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Abstract

Specifying a purely reactive behavioral configuration for use by a multiagent team executing a mission requires
both a careful choice of the behavior set and the creation of a temporal chain of behaviors which executes the
mission. This difficult task is simplified by applying an object-oriented approach to the design of sequences of
behavioral configurations where a methodology called temporal sequencing is used to partition the mission into dis-
crete operating states and enumerate the perceptual triggers which cause transitions between those states. Several
smaller independent configurations can then be created with each implementing one state, completing one step in
the sequence. When properly constructed, these configurations (assemblages) become high level primitives reusable
in subsequent projects, reducing development time.

In the multi-vehicle domain being studied for the ARPA Demo Il project, assemblages such as travel_to_location
and occupy_location consist of groups of basic behaviors associated with coordination mechanisms that allow the
group to be treated as a single, coherent behavior. For example, travel_to_location consists of move_to_goal,
avoid_obstacle, avoid_robot, noise, and stay_in_formation primitive behaviors moderated by a cooperative
coordination operator. Upon instantiation, the assemblage is parameterized with a particular formation, goal
location, and termination conditions. A mission coordination operator determines which assemblage to activate
based upon the mission being executed and the current state of the system.

A scenario language has been developed which allows specifying missions as sequences of steps, where each step
nvokes a particular assemblage. The missions are specified in a structured user-friendly language targeted for
groups of cooperating robotic vehicles executing military-style scout missions. Various multiagent missions have
been demonstrated in stmulation using this system. Deployment on Denning mobile robots demonstrates the utility
of this mission execution system, while later deployment on the ARPA Demo I test platforms will ultimately allow
comparisons with software developed using other methods.



1 Introduction

Reactive behavior-based architectures[1, 7] decompose a robot’s control program into a collection of behaviors
and coordination mechanisms. The overt, visible behavior of the robot arises from the emergent interactions of
these behaviors. The decomposition process further allows for the construction of a library of reusable behaviors
by designers skilled in low-level control issues. Subsequent developers using these components need only be
concerned with their specified functionality. Further abstraction can be achieved by permitting construction of
assemblages from these low-level behaviors which embody the abilities required to exhibit a complex skill.

Creating a multiagent robot configuration involves three steps; determining an appropriate set of skills for
each of the vehicles; translating those mission-oriented skills into sets of suitable behaviors (assemblages); and
the construction/selection of suitable coordination mechanisms to ensure that the correct skill assemblages are
deployed correctly over the temporal sequence of the mission. The mission specification is facilitated by the
creation of an interpreter capable of activating and parameterizing skill assemblages from commands given in
a high-level mission specification language. This allows the robot commander to design the mission using a
structured language either on-line or via a mission description file. In either case, the commander is presented with
high-level commands, such as move_to_location, and need not know anything about robot control programming.
This supports use by personnel with minimal system training but who are highly skilled in the domain tasks the
robots are ordered to perform.

The construction and functionality of the Georgia Tech MissionLab software environment that is based upon
this philosophy is documented in this paper. Several different levels of competence are provided for access into
the system. The primitive behavior implementor must be familiar with the particular robot architecture in use
and a suitable programming language such as C++. However, at a higher level, using a library of behaviors to
construct skill assemblages does not require programming knowledge since a graphical editor has been developed
which allows visual placement and connection of behaviors. The construction of useful assemblages, however,
still requires knowledge of behavior-based robot control. At the highest level, specifying a configuration for
the robot team consists of selecting which of the available skills are useful for the targeted environments and
missions. This process can also be completed graphically. Using the mission coordination module, specification
of actual missions can occur at run-time using a domain-specific structured language. Reflecting the targeting
of this research for the ARPA UGV community[8], military terminology and nomenclature are currently used in
MissionLab to facilitate specification of missions by military users unfamiliar with robot control techniques. The
overall philosophy, however, is by no means restricted to this application domain.

After a review of related work in Section 2, Section 3 presents specification methods for primitive behaviors,
skill assemblages, and configurations. The MissionLab system is presented in Section 4.1 and the mission scenario
language is documented in Section 4.2. along with simulation results. Supporting runs using Denning robots
substantiating the simulation results are presented in Section 5. The summary and conclusions given in Section 6
complete the paper.

2 Related Work

The on-going research described here draws heavily on research conducted by others in the field. Appropriate
comparisons to related research will allow the reader to understand how this research is positioned relative to
other existing work.

Developed at CMU, the mission specification language, SAUSAGES[9, 10], allows specification of a robot
mission as a sequence of operating states and a collection of state transitions, similar to the capabilities of
the mission coordination operator and mission scenario language. However, the flat graph-like structure of
SAUSAGES does not provide support for abstraction. Since SAUSAGES is used in the ARPA UGV program, a
SAUSAGES code generator will be developed within MissionLab to allow targeting the UGV architecture.

Lyons’ Robot Schemas (RS)[16] architecture is based on the port automata model using synchronous com-
munication. RS introduced the notion of a coordinated assemblage of components which is treated as a new
component. RS-L3[15] is a discrete event systems variant of RS which has been used to implement and analyze a
robotic work cell. The specification of robot configurations presented in Section 3 implements several of the ideas



first presented in RS.

Multivalued logic has been used as a mechanism for the analysis of coordinated assemblages[19]. Analysis
of the correctness of configurations is necessary to support the creation of configurations by novice users. It is
intended that support for such analysis will be developed as part of this research. Multivalued logic techniques
are expected to prove useful in such analysis.

The REX/Gapps architecture[12] supports situated formal analysis by constructing the control program in
the form of a synchronous digital circuit. Analysis, however, requires a detailed environmental model which is
unreasonable to expect to exist in all but highly structured environments.

Our Graphic Designer’s support for simple construction of assemblages draws heavily on experience with the
Khoros[13] image processing workbench. Khoros allows the user to select items from a library of procedures and
place them on the work area as glyphs. Connecting dataflows between the glyphs completes construction of the
“program”. Each glyph in Khoros represents a UNIX program which is instantiated as a separate UNIX process.

3 Configuration Specification

Configuration design tools have been developed which support the graphical construction of abstract config-
urations which are both robot and architecture independent. Figure 1 shows the architecture diagram for the
configuration development system. The Graphic Designer is used to create and maintain configurations specified
in the Configuration Description Language (CDL). CDL supports the recursive construction of reusable com-
ponents at all levels, from primitive motor behaviors to societies of cooperating robots. The Graphic Designer
supports this recursive nature by allowing creation of coordinated assemblages of components which are then
treated as atomic higher-level components available for later reuse. The CDL compiler generates intermediate
code in the Configuration Network Language (CNL) to minimize the complexity of the CDL compiler and allow
incremental development of the design tools. The architecture and robot binding process determines which CNL
compiler will be used to generate the final executable code, as well as which libraries of behavior primitives will
be used. A schema-based C++ CNL compiler has been developed and a SAUSAGES CNL compiler targeting
the ARPA UGV architecture is planned. The compiled executables will either drive the targeted vehicles or a
suitable simulation. The Georgia Tech MissionLab simulation and operator console is described in Section 4.1.

3.1 The Configuration Description Language (CDL)

The context-free Configuration Description Language (CDL) provides a solid theoretical foundation for spec-
ifying architecture and robot independent configurations for societies of behavior-based robots. The language
specifies the coordination between members of homogeneous teams, of heterogeneous castes, assemblages of be-
haviors on individual robots, as well as perceptual strategies within primitive sensorimotor behaviors.

The grammar G generating the language is described by the notation[l1] G = (V,T,Q, S), where V is the
set of variables, T' is the set of terminal symbols, ) is the set of productions, and S represents the highest-level
society (the start variable). Using this notation, G is described as:
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Figure 1: Architecture diagram of configuration development system

Where

S'is a society

X is a list of one or more societies

R is a single robot

A is a behavioral assemblage

Y is a list of one or more assemblages

B is a primitive sensorimotor behavior

P is a perceptual module or a coordinated perceptual group

Z is a list of one or more perceptual modules

Pi,t € natural numbers is an instance of a perceptual process

my, j € natural numbers is an instance of a motor process

ar, k € natural numbers is an instance of an active perception motor process

/1,1 € natural numbers is an instance of a caste (heterogeneous) society operator
*m, m € natural numbers is an instance of a team (homogeneous) society operator
+5,n € natural numbers is an instance of an assemblage cooperation operator
—o,0 € natural numbers is an instance of an assemblage competitive operator
Yop, p € natural numbers is an instance of an assemblage sequencing operator

@y, g € natural numbers is an instance of the generic assemblage coordination operator
#.,r € natural numbers is an instance of a perceptual fusion operator

=., $ € natural numbers is an instance of a perceptual sequencing operator

¢ ? delineates societies

{ } delineates agents (robots)



e [ ] delineates coordinated assemblages
o () delineates primitive sensorimotor behaviors

e () delineates a group of coordinated perceptual modules.

Sensors are explicitly represented to allow parameterization and to facilitate hardware binding. Perceptual
modules function as virtual sensors which extract features from one or more sensation streams and generate as
output a stream of features (individual percepts). Motor modules use one or more feature streams (perceptual
inputs) to generate an action stream (a sequence of actions for the robot to perform). Perceptual coordination is
the process of linking one or more perceptual modules to motor modules and is partitioned into three categories[3]:
sensor fission, action-oriented perceptual fusion, and sensor fashion. Active perception utilizes a special motor
module which generates an action stream to modify the information the sensor is providing. A primitive behavior
consists of one or more perceptual modules and a motor module generating a stream of actions based on perceptual
inputs. An assemblage can be treated as a single sensorimotor behavior even though it may be recursively
composed of many primitive behaviors and coordination strategies. Each individual robot is controlled by a
single assemblage. Societies of robots come in three types; trivial, homogeneous teams, and heterogeneous castes.

3.2 The Configuration Network Language (CNL)

The CDL compiler generates a Configuration Network Language (CNL) specification of the configuration as
its output. CNL is a hybrid dataflow language[14] using large grain parallelism where the atomic units are
arbitrary C++ functions. CNL adds dataflow extensions to C4++ which eliminate the need for users to include
communication code. A compiled extension to C++ was chosen to allow verification and meaningful error
messages to assist casual C++ programmers in constructing behaviors. The separation of the code generator
from the CDL compiler permits incremental development and testing of the design tools as well as simplifying
retargeting.

A CNL configuration can be viewed as a directed graph, where nodes are threads of execution and edges
indicate dataflow connections between producer nodes and consumer nodes. Each node in the configuration is
an instantiation of a C4++ function, forked as a lightweight thread using the C-Threads package[20] developed
at Georgia Tech. UNIX processes are examples of heavyweight threads which use the operating system for
scheduling. Lightweight threads are generally non-preemptive and scheduled by code linked into the user’s
program. All lightweight threads execute in the same address space and can share global variables. The advantage
of lightweight threads is that a task switch takes place much faster than between heavyweight threads, allowing
large scale parallelism. Current robot configurations are using around 50 threads with little overhead, while that
many UNIX processes is not feasible. Code for thread control and communication synchronization is explicitly
generated by the CNL compiler and need not be specified by the user.

The use of communicating processing elements is similar to the Robot Schemas (RS)[16] architecture which is
based on the port automata model. The major differences are that RS uses synchronous communication while
CNL is asynchronous to support multiprocessing; and RS is an abstract language while a CNL compiler has been
developed. Both use the notion of functions using data arriving at input ports to compute an output value, which
is then available for use as inputs in other functions.

3.2.1 The Behavior Development Process

To support development of abstract configurations, CDL descriptions of each new primitive behavior must be
created. Grounding these abstract behaviors in executable code requires development of a corresponding CNL
behavior. These behaviors form a component library used during construction of skill assemblages.

Figure 2 shows an example schema-based CNL procedure implementing the move_to_goal behavior. The
behavior receives the relative location of the goal and a constant defining how close the vehicle should attempt
to get to the goal. The behavior uses this information to compute a desired movement for the vehicle.

Figure 3 shows the C+4 code generated from this description. Notice that all thread scheduling and data
communications code is automatically generated by the CNL compiler, simplifying the developers task. The
right-hand box shows the task control block generated by the compiler to maintain input/output connection
information. Keep in mind that there may be several instances of this procedure executing, each with its own



procedure Vector MOVE_TO_GOAL with
Vector goal_relative_loc;
double success_radius;
header
// optional user initialization code
body
// user C++ code
if ( len_2d(goal_relative_loc) > success_radius )
{ // generate a vector towards the goal
output = goal_relative_loc;
unit_2d (output) ;
¥
else
{ // return a zero vector if within the success circle
VECTOR_ZERO (output) ;
¥
pend

Figure 2: Example move_to_goal behavior in CNL

instance of this task control block. Code is generated by the CNL compiler to wait for the input parameters to
be updated and then copy the values to the local address space. The availability of fresh input data is checked
using sequence numbers. The thread will block until fresh data arrives on all input ports receiving data from
other nodes. The content of the data depends on the semantics of the node. In this case, goal_rel loc will be an
egocentric vector pointing towards the goal generated by another node (e.g., detect_goal _with_shaft_encoders),
and success_radius is a constant denoting how close the behavior should try to get to the goal. The user’s code
is executed to compute a new output (named output). Code emitted by the compiler posts the new output and
blocks until new inputs are received.

3.3 Skill Assemblage Specification

Skill assemblages encapsulate a particular skill or ability where a skill is a higher level construction than a
behavior[17]. A skill such as “follow road” will include several behaviors (e.g., stay_on_road, move_ahead, and
avoid_static_obstacles), other skill assemblages (e.g., avoid_dynamic_obstacles and maintain formation),
coupled with suitable coordination mechanisms permit the multi-robot group to function as an integrated unit.
The low-level grounded behaviors described earlier provide an atomic component for reuse.

Construction of the skill assemblages by the system designer occurs using a graphical editor developed as part
of this research. Figure 4 shows a screen snapshot of a simple wander assemblage loaded in the editor. The output
of the detect_obstacles perceptual schema is fed into two motor behaviors: probe, which encourages the robot
to move towards free space areas in the direction its already heading; and avoid-static-obstacle, which prevents
collisions. Probe is supplemented with perceptual data from a heading perceptual algorithm. The noise behavior
generates a random direction periodically to ensure coverage of a broad area. The outputs of the three active
motor schemas (probe, noise, and avoid-static-obstacle, are combined using the sum coordination operator
and form the output of the assemblage. Figure 5 shows an instance of the wander configuration parameterized
for use on our Denning robots. Obstacle sensor information is provided from the ring of ultrasonic sensors on the
robot, while shaft encoders maintain vehicle heading. Constant parameters for each behavior and coordination
mechanism are shown within the objects themselves.

The overall design process for an assemblage is as follows:

e Components are selected from a library menu and placed within the workspace.

e Dataflow connections are added by clicking on the corresponding input/output arrows.



void MOVE_TO_GOAL(int parm)

{
Vector output;
struct T_MOVE_TO_GOAL *parms = (struct T_MOVE_TO_GOAL *)parm;
double success_radius;
Vector goal_rel_loc;
/Hkxxxkkk start of user header *kkxxkkk/
/xxxxxxx% end of user header *k¥k¥k¥x%/
while(1)
{
if ( parms->success_radius_chk)
{
while( parms->success_radius_last_seq ==
*parms->success_radius_seq)
cthread_yield();
parms->success_radius_last_seq = *parms->success_radius_seq;
}
success_radius = *parms->success_radius;
if ( parms->goal_rel_loc_chk)
{
while(parms—>goa1_re1_10c_1ast_seq_== *parms—>goa1_re1_loc_seq)
cthread_yield();
parms->goal_rel_loc_last_seq = *parms->goal_rel_loc_seq;
}
goal_rel_loc = *parms->goal_rel_loc;
/**kxxkkx start of user body *kxkkxxk/
if ( len_2d(goal_relative_loc) > success_radius )
{ // generate a vector towards the goal
output = goal_relative_loc;
unit_2d (output);
} else // return a zero vector if within the success circle
VECTOR_ZERO (output) ;
/xxxxxxx% end of user code k¥kkkx%x/
parms—->output = output;
parms->seqt+;
mutex_lock(_out_count_lock) ;
condition_wait(_new_cycle,_out_count_lock);
mutex_unlock (_out_count_lock);
}
}

struct T_MOVE_TO_GOAL

{

double *success_radius;
int success_radius_chk;
int *success_radius_seq;
int success_radius_last_seq;

Vector *goal_rel_loc;
int goal_rel_loc_chk;
int *goal_rel_loc_seq;
int goal_rel_loc_last_seq;

int seq;

Vector output;

Figure 3: Code generated by CNL compiler for move_to_goal (reformatted for readability)




e Specific behavioral parameters are then entered using the mouse and keyboard.

The completed skill assemblages can be saved as additions to the component library for reuse in subsequent
missions.
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Figure 4: Abstract wander skill assemblage

3.4 Specifying Temporal Chains of Assemblages

Skill assemblages consisting of temporal chains of other skill assemblages are constructed using sequenced
coordination operators. Currently, the operators must be specified manually, although development of a graphic
editor is planned. The assemblage is constructed from a selected group of skill assemblages with the appropriate
sequenced coordination operator and perceptual triggers.

Figure 6 shows the forage assemblage[4] loaded in the graphic editor. The Wander assemblage is the component
representation of the assemblage shown in Figure 5. Notice that the inputs and output of the wander component
match the unconnected inputs and output of the assemblage. Detailed views of the Acquire and Deliver
assemblages are not shown, but are similar in complexity. The two perceptual triggers pt_attractor_present
and pt_holding attractor control transitions between the three operating states. Figure 8 shows the state

diagram for the forage coordination operator. Figure 7 shows an instance of the forage assemblage parameterized
for use on our Denning robots.

3.5 Configuration Specification

The configuration is the top-level robot assemblage which has been parameterized with the actuator modules.
The configuration is constructed from a selected group of skill assemblages using techniques similar to those used
to construct the assemblages themselves.

Figure 9 shows the complete forage configuration loaded into the graphic editor, parameterized for execution
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Figure 5: Parameterized instance of wander skill assemblage

on Denning robots. The Forage assemblage is the component representation of the assemblage shown in Figure 7.
The output of the assemblage will be sent to the robot for execution.

3.6 Specifying Multiple Robot Societies

Currently, coordination of societies of multiple robots occurs via the mission coordination operator and the
Mission Description Language (Section 4.2). Although this centralized society coordination has proven useful
within the military missions that are being developed for the ARPA UGYV program, effort is underway to distribute
the society coordination among the robots while retaining the utility of the operator console. It remains difficult
to provide centralized command and control over distributed systems.

Within the Mission Description Language (MDL), societies of robots are called units. A unit is a recursive
structure where units can be composed of other units. The following example constructs two units with two
robots each (team-1 and team-2) and a four robot unit (group).

UNIT <group> (<team-1> ROBOT ROBOT) (<team-2> ROBOT ROBOT)

The three names can then be used to target commands to specific groups of robots. Figure 10 shows a configuration
for a unit of forage robots with three members. The coordination operator is responsible for coordinating the
activities of the group as a whole, including any needed synchronization.

4 Executing Missions

To execute missions by simulation or with real robots, we have developed MissionLab. Part of MissionLab is an
operator console program which displays the simulation environment and the locations of all robots (simulated or
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Figure 6: Abstract forage assemblage

real). MissionLab also includes other “robot programs” which simulate robots or control real robots. MissionLab
uses “mission description” files as scripts for missions.

4.1 MissionLab

Figure 11 shows the MissionLab executing a simulation. The large area with various things drawn in it is the
main display area. Within the display area robots, obstacles, and other features are visible. The solid round
black circles are obstacles. The four robots are moving across the middle of the display area in roughly a diamond
formation. More details about the type of mission displayed in the figure are explained in the next section. The
command interface in the lower right part of Figure 11 allows the operator to control the execution of the mission.
The steps of the mission are displayed as they execute. For more detail on the operation of MissionLab, see [6].

4.2 Mission Description Language

Complex robot missions require construction of temporal chains of behaviors (e.g., moving to door, moving
through door, closing door, lock door, etc.). These temporal chains can be constructed by adding preconditions
to behaviors such that finishing one behavior makes changes to the world that trigger the next behavior in the
chain. This is rather unwieldy and prone to inadvertent loops[18]. The technique of temporal sequencing[2] makes
the temporal sequencing explicit in the form of a Finite State Automaton (FSA)[11]. This provides sufficient
expressive power for most missions. However, specifying a FSA still requires programming knowledge from the
user. To increase the expressive power of the sequenced operator while reducing the requirements on the user,
the mission coordination operator has been developed.

The mission coordination operator functions like the FSA-based sequenced coordination operator but instead
of specifying an FSA| the user specifies the temporal chain (the mission) using a domain-specific language with
high-level primitives and mnemonic names. It is important to note that the robot still is running reactively. The

10
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mission coordination operator notifies the robot to activated the appropriate skill assemblage. It then waits until
the robot indicates it has completed the task.

The mission coordination operator communicates with the operator console to allow the mission to be entered
interactively or predefined missions to be executed from saved files. Currently, the mission language interpreter
is resident on the operator console and functions as the societal coordination operator. In future versions, the
interpreter will be moved onto the robots to better mesh with our schema-based control paradigm[1]. This move
will necessitate communication facilities which will allow the operator console to monitor and perhaps modify
execution of the mission scenarios, as well as communication facilities that will allow the robots to coordinate
directly with each other.

The mission scenario language and interpreter permit the specification of complex multiagent missions in a
structured relatively user-friendly language. An example set of commands is shown in Figure 12.

MISSION NAME "Demo C simulation'
SCENARIO '"Demo-C"

OVERLAY democ.odl
UNIT <scouts> (<scouts-1> ROBOT ROBOT) (<scouts-2> ROBOT ROBOT)

COMMAND LIST:

0. UNIT scouts START AA-AA1 O 20
UNIT scouts OCCUPY AA-AA1 FORMATION Column
UNIT scouts MOVETO ATK-AP1 FORMATION Column
UNIT scouts OCCUPY ATK-AP1 FORMATION Diamond
UNIT scouts MOVETO PP-Charlie FORMATION Column
UNIT scouts MOVETO PP-Deltal FORMATION Column
UNIT scouts MOVETO AXIS-Gammal FORMATION Diamond
UNIT scouts-1 MOVETO ATK-BP1 AND
UNIT scouts-2 MOVETO ATK-BP2
8. UNIT scouts-1 OCCUPY ATK-BP1 AND

UNIT scouts-2 0CCUPY ATK-BP2

9. UNIT scouts MOVETO 0BJ-Tango FORMATION Wedge
10. UNIT scouts OCCUPY 0BJ-Tango FORMATION Diamond
11. UNIT scouts STOP

N O O W N

Figure 12: Example Mission Scenario Commands

There are several features to note regarding this mission description format. The preamble (before the line
containing COMMAND LIST:) sets up the environment for the mission scenario. In the preamble, environmental
details are specified such as the name and location of the place where the simulation or actual run are to take
place. The OVERLAY command instructs the console to load a file of overlay data which includes all the military
control features necessary to accomplish the mission. In military usage, an overlay is typically a transparent
sheet with markings which is laid on top of a map to indicate the positions and extents of objects or positions
necessary to execute the mission. Control measures include objects such as roads, assembly locations, boundaries,
and objectives. For more details about the simple overlay description language we created for this purpose, refer
to [6]. The resulting map is shown in Figure 13.

The UNIT command defines the unit scouts. This unit is composed of two subunits, scouts-1 and scouts-2,
each of which is composed of two generic robotic vehicles called ROBOT. The list of commands (below COMMAND-LIST:)
is a series of steps to be done as part of the mission. The preliminary step, Step 0:

0. UNIT scouts START AA-AA1 O 20
starts the robots in unit scouts and displays them on the screen at the specified starting position (Assembly

Area “AA1”). This is shown in Figure 14. Notice the four robots which are shaped like solid rectangles with one
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pointed end on the right. The pointed end indicates the direction the vehicle is pointing.

“Starting” the unit involves executing a robot program in its own process for each robot in the unit. Each robot
program is instructed where to position itself (in the simulation environment) using command-line arguments.
At this point, each robot program has no active assemblages.

After the “Starting” command, the main commands to accomplish the mission begin. Step 1:

1. UNIT scouts OCCUPY AA-AA1 FORMATION Column UNTIL TIMEOUT 10

instructs the unit to occupy the starting location in column formation until it receives operator approval to
continue. When this command is executed, the operator console constructs a data structure with the information
about what assemblage to activate (and necessary parameter data) and sends it in a message to the robot
programs for each of the robots in the unit scouts. Each robot program examines the message and decides what
it should do to satisfy the command. In this case, an assemblage is activated which knows how to “Occupy” and
includes behaviors to maintain formations. Once the formation has been achieved in the correct location, the
robot programs send messages to the operator console that they have completed the command. At this point, the
operator console pops up a “Proceed?” dialog box, allowing the operator to give or deny permission for the unit
to proceed. This is shown in Figure 15 (A timeout can also be specified for continuing automatically after a set

I,

=| Proceed?

Unit "scouts™ is occupying AR-AAL. Proceed?

[
‘ PROCEED | ABORT

BP2

Figure 15: Mission after starting

amount of time or at a specific time.) The purpose of interacting with the operator at this point is to simulate
the operation of military missions where units often check with the commander before continuing some stage of
a mission.

Step 2 instructs the robots in unit scouts to move to attack position “AP1” in column formation:

2. UNIT scouts MOVETO ATK-AP1 FORMATION Column

As in the previous step, and appropriate assemblage is activated which knows how to MOVETO the specified location
using column formation. This step is shown in mid-execution in Figure 16. Steps 3 through 6 move the robot
through a series of way-points in various formations.

Notice that in Step 7,

7. UNIT scouts-1 MOVETO ATK-BP1 AND
UNIT scouts—-2 MOVETO ATK-BP2

the unit scouts is subdivided into two subunits scouts-1 and scouts-2 and each subunit has its own separate
command separated by an AND. The resulting split is shown in Figure 17. In this case, both subunits have MOVETO
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commands, although any command could have been given. The two robots in subunit scouts-1 are moving
towards BP1 and the two robots in scouts-2 are moving towards BP2. These two commands are executed in
parallel by the robot programs for each subunit. Both subunits must finish their commands before the step
is complete. The ability to deal with units as a whole or in various subgroups is an important feature of the
multiagent nature of the system.

Once the objective has been achieved (in Step 10), the mission is terminated with Step 11:

11. UNIT scouts STOP

which instructs the executing robot programs in unit scouts that the mission is complete. The process for that
robot program is then terminated. Further details about the command description file format can be found in

[6].

5 Results with Denning Robots

5.1 One robot

Figure 18 shows MissionLab with an overlay representing the Georgia Tech Mobile Robot Lab. The robot
is shown in its starting location, in the lower left. The overlay file specifying this environment is shown in
Figure 19. The SCENARIO command names the environment. The SITE command provides a description of
the environment. The Boundary marks the walls of the Mobile Robot Lab (units in Meters). The Gap specifies
the door to the lab. Two passage points (PP) (shown as circles in Figure 18) were chosen arbitrarily to use as
targets for MOVETO commands in the mission.

Figure 20 shows the mission description file used in these experiments. It commands the robot to move to
the far right circle back to the middle circle, and then return to the starting location. The keyword/value pairs
specify configuration parameters.

Figure 21 shows a screen snapshot of the mission executing in simulation. The trail left by the robot shows
it successfully completed the mission. Figure 22 shows a screen snapshot of the same mission executing on the
Denning. This was create by changing the robot_type= "SIMULATION?” value to robot_type= "MRV2”.
The robot control executable then attaches to the actual Denning robot instead of the simulation server. The
filled circles represent obstacles detected by the Denning robot. The differences in trajectories between the actual
run and the robot run are largely due to the detection of un-modeled obstacles that repulse the robot (the black
circles in Figure 22). Figure 23 shows pictures of the robot while completing the mission.

6 Conclusions and future work

This paper describes on-going research in how to specify and control societies of robots while they perform
multiagent tasks. Several useful features of our research are described. The ability to recursively construct a
high-level behavior (or assemblage of behaviors) based on more primitive behaviors is a powerful tool. It will
allow simple creation and reuse of more generalized and useful behaviors. The CDL and CNL compilers permit
the construction of useful high-level behavior assemblages using a graphical interface and associated compilers
that reduces the amount of hands-on programming necessary.

Using the MissionLab simulation system, an operator can run a variety of missions which activate real or
simulated robots, instruct them in how to execute the mission step by step, and display the positions of the
robots and the environment in which they move. The mission description language used to specify missions
executed by MissionLab is designed to deal with multiagent teams cooperating in multiagent tasks. To validate
the usefulness of the concepts and implementations presented in this paper, simulated and real runs of the same
mission are presented.

Next year we plan to demonstrate this technology on ARPA UGV Demo C. This demonstration involves
operating a pair of automated off-road vehicles to accomplish several scouting tasks. This team of vehicles will
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Figure 18: MissionLab with the overlay loaded

SCENARIO "examplel"
SITE "Robot Lab, MARC 362"
CONTROL MEASURES:

Boundary "MARC 362" 0 0 10.7 0 10.7 6.1 1.7 6.1 1.7 3.4 0 3.4 00
Gap Door 10.5 1.8 10.9 1.8 1.5

PP DoorWay 9.0 2.4 0.4

PP Middle 5.0 3.0 0.4

Figure 19: Mobile Robot Lab Overlay
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MISSION NAME "Single Denning MRV2 Robot Simulation"
OVERLAY "robot_lab.odl"
SP StartPlace 3.4 4.26 -- Note: x means EAST, y means NORTH

NEW-ROBOT stimpy-the-robot "robot" (robot_type= "SIMULATION",
tty_num= 0,

"timeout'"= 10,

echo_tty = 0,
move_to_goal_success_radius =
navigation_success_radius = 0.
avoid_obstacle_sphere = 1.25,
navigation_move_to_goal_gain = 1.0,
navigation_avoid_obstacle_gain = 0.7,
lurch_mode = 1

0.3,
3

s

base_velocity = 0.1,
max_velocity = 0.1

)

UNIT <unit-stimpy> stimpy-the-robot
COMMAND LIST:

. UNIT unit-stimpy START StartPlace 0 20
. UNIT unit-stimpy MOVETO DoorWay

. UNIT unit-stimpy MOVETO Middle

. UNIT unit-stimpy MOVETO StartPlace

. UNIT unit-stimpy OCCUPY StartPlace

. UNIT unit-stimpy STOP

A W= O

Figure 20: Script file used in missions
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Figure 21: Screen snapshot of the mission executing in simulation

[#] MissionLab 0.5 ({c) Georgia Institute of Technology

HARC 362

°
| 4
S

Figure 22: Screen snapshot of the mission executing on the Denning
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Figure 23: Pictures of the robot executing the mission
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also be controlled using software developed using different approaches. It will be a useful exercise to compare the
utility and operation of the two different approaches.
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