and increaseR .. will be divided into two equal halves as is shown in Fig. 4 if both of
the speed of convergence to the smallest possible inference error with the resulting regions contain at least one data vector in the input/output data
least number of additional rules and membership functions being generateghle. If all input/output data is concentrated in one hali,gf, . then, how-

Once, th? R |nputjoutputl data has been reached, the_average 'rgﬁgr, no reduction @& ,; would occur by splitting the region into two equal
ence error is calculated by comparing the fuzzy-model output with the actual

output for every input/output data vector halves. In this case, the halfRf ,,  that contains all the data points would
o be divided into equal halves so tt,, ~ would be divided into two regions
o = 1 5 ‘(deij)Dp_(daij)p‘ (Eq. 17) of /4R, and 3/R,,,, . Here, it must be verified again that both resulting
pmaxp:1 regions contain at least one data point. Otherwise, the above procedure



would be iterated again. changes inthd6; jO{1,...,n} .We monitor the previous ten values for
When a new membership function is generateddfor , fgn NeWach of thedd.
rules are created. Similarly, when a new membership function is generataqanges occurj.

and suspect oscillatory behavior when 4 or more sign

for Jj, thenNy,; new rules are created. Fig. 5 and Fig. 6 show the membership functions we use to achieve an

Thew, for the updated rules correspondingﬁo will be weighted averdaptive fuzzy gain in order to control the tracking error and oscillations.
ages of the adjoining rules. In Fig. 4, for example, Taglgl sgows the rule base we use for the membership functions in Fig. 5

and Fig. 6.
wy +wd ’
ge‘” = 3_25 (Eq. 19) Error Membership Functions
w2 - wg (Eq. 20)
In general, when the newly generated membership funbtipp, is cre-

ated fordr; , then the updateg, 's will be,

new _1 Sy
WNJH(Q*]-) - 2(WNJ‘,(Q*2) WNJ‘,(Q*]-))

(Eq. 21)
old
Whgia-1) = Wiyg 0 {m mEd o me N It
. . ) -1 -05 0 05 1
Similarly, when the newly generated membership fundgn,, is creat- . ) . .
L ' Fig. 5. Membership functions used to select an adaptive
ed forJ;; , then the updated, s will be, gain based upon the average tracking error over the last 10
new 1 old sample periods.
Wqu” +m = E(Wqu” +m-1t Wqu” + m)
old (Ea. 22) Oscillation Detection
Wqurl+m*Wqurl+m+1 qD{Ovl«---vNJij_l} 1
OFF ON
Now, the input/output data must again be processed to adjws{the  so as 08
to reduces;,; . This procedure is repeated @pjl is reduced to 0.0013 for
the fuzzy model outpud6; 06
0.4
E. Scaling of Fuzzy Model Output
0.2
The values fod6; j0{1,....n} , must be derived from the db;
terms. Define the following terms: 0 osc
0 1 2 3 4 5
n
- B i Fig. 6. Membership functions for detecting oscillations.
i 2 ‘J”‘ Oio{s, ... 6} (Ea. 23) When 4 or more of the last ®.  ’s have changed sign, we

=1 consider oscillations to be “ON".

6
¢ =3 951 0jo{1,...,n} (Eq. 24)

i=1
i . Table I. Rule Base for Adaptive Gain/Oscillation
Thus,r; is the sum of the absolute values of the terms iiththew of the
Jacobian, and; is the sum of the absolute values of the termgtimc¢be K s M B

umn of the Jacobian.

OFF 1.00 2.60 0.80
Now, scale each of th:qtﬂij terms by row and column and form the effec-
L ON 0.10 0.40 0.03
tive joint angle by,
178 il The membership functions in Fig. 5 have a dynamic range based on the
ag; = C—{ —r—”— x \J”\de”} (Eq.25)  average errom,,, fodr; over the last ten control cycles. In other words,
ili= i

if the present error is greater than the averaged error over the last ten cycles,
This choice of scaling the individudB;;  ensures thatlfl) will not beve consider the error big (“B”). All other errors are considered medium

too large, and (2) the joint angles that can contribute the most to the motigM’) or small (*S"). Note from Table | that we suppress the daisignif-

in a givendr; direction will in fact contribute the most [7] icantly when oscillations are detected.
' ' Finally, we apply two low-pass filters to the input of the fuzzy model. First

e apply low-pass filtering to the g&
F. Further Modifications e apply lowp fiening 90

We further modify our scheme to improve performance in two ways: (1) Kapplied = leUZZyJ, gKapplied previous (Eq. 26)
Reduce the tracking error by introducing an adaptive fuzzy gain, and (2) De- 3 3
tect and suppress certain types of oscillations. The modifications themseh@@cond' we apply low-pass filtering to the resulting
also apply fuzzy logic.
If the tracking error becomes too large, we would like the fuzzy controller 1 2
to correct the problem quickly. This can be done by amplifying the @rror dry = §Kdri + §dri, previous (Eq. 27)

by a gainK so that the fuzzy model will take greater corrective measures . » o .
than the error itself would prescribe. If, however, the error grows very largdNnese two measures provide additional oscillation protection.
there may be a potentially catastrophic problem and the fuzzy controller
should proceed cautiously. Also, if oscillations are detected, this may be an I1l. Fuzzy MoDEL CHARACTERISISTICS
indication that the gaiK is too large and the fuzzy controller should once
again proceed with greater caution.

Oscillations in our modified scheme are detected by monitoring sigdtices 3 membership functions fibr;  and typically 15 membership func-

The algorithm that we use to generate the fuzzy model faitfe pro-



Table Il. Rule Base Generated f@f;

J. .
dri~J MZA MZB MZC MZD MZE MZF MZG MZH MZI MZJ MZK MZL MZM IV|2N MZO
|\/|1A 0.0667| 0.1163| 0.2502| 0.4749| 1.1398| 1.5197| 1.6174|-1.7134| -1.6174| -1.5197| -1.1398| -0.4749| -0.2502| -0.1163| -0.0667

MlB 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000

MlC -0.0667| -0.1163| -0.2502| -0.4749| -1.1398| -1.5197| -1.6174| 1.7134| 1.6174| 1.5197| 1.1398| 0.4749| 0.2502| 0.1163| 0.0667

tions forJ;; . Fig. 7 shows the membership functions generatedtfor , and 6 A
) } i ) _1 de; ’
Fig. 8 shows the membership functions generated for a typical cdge of 8, = 2| 2 — Li,r;z0,¢;20 (Eq. 29)
i= I
whereJ;; varies from -1.5 to 1.5. fhi=1
6. =0 c.=C (Eqg. 30)

Generated Member ship Functions ] 1

1 (Eq. 28) no longer degenerates for any valug;of dran and is equivalent
08 to calculating the fuzzy mappirdirectly. (Eg. 28), (Eg. 29), and (Eq. 30)
provide an extremely efficient and robust algorithm for calculating the fuzzy
06 inverse kinematic mapping of any redundant or nonredundant manipulator.
The computational efficiency of (Eq. 28) through (Eq. 30) for calculating in-
0.4 verse kinematics will be evaluated and compared to other methods in a later
section.
02
B. Simulation Implementation
0 dri

o1 0.05 0 0.05 o1 We perform two different types of simulations. In the first case, we give
as input to the fuzzy model only an initial value @r  and a final desired
position. We then let the manipulator move by repeatedly upd@ting  so as
to reach the final position. In the second case, we give as input to the fuzzy
model an initial value fo® , and a series of position data points that define

Fig. 7. Membership functions generated dia¢

Generated Member ship Functions

1
the desired trajectory. Here, we upd&e  once for every new data point.
0.8 That is, the sampling frequen€y s equal to the control frequiency . For
the simulations presented in this paper, we assume,
06
fg=f.,=50Hz (Eq. 31)
04 All simulations were run using both the direct and the indirect method for
02 calculating the fuzzy model. Results are nearly identical for both calculation
) schemes, where slightly smaller tracking errors and faster error convergence
0 3i are observed for the indirect scheme. For the results presented below, the in-
15 1 205 0 05 1 15 direct, more efficient method of calculating the fuzzy model was used.

Below, we present simulation results for one two-DOF, planar manipula-
tor, one four-DOF, planar manipulator, and one seven-DOF, 3-D manipula-
Table 1l shows the rule base that was generated for the above case. A t&al
of 15x3 = 45 rules were generated. Thus, the generated fuzzy model is rela-
tively simple. C. Single, Large-Step Tracking
As was noted previoysly, we can trivia!ly extend the range of fuzzification 1) Two-DOF, Planar ManipulatorEor this simulation run, we require the
for dr;. Suppose that instead of assuming thiat  varies from -0.1 t0 0.4,y mapping to independently generate the joint trajectories required to go
we letdr; vary from -0.2 to 0.2 in the fuzzy mapping. Thenvihe  in thérom a position of (1.5 m, 0.0 m) to (0.0 m, 1.5 m). Note that both the initial

Fig. 8. Membership functions generateddqr

rule base are adjusted by multiplying eagh k{0, 1, ..., 44} , by 2.and final positions specified are singular configurations for the manipulator.
. ) . . The simulation time is specified to be 1 sec. Fig. 9 shows the resulting tra-
This can be done without loss of accuracy, smﬁ@ is linearly related to ; . e
Jectory generated by the fuzzy mapping. The manipulator converges to with
dr;. in 1 mm absolute error in 1 sec.
2) Four-DOF, Planar ManipulatorFor this simulation run, there are two

IV. SIMULATION RESULTS redundant DOF's, and we require the fuzzy mapping to generate the joint
trajectories required to go from a position of (1.5 m, 0.0 m) to (0.0 m, 1.0

A. Efficient, Indirect Calculation of Fuzzy Model Output m). The simulation time is specified to be 1 sec.

Fig. 10 shows the resulting trajectory generated by the fuzzy mapping.

he manipulator converges to within 0.1 mm absolute error in 1 sec. Numer-

ous other large-step trajectories were simulated with equal or better results.
For all attempted large-step trajectories, the steady-state position error con-
verges to zero.

The fuzzy model we have proposed thus far provides an intuitive basis f?
our approach and may be calculadig@ctly with relative efficiency. As we
demonstrate below however, (Eq. 28) leads to an alteindiesct method
of evaluating the fuzzy model which is roughly three times as efficietit as
rect evaluation of the fuzzy model

Observe that in the scaling of tde;; terms, ed@h is multiplied bb. Multiple, Small-Step Tracking

Z . P g
\J,J\ . Furthermore, note from (Eq. 4) the relation we originally fuzzified. Below, we present results for the second type of simulation, which re-

We now propose to include the scaling multiplicatiorTquf‘ in the fuzzyquires the fuzzy controller to track a desired trajectory. In each case, the sim-
mapping so that, ulation runs fort, + 0.4 seconds, whete  denotes the duration of the
2 2 trajectory, and 0.4 seconds is the steady-state time that we allow the manip-
N ‘J‘ dr. J..“°dr. . - . -
dé;j = ij [ | ikl J,dr, (Eq. 28) ulator to converge to the desired position. In all trajectory plots, the solid line

‘]ij ij represents the generated trajectory and the dotted line represents the desired



Manipulator Position The results of the simulation are shown in Fig. 11, Fig. 12, and Fig. 13, with,

3max = 34%m e =106m e = 000w  (Eq.35)

Manipulator Position

2/ 15
/ x(m)
0 02 04 06 08 1 12 14 Fig. 11. This is the path that the fuzzy controller chooses for the
4-DOF manipulator.
x(m)
Fig. 9. Trajectory generated to move from an initial position Error vs. Time
(1.5 m, 0.0 m) to a final position (0.0 m, 1.5 m) for a 2-DOF 0.035
manipulator. 0.03
Manipulator Position — 0.025 'A
E o
% ol
14 2 0015 ) It WS
0.01 W
12 M"\»v\
0.005 \/\
0

0 05 1 15 2 25 3

time (sec)
£ 08 Fig. 12. Instantaneous error between the actual and desired
> paths for the 4-DOF manipulator.
0.6
Theta(1) I Theta(2)
0.4 } .
0 et B g
02 Z <
T T
0.8 1 1.2 14 » Theta(3) ; Theta(4) _
x(m) i .
Fig. 10. Trajectory generated to move from an initial position ;3 ;;
(1.5 m, 0.0 m) to a final position (0.0 m, 1.0 m) for a 4-DOF
manipulator. 0555 15 35 o8 is 25
time (sec) time (sec)
trajectory. Fig. 13. The joint angle trajectories for thg 4»DQF manipulator
1) Two-DOF, Planar Manipulatorfor this simulation, we require the are all smooth, near constant velocity trajectories.
manipulator to follow a curved path with the following characteristics:
cm 3) Seven-DOF, Manipulatotdere, we present simulations for position
Ipath = 3-99m ty = 6s V= 66? (Eg. 32)  tracking of a seven-degree of freedom robot. Here three position coordinates
(x,y, 2 are mapped to seven joint angl€8,, 8,, 85, 8,, 85, 8¢, 87)
wherel o = Igngth 0f the path, amd = average speed of the trajectory. Th@nce, there are four redundant DOF’s and the dimensiod$@y are
results of the simulation are, 3x7. When(6;, 8,, 65, 8,, 8, 6,,8,) =(0,0,0,0,0,0,0), the end-effector

A = P - is located at (0.2 m, -0.6 m, 0.6 m). We chose not to include orientation
Zmax = 2.27cm e = 0.6lcm &s = 0.00cm (Ea. 33) tracking for the end-effector for simplicity and in order to demonstrate

wheree,,, = maximum deviation from the desired pagh, = average gdracking fo‘r a h)./per—rgdundant marupulator. _
viation from the desired path, andl = steady-state errortafted.4 secFor the first S|mul_at|0n, we require the manipulator to follow a complex
path with the following characteristics:
onds.
The desired trajectory is tracked very closely by the generated trajectory _ _ __ ..cm
and, hence, part of the instantaneous error is partially due to a small time lag. ‘Dath = 5.28m t =126 v= 42? (Eq. 36)
In addition, the generated joint paths are smooth functions of time. We ex- ] ) o ) ]
amine the joint paths more closely for the redundant manipulators. The results of the simulation are shown in Fig. 14 and Fig. 15, with,
2) Four-DOF, Planar Manipulatorfor this simulation, we require the -
manipulator to follow a curved path with the following characteristics: 3max = 1.98cm e =0.70cm s = 0.0&m  (Eq.37)
_ _ oo m For the second simulation, we require the manipulator to follow a curved
'patn = 3.63m =38 v=12%g (Ea-34) path with the following characteristics,
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Fig. 14. The generated trajectory tracks the desired path with et
good accuracy even through sharp turns for the 7-DOF planar manipulator, where the average trajectory speed was 1.21 m/s. The
manipulator. lowest average tracking error of 0.45 cm occurred in the simulation of the
complex trajectory for the seven-DOF robot. Here the average speed of the
| ath = 31.55cm t, = 4.0s v = 7.907 (Eq.38)  end-effector was only 7.90 cm/s.
P s To get a better understanding of the relationship between the average

speed of the end-effector and the tracking error, we simulated the straight-
line trajectory for the seven-DOF manipulator at various speeds. Table Il
= 0.71lcm e = 0.45cm €5 = 0.0%cm (Eq. 39) reports the results. Note that although the speed is increased by 400% from
. . . . . 9.35 cm/s to 46.77 cm/s, the average tracking error increases by only 78%
For the last simulation of the 7-DOF manipulator, we require the manipyrom 0.59¢m to 1.05 cm. The maximum tracking error increases by 279%
lator to follow a straight path with starting coordinates of (0.2, -0.6, 0.6) anflom 1.10 cm/s to 3.07 cmis. Also note that the average tracking error for a
final coordinates of (0.7, -0.35, -0.15) and the following characteristics: speed of 46.77 cm/s for the seven-DOF manipulator is roughly equivalent to
the tracking error for the four-DOF planar manipulator at a speed of 1.21 m/
Ipath = 93.5cm t; = 10.0s v=0935- (Eg.40) s, This is a consequence of the fact that straight-line paths are, in general,
more difficult to track than curved paths
The resulting joint trajectories are shown in Fig. 16. The various tracking er-
rors for the trajectory are:

The results of the simulation are,

2
“max

Table Ill. Relationship Between Speed and Tracking

Error
Zmax = 1.10cm e = 0.5%cm €5 = 0.0%cm (Eq. 41) -
Error vs. Time Vavg (fs =50 H2) €max €vg
0.0175 9.35 cm/sec 1.10cm 059 cm
0.015 \ 18.71 cm/sec 157 cm 0.82cm
£ 00125 I il 46.77 cn/sec 3.07 cm 1.05cm
T o001
L% 0.0075 4 , \ N A fl\ I \“ The maximum error during tracking occurs in general (but no always) near
0.005 \J \ \/ \‘\ ,\[ \ / th beginning of the trajectory, when the manipuAIator is still adjusting thel
00025 U Y \\ \j\’ V joint angles to track the generated path more easily. Furthermore, the maxi-
' \ mum error does not necessarily represent the maximum deviation from the
0 I T desired path, but may, at least in part, reflect some time lag.

Note that increasing the speed of the end-effector is equivalent to reducing
the control frequency, and vic versa. Therefore, the above discussion ap-
plies equally well to variations in the control frequency.

Second, we examine the actual joint trajectories generated by the fuzzy
controller. Fig. 13 and Fig. 16 show the joint angle trajectories generated for
the four-DOF and seven-DOF simulations respectively. Note that in both in-
stances, the joint trajectories generated by the fuzzy controller are smooth,
non-oscillatory functions of time.

For the four-DOF simulation, we see that the generated trajectories vary
Here, we note some of the main characteristics about the fuzzy controliegarly linearly with time. This means that the manipulator will move at near-
performance. First and most important, the fuzzy controller prodigres  constant velocities and little or no acceleration. For the seven-DOF straight-
steady-state error. In the simulation results presented in Section V, all sifine simulation, we see that the joint trajectories no longer vary linearly with
ulations converged to within 1 mm of the desired position in 0.4 seconds afime but are still smooth functions of time. Also, the change in slope of the
ter the desired trajectory had stopped changing. In all instances, the steg@jt trajectories (i.e. the acceleration of the joints) increases with joints that
state error converged to zero in less than 1 second. are further away from the base. The joint trajectorie®§of, , Pand  ex-

The average tracklng erroris a funct|9n of the average speed .Of the e'ﬂ%it much higher accelerations than do the trajectorie8,foB, §; , ,and
effector during tracking and the complexity of the trajectory. The highest av-
erage tracking error of 1.06 cm occurred in the simulation of the four-DOf4- When given a choice, the fuzzy controller seems to prefer moving links

time (sec)
Fig. 15. Instantaneous error between the desired path and the
generated trajectory for the first simulation of the 7-DOF
manipulator.

V. DiscussioN

A. Comments on Simulation Results



closer to the end-effector over links that are closer to the base. This is a dén, this method requires,

sirable characteristic in that links that are closer to the end-effector require

less torque to move and are easier to control. (33n + 112) multiplications/divisions (Eq. 45)
Third, the simulations of single, large-step tracking indicate that the fuzzy (33n + 64) additions/subtractions.

controller is able to converge quickly to a desired position even when the ini-

tial error is very large. If the speed of the desired trajectory should suddenlyin comparison, our method requires,

change, the fuzzy controller will still be able to overcome any large error

without much problem. 13n multiplications/divisions (Eq. 46)
Fourth, we note that the simulations were performed near or at singulari- (16n-6) additions/subtractions.

ties at various points in the trajectory. In all cases, the fuzzy controller

proved robust and handled the singularities without much difficulty. Therefore, our method is roughly two and a half times more efficient than
Finally, when the modifications to the fuzzy scheme in Section III-G Aghe pseudo-inverse method. Table IV summarizes the resuilts.

removed, we observe significant increases in the maximum error, mean er- . .

ror, and oscillations. Schacherbauer and Xu [7] treat this topic in significant Table IV. Computational Efficiency

detail for similar input modifications to another fuzzy inverse kinematic

scheme. Their results show that the low-pass filtering applied at the input of Mult/Divi Add/Sub,| SinfCos | Inv. Func; St | *UCP
the fuzzy controller contributes the most to reduction in error. P560L 53 26 10 8 2 176
) . i PS602 9 64 6 0 0 144
B. Computational Efficiency Analysis e
i TDOF | 498 | 362 | 12 0 0 679
In order to demonstrate the usefulness of our scheme for real-time control, o
we analyze the computational efficiency of our method for calculating the TOOF2 | 246 | 173 12 0 0 L2
inverse kinematics of amDOF manipulator. We restrict the twist angle 8DOF3 | 561 410 14 0 0 768
to 0° and+90°.
8DOF2 | 289 204 14 0 0 427

Including the Jacobian, the proposed method requires a total of, TClosadform inverss Kinematics —

s L 2Fuzzy inverse kinematic mapping
43n-55 mUI?'PI'Cat'OnS/dlv!Slons 3|nverse kinematics through pseudo-inverse of Jacobian
31n - 44 additions/subtractions (Eq. 42) 4UCP = Units of Computing Power
2n - 2 sine/cosine function evaluations [8].

The Puma 560 manipulator is kinematically very simple in that only the VI. ConcLusion
link lengthsa, , andy; , and the link offsels  ahd  are nonzero [5]. Be- Calculating exact inverse kinematics in real-time is computationally too
cause of its kinematic simplicity, a closed form solution for the inverse kiburdensome for all but the most simple kinematic configurations. For a wide

nematics exists. In total, the closed-form solution requires, class of robot tasks such as teleoperation, however, we do not require exact
inverse kinematics during global positioning and trajectory following. Here,
53 multiplications/divisions we have presented a method of calculating inverse kinematics which has
26 additions/subtractions been shown to be robust to singular configurations, and is applicable to both
2 square root function evaluations (Eq. 43) redundant and nonredundant manipulators. The inverse kinematic mapping
6 arctan function evaluations proposed trades off small tracking error for computational efficiency and ro-
2 arcsin/arccos function evaluations bustness, and allows robot redundancy to be exploited rather than averted.
10 sine/cosine function evaluations [5][8]. The fuzzy method is much more efficient for redundant manipulators than
other currently available methods and has been shown to be marginally
Including the Jacobian calculations, our method requires, more efficient even for a simple robot where a closed-form solution to the
inverse kinematic problem exists. Furthermore, the method converges
93 multiplications/divisions quickly in steady state and produces zero steady state error in position and
64 additions/subtractions orientation of the end-effector.

6 sine/cosine function evaluations.
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