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Abstract 
This paper presents a n  ada tive robust fuzzy  control 

architecture for robot m a n i p u l t o r s .  T h e  control objec- 
tive is t o  adaptiuely compensate for the  unknown  non-  
linearity of robot manipulators, which i s  represented as 
a fuzzy  rule-base consisting of  a collection of i f - then 
rules. T h e  algorithm embedded in the  proposed archi- 
tecture can  automatically update f u z z y  rules and, con- 
sequently, it i s  guaranteed t o  be lobally stable and t o  
drive the tracking errors t o  a neigiborhood of zero. Fo- 
cused on realization, hardware limitations such as tra- 
ditional long computation t ime  and excessive memory-  
space usage are also relaxed by incorporating heuristic 
concepts, which reveals the  flexible feature of this archi- 
tecture. T h e  present work is applied t o  the coctrol of 
a j ive  degree-of-freedom (DOF) articulated robot ma-  
nipulator. Exper iment  results show that  the  proposed 
control architecture is featured in f a s t  convergence. 

1 Introduction 
During the past decade, intelligent control method- 

ologies have gradually been recommended to solve a 
number of complicated problems, in particular, to the 
P b l e m  of controlling robot manipulators which are 

ard by conventionalcontrol methodologies to handle 
or at the price of complex implementation. Those 
methodolo ies often use biologically motivated tech- 
niques a n f  processes, and are referred to as neural 
networks, or some learning schemes [6]-[9]. Unlike gen- 
eral conventional schemes based on a complete theory 
and algorithmic structure, they are in general hardly 
evaluated. Therefore, it is imperative to make efforts 
on bridging the gap between the conventional control 
schemes and the intelligent ones [l]. Recently, analy- 
sis based intelligent control has attracted enormous re- 
search interests [a]-[4]. Ideas behind those schemes are 
to strengthen their theoretic basis but at the price of 
expensive implementation by using massive networks 
and extensive rule-tables or complex functions, which 
lead to difficulties in real implementation due to hard- 
ware limitations such as long computation time and ex- 
cessive memory-space usage. On the other hand, the 
heuristic nature of intelligent control often has much 
benefits for a controlled s stem. Hence, an integrated 
consideration is suggestelin this paper. 

In this paper, we present a new fuzzy control ar- 
chitecture for the control of a robot manipulator. It 
is known that fuzzy logic controllers (FLC) have been 
widely applied in industry, for instance, a plying fuzzy 
PD controller to robot manipulators. I n  important 
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advantage of using FLC is that fuzzy theories can 
capture the approximate, qualitative as ects of hu- 
man knowledge and reasoning. Apparentyy such con- 
trol provides a rather feasible alternative !or control- 
ling a plant like a robot manipulator which is an ex- 
tremely complex mechanical system. On the other 
hand, adaptive control and variable structure control, 
separately or both together, had been successfully ap- 
plied to robot manipulators with appealing perfor- 
mance [ l O ] , [ l l ] .  Hence, an adaptive fuzzy sliding mode 
control (AFSMC) scheme for robot manipulators is 
proposed in this paper! where the variable structure 
control is to ensure that the overall system is stable 
whereas the adaptive control is to recover the control 
performance in face of the arametric uncertainty. Fur- 
thermore, the nonlinear siding variables consistin of 
fuzzy PD rules will replace the conventional linear &d- 
ing variables because the former is more flexible than 
the conventional latter. Hence, the control synthesis 
pro osed here incoporates the nonlinear fuzzy sliding 
surgce approach into the present AFSMC. 

This paper is organized as follows: Section 2 formu- 
lates the general control problem for robot manipula- 
tors. In section 3, the control algorithm is given under 
some assumptions and stability is analyzed. Section 
4 shows experiment results on controllin a five DOF 
robot manipulator. Finally, some conclu%ing remarks 
are made in section 5. 

2 Problem Formulation 

links, whose dynamic model is described by 
Consider a class of articulated robot arms with n 

M(di l '+  C(4,4)4 + G(4) + f (4, 4 )  = 7- (1) 

where q is the n x 1 vector of the link relative dis- 
placements, and T is the n x 1 vector of torques ap- 
plied to joints, M ( q )  is the inertial matrix, G(q, Q)4  is 
the vector representing the Coriolis, centrifugal torques 
and G(q) is the vector of gravity torques, f (q>  4) is the 
vector of joint friction torques. For emphasis on the 
flexibility of a plying robot manipulators, the manip- 
ulator pa loa imay not be necessarily known in ad- 
vance a n l a  variety of tasks need to be handled. Be- 
sides the friction in the process of robot motion is 
hard( modeled precisely. This results in uncertain- 
ties or modeling robot manipulators. Generally, uncer- 
tainties are often denoted as a deviation between the 
nominal plant and the actual plant and are expressed 
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as foiiows: M = M - M ,  c = c - C ,  G = G - 6, 
f = f - f̂ , where M^, e, 6 and f are defined as 
the functions of the nominal plant. Our aim is to 
track a desired trajectory, i.e., to force the joint vec- 
tor q( t )  = [ql ,  q2,  . . , q,JT to follow a specified desired 
trajectory q d ( t )  = [ q l d ,  q 2 d , .  -.  , q,#(t). Hence, the 
tracking error vector e = qd - q = [el, e 2 , .  - - , e,IT is 
defined. At the beginning, a nominal compensator 7̂  
based on the computed torque methodology is designed 
as : 

A 

7- = TPd + @ I 1  4)dr + + h14) + Z(ddr1 (2) 

where Tpd = Ks is defined as a PD compensator, 
s = [SI ,. . . , s3]* = i: + Xe is defined as a sliding mode 
vector and X is a diagonal positive matrix with its di- 
agonal elements denoted as {XI, X2, . e 1 , A,}, and K is 
a dia onal positive matrix, qT = q d  + Xe is an adi- 
tionakavailable vector. Further, let the real controller 
r = 3 + 7. Then, a dynamic equation with sliding 
modes is given 

MS = -Ks - c s  + h(q, 4) + zqr + Es - 7, (3) 

where h(q, q)  = eq -t + 7 is denoted as an unknown 
nonlinear vector. Hence, in addition to the nominal 
compensator mentioned above, it still needs an ex- 
tra compensator to compensate for uncertainties of a 
robot manipulator. From a practical standpoint, h will 
be approximated by ^h as closely as possible. Hence, 
general nonlinear compensation function with sliding 
mode is given as follows: 

F = Th + r,, (4) 
where Th is a n x 1 vector of compensating h, rs is a n x 1 
vector of robustifin remained uncertainties. Let index 
k represent the k-tff element of a vector, then the k-th 
elements of rh and rs are given as Thk = h k  and rsk = 

and UM E 8‘ satisfy Usk 2 Iesl and UM 2 EM, and 

then the tracking errors will exponentially converge to 
zero. Since h(q, 4) is hard to be approximated by using 
conventional control schemes some intelligent control 
concepts need to be ado ted Moreover, since I-, is 
not continuous, undesirabre chattering may appear due 
to excessive maginute design of r,. Here a suitable 
r, is required not only not only ensuring the system 
robustness but also the performance of the manipulator 
system. 

On the other hand, X is usually a constant matrix 
and its choice is often subjected to the hareware en- 
viroment or sofware implementation such as sampling 
time of the control servo. Hence, the value of X is often 
dertemined by the results of the simulation or experi- 
ment. From a practical stand oint, a nonlinear sliding 
variable which consists of a cotection of fuzzy rules can 
more easil satisfy various consideration of the actual 
system. d i s  result is illustrated by the fact that the 
architecture of the fuzz PD controller is indeed more 
flexible than the crisp P& controller. Therefore, in this 
paper, an AFSMC is y p o s e d  to erform exactly as 
such an intelligent non inear controfier. 

(Usk(q,@) + UM(q) 11&11co) s g n ( s k ) ,  where v s  E Rnxl 

6s = Eh, + c s ,  Eh h - 75, and EM($!) = IIM(q)IIco , 
- A 

R u l e  T a b l e  

I 1 

Figure 1: The architecture of AFSMC 

3 AFSMC for Robot Manipulators 
In this section, the AFSMC for a robot manipulator 

is analyzed. A fuzz knowledge representation of the 
uncertainties of a rotot manipulator is first described, 
which constitutes the main architecture of AFSMC. 
Next, a nonliear sliding mode vector which consists 
of a collection of fuzzy PD rules is deigned. Finally 
AFSMC is analyzed by using adaptive robust controf 
theory. 

Referrin to section 2, a robust fuzzy control law is 
given as foiows: 

T ( t )  = ?= + r; + T,*, (5) 
A -  A 

where? = K s + ~ q r + ~ + f + M ~ , . ,  T: = h(q ,Q) ,  which 
is an optimal approximation of h(q,Q) in terms of the 
fuzzy knowledge representation, the Ic-th element of r,* 
is given as r:k = ( 1 ~ ~ 1  + EM l l & l l W ) ~ ~ n ( s k ) ,  and r h ,  
r, in an AFSMC are designed to approximate ri ,  r,*, 
respectively, as shown in Fig. 1. 

3.1 Fuzzy Knowledge Representation for 

In this subsection, the main architecture of AF- 
SMC for a robot manipulator is described. As a gen- 
eral description of fuzzy knowledge representation [4] , 
a fuzzy rule-base consists of a collection of fuzz If- 
then rules. Referring to section 2, the control ozjec- 
tive is to compensate for the unknown nonlinear vec- 
tor h(q, q ) .  First let U = [qT qTIT = [ul , .. . , y2,IT be 
denoted as an input linguistic vector in the discourse 
universe U, and Lj = { L 3 , L S , . . . , L q j l . . . , L ~ }  as a 
family of fuzzy sets associated with the membership 
functions p,r-,aj (see Fig. 2) with respect to the vari- 

able uj, where Lj*’ is a fuzzy set in Lj.  Besides, the 
supports of the family of fuzzy sets, Lj,  are denoted as 
Uj = { U ~ , U ~ , ~ ~ ~ , U ~ , ~ ~ ~ , U 3 ! j ) ,  whereU7 isapoint  
support satisfying U! < U; < ... < u ~ F ~  < e - .  < U: 
(also see Fig. 2). Let L be defined as a product set of 
L = n,=, Li, consisting of the families of fuzzy sets, 

Uncertainties 

2 
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Figure 2: Fuzzy enviroment of the linguistic variable 

Li, i = 1 ,” . , 2n ,  and U be defined as a product set 
of U = nj=, U j ,  consisting of the families of support 
points. Then, an example of the i-th fuzzy rule is rep- 
resented as follows: 

R[i] : If 21 is La(’), then w is Qaci), ( 6 )  

where La(<) E L, qi) = c q ( i )  x . - -  x is a prod- 
uct index associated with the i-th rule, w = Th = 
[wl ,  - + ,  w , ] ~  is denoted as an output linguistic vec- 

product index associated with the i-th rule, Q is a 
product set of Q = n k = 1  Q k ,  consisting of the fam- 
ilies of fuzzy sets, Q k ,  k = l , . . . , n ,  where Q k  = 
{ Q : , Q ~ , . . . , Q ~ ’ : , . . . , Q ~ }  is denoted as a family of 
fuzzy sets associated with the membership functions 
pQfk with respect to the output variable wk with Q P  
being a fuzzy set in the family Q k .  And, let the s u p  
ports of the family of fuzzy sets, Q k ,  be denoted as 
wk = {w,,jYk,...,W~k,...,wkTk}, where wtk is a 
point support satisfying W; < W: < . .. < wfk < 
. . . < W F .  Furthermore, the i-th rule is fired with 
a weighting function pi(u),  which is determined by 
membership functions and a compositional operator. 
Hence, pi(u) can be expressed as follows: 

tor, and Qia( i )  E Q ,  ,f3(i) = P l c i )  x . . . x h ( i )  is a 

where p = i ( j )  (uj) is denoted as a membership function, 

which is a positive function with pu;,cgl  (u j )  5 1 and 

reaches the maximum value when uj = Uj?(i) as shown 
in Fig. 2. In expression (7), the compositional operator 
is selected to be either the sup-product or the sup-min 
operator. Finally, using defuzzification function, the 
output variable W k  is expressed as follows: 

Li 

3 

where Dki(p i (u) )  is denoted as a defuzzification func- 
tion with the point support W p ( i )  for the i-th rule 
commonly expressed as follows: 

( pi(u),  if center-average-defuzzifier; 

[ if center-of-area defuzzifier; 
(9) 

where w<* and w; are solution values of W k  satisfying 
pi(u) = p B & ( ; ) ( w ~ )  with w; >_ w;* given the values 

u and Y is the total number of rules generally equal 
to 11 x 12 x . . .  x 12n. Then, we denote a fuzzy basis 
function &i(u) expressed as follows: 

Q k  

so that equation (8) can be rewritten as: 
w 

i=l 

where O k  = [wP(’) , wP(” ... w[k(r)  ]T is re- > ,  
garded as a parameter vector and <k = [ E k l  , < k a  , . . . 
, &TIT is regarded as a regressor vector. For simple 
notations, we define a product operator 8 for two ma- 
trices A E P x p ,  B E V X n  as 

A 8 B = [AiTB1,. .. , AkTBk, ... , AnTBnIT (12) 
where Ak is the k-th row vector of A and Bk is the k-th 
column vector of B ,  respectively. Hence, we denote the 
matrices 0 E PXT, E RTxn with the k-th row vector 
denoted as @ k  and t e k-th column vector denoted as 
(k, respectively. Then the output vector w is expressed 
as 

w = @ @ E .  (13) 
Apparently, when Y is large, the computation time and 
memory-space usage must be considered in real imple- 
mentation. As a result, we focus our attentions on 
computation time first, then the number of the fired 
rules and that of the total rules should be clearly dis- 
tin uished. 

birst, define the domain set of the total rules as 
E = {U : U’ 5 u j  5 U $ , j  = I , . . . , 2 n }  and collect 
the indeices of fired rules as a set of integer indicies 
I = {i : pi(u) > 0). If U E E ,  fuzzy rules are designed 
to compensate the unknown functions. Partition this 
domain into finite 2n - cells, which is defined as 

E, = { U :  uj”~ 5 uj 5 ~ ~ ~ ’ + ‘ , j  = 1, . . . ,2n},  

where Q = a1 x . . . x aj x . . x ~2~ is a product index 
and satisfy U“ E U ,  l J a 3  < U$.  To union the all 
colection of E,, we can obtain E = UuuGu ELY. A 
b - box is defined as 

n,(ua, b(u)) = {U : Uj”’ 5 uj 5 U;’ + b j ( U ) } ,  
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where 6(u) E !J?22nx1, the j-th element of d(u) is defined 
as Sj(2e) = - U? a n d j  = 1,-.-,2n}. Define a 
set of corner points of d box R,, P, = {Uc(") : .(U) E 
~ ~ " { a j , a j  + 1)). Hence the number of P,, #n(P,) 
is equal to 22n. 

Consider the membership function (Fig. 2): 

1, asu, =U?; 
0, 
x?, 

as uj 2 ~:+l or uj 5 UP-'; 
x? E (0, l), otherwise, 

(14) 
i PLp' ( U j )  = 

for aj = 1,2,.-.,2, and j = 1,2,...,2n, then the fol- 
lowing proposition is satisfied: 

Proposition 1 If the membership functions are given 
as equation (14) and U is the linguistic vector and 
U E E then exists a d-box, R,(Ua,d(u)) such that 
U E R,(Ua, d(u)), and the number of fired fizzy rules 
#n(I) will be smaller than or equal to the number of 
corner points of this 6-box, #n(P,). 

Based on Proposition l., equation (10) can be re- 
placed by: 

Hence, computation time is drastically reduced, espe- 
cially, as Y is very large. 

3.2 Fuzzy Sliding Mode Control for 

In this subsection we will consider the design of PD 
compensator rpd by fuzzy knowledge representation. A 
linear PD compensator always plays an im ortant role 
in the stablization and noise rejection of t i e  mechan- 
ical systems. But it is hard to properly tune the PD 
gain to overcome the varying dynamic process of robot 
manipulators for various tasks, and even if a proper 
gain tuning is achieved, it general1 leads to the high 

condition. Therefore, a suitaile gain scheduling 
ert experience IS more allpiable to the 

actual systemxan the fixed gain. Besides, nonlinear 
sliding mode variables based on this gain scheduling 
can be more easil derived. This fact makes the repre- 
sentation of the sEding mode variables become flexible 
and easily satisfy the practical requirement for robot 
manipulators system. 

Let a = [eTdT]* be an input linguistic vector 
and the PD gains, kp = [kpl,.-.kpn]T and kd = 
[kdl, ' . kdnlT, be two output linguistic vectors. Then, 
an example of fuzzy PD controller is expressed as fol- 
lows: 

Rpg[i] : If a is A,(&), then I C p  is Po(&) 

Robot Manipulators 

ased on the e 

and kd is D7(&), (16) 

wher A, P ,  and D are product sets of A = nj=, A j ,  
P = n k = ,  P k ,  D = n k = 1  Ak, consisting of the families 
of fuzzy sets, A j ,  j = 1, . - - ,  2n, P k ,  Dk, k = 1, ... ,n, 

I '  for Aj = {Af,.-*,AP'},  p k  = { P ~ , . . * , P ~ k } ,  Dk = 
{Di , . . . ,  DLdk}. Let K p k ,  K d k  be denoted as the sup- 
orts of the famil of fuzzy sets, 9, Dk, respecitively. 

b-om subsection i.1, we can obtain 

i=l 

Tpd 

kdk = Ki:(i)Edki (a). (18) 
i= 1 

where tpki, t d k i  are the fuzzy basis functions associ- 
ated with the i-th rule, Rpd is the total rule number. 

KAk > 0, where uP,cd are positive constants. Then, 
the k-th control input variable Tpdk = kpkek + kdkdk is 
given. Let Sk = ek+Xk(e,e)ek, where Xk(e,d) = > 

> 0 is given. This implies that Sk  is a stable slid- 
ing variable. Finally the k-th control input variable is 
rewritten as Tpdk = k p k s k .  

3.3 Adaptive Fuzzy Sliding Control for 
Robot Manipulators 

In this subsection, the fuzzy theory is combined with 
adaptive robust control architecture. In contrast to 
general conventional control schemes, we use fuzzy rep- 
resentation to a proximate the unknown functions in 
section 2. BaseJon mild assumptions, adaptive fuzzy 
sliding mode control(AFSMC) is not only proved to be 
globally stable but also exhibits the nature of intelli- 
gent control. 

denoted  at^ another input linguistic vector with respect 
to r, in the discourse universe U,, and the supports of 
the family of fuzzy sets with respect to Vk are denoted 
as 

Let K,'[L > - - .  > Kjk > g p  > 0, c d  > K;,"' > > 

k t  'U = [QCTqc*S*]* = [Vi, a - . ,  Wk, -.., VQ,]* be 

v k  = {v~,v,", . . . ,vT'},  where 
V i  < V: < ..- < VFk and k = 1,2,...,3n . 

Letr, isdenotedasr, = [ r S ~ , ~ ~ ~ , r s ~ , ~ ~ ~ , r s n ] * ,  where 
r s k  be expressed as follows: 

T s  

Tsk - - @skitsk{('U) + @MkisMki('U)Ild?llm 
i=l 

= @ S k T t s k  + @ k f / c T < M k l l h l l C o ,  (19) 

where @,I, and @Mk are denoted as parameter vectors, 
<sk ,  &.fk are denoted as regressor vectors as equation 
(lo), and Ys is denoted as the total number of rules 
for r,. Hence, the robust compensator vector T, can be 
expressed as follows: 

T S  = 0, c3 F, + @ M  €4 Ennlldrlloo, (20) 

where the matrices Os, O M ,  E WXT8 consist of the 
k-th row vectors @ s k ,  @Mk,respectiveiy, and t8, <MI  
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E @axn,  consist of the k-th column vector EMk 
for k = 1,. . ,n, respectively. Our goal is to design op- 
timal parameter matrices such that the controlled sys- 
tem has minimal tracking errors and robust features. 
At the beginning, we must prove that bounds on ap- 
proximation errors depend on our design. The k-th 
row vectors of optimal parameter matrices are defined 
as follows: 

0; = a r g  m i n [ s u p Z E E  [ @ f [ k  - hk(] (21) 

2 l c a k l l  (22) 

2 EM] (23) 

T 
@*,, = a r g  min[suPvEE.@sk t s k s g n ( s k )  

- - arg min [ sup, E Ea @ M k EM k s g n  (8 k ) 

where E, E, are compact domain sets of in ut lin 
tic vectors U ,  w in all rules and are expresse as fol ows $ p; 

Just like some other general approximation function, 
solution to the optimization problems expressed in (21) 
will always exist, but solutions to the problems in (22), 
(23) may not exist in the neighborhood of s = 0. 
Hence, we purposely speci one of the support points 

mode variable S k  as 
will be clas- 

sified into two groups: one is s k  > 0 and the other 
< 0. This will make the problem formulation (22), 

(23) more reasonable and guarantee the existence of 
their solutions. Later, we will replace the definition, 
V2;ik = 0 with a more relaxed one by defining a 
deadzone of s k  instead. To simplify the problem, mild 
assumptions are given as follows: 
Assumptions: 

with respect to the k-th siding 7 
= 0 so that the elements of 

0 h E c1 ( continously differentiablly) 

llhlloo < h U ( 4  

l l m l o o  < M Y 4  

Based on those assumptions, Proposition 2 is given. 
Proposition 2 If the  linguistic vector U falls in to  6 
-box7 f2,(Ua,d(u)), t hen  the k-th e lement  of optimal 
approximation error vector Eh(U)  wall be bounded by 

the  k - t h  row vector of matr i x  g ( u ) ,  g ( u )  E Snxan, and 
i ts element  is defined as g i j  = SUP,~Q, [/VI] for  
i = 1, ... ,n ,  j = 1,.--,2n. 

firthermore, let the control law be redesigned as 

lEhkl 5 gkT(U)d(u ) ,  where Eh(U)  = h - @* 8 E ,  gk 

r = d ( t ) ( r h  + 7,) + (1 - d( t ) )U, (z , )  + ?, (24) 

where 

.. , 

Figure 3: The diagram of robot manipulators 

U,(v) = (hU + MUllqIrlloJ + c,UlI~llc&?n(s) (26) 

Update laws are given as follows : 

0 = rdiUg(SA)((U)T as U E E (27) 
0, = TdiUg(SA)5sT(v)  as w E E, (28) 

6 M  = rll~rlloJdiag(s*)EM*(w) as E Ed29) 

for some r > 0 and 

s - a, as s < a ;  

0, othewise. 
S A  = { s -@,  as s > @; (30) 

SA = s 
where a,  @ E 8" are some constant vectors and their 
the k-th elements satisfying Qk 5 V6,";:' 5 0 5 
vZ4ik+' 5 P k .  

Theorem 1 If the  control law and the  update law are 
given as in equation (24) and in equations (27)-(30), 
t hen  the tracking errors will asymptotically converge t o  
a neighborhood of zero. 

4 Experimental Results 
A five degree-of-freedom (DOF) articulated robot 

arm is set up in the Intelligent Robot Laborator 
of CS&IE in NTU as shown in Fig. An Ad 
SMC is designed in assumption that inertial matrix 
M ,  Coriolis, centrifu al torques C ,  and gravity vector 
G of the arm are unfnown. To show the effectiveness 
of adaptive robust law, T, ,we will neglect the com- 
pensation function r h .  The same desired trajectory 
-22.5 i- 22.5 cos(nl2t) is given for five different joints. 
A sim lified strate y for reducing memory-space usage 
is to &centralize t i e  previous architecture and ignore 
Q, i.e. T~~ (zs) = -rs(qi, si). The triangular form and sup- 
min operator are selected as membership functions and 
com ositional operators. The total rule number of AF- 
SM8is  5 x rg x r ,  = 5 x 17 x 17, the sampling time 
of control servo is lms, and results are listed in Fig. 
4. At the beginning, we only use PD controller to 
compensate for the uncertainties in the first period of 
sine wave and then incorporate the AFSMC right af- 
ter that the tracking errors are uickly driven toward 
zero. This shows that AFSMCIas a fast converging 
feature. 

3. 

160 



a n d  j o i n t  

0.06 

Sthjolnt 
~- I 

I 

i 0 1  

5 Conclusions 
We had proposed a novel fuzzy controller design 

method, which can update fuzzy rules to compensate 
unknown uncertainty of robot manipulator and guar- 
antee the stability of the controlled robot manipulator 
systems. Besides, a dexterous use of fuzzy mathemat- 
ics made the complicated scheme implemented with 
computing efficiency. The future work is to apply this 
control scheme to the hybrid force and position con- 
trol. 
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