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Abs t rac t  

We describe an approach for mobile robot localization based on geometric features extracted from ultrasonic 

data. As is well known, a single sonar measurement using a standard P O L A R O I D ~ ~  sensor, though yielding 

relatively accurate information regarding the mnge of a reflective surface patch, provides scant information about 

the location in azimuth or elevation of that patch. This lack of sufficiently precise localization of the reflective 

patch hampers any attempt at  data association, clustering of multiple measurements or subsequent classification 

and inference. 

In previous work [15, 161 we proposed a multi-stage approach to clustering which aggregates sonic data accu- 

mulated from arbitrary transducer locations in an sequential fashion. I t  is computationally tractable and eficient 

despite the inherent exponential nature of clustering, and is robust in the face of noise in the measurements. 

It therefore lends itself t o  applications where the transducers are fized relative to the mobile platform, where 

remaining stationary during a scan is both impractical and infeasible, and where deadreckoning errors can be 

substantial. 

Portions of this research were supported by the following grants and contracts: ARPA Contracts N00014-92-J-1647, and DAAH04-93- 

(3-0419; ARO Contracts DAAL03-89-C-0031PR1, and DAAL03-92-G0153; NSF Grants CISEICDA-8822719, W92-10030, IRI92-09880, 

IRI93-03980, and IRI93-07126. 



In the current work we apply this feature extraction algorithm to the problem of localkation in a partially 

known environment. Feature-based localization boasts advantages in robustness and speed over several other 

approaches. We limit the set of extracted features to planar surfaces. We describe an approach for establishing 

correspondences between extracted and map features. Once such correspondences have been established, a least 

squares approach to mobile robot pose estimation is delineated. It  is shown that once correspondence has been 

found, the pose estimation may be performed in time linear in the number of extracted features. The decoupling 

of the correspondence matching and estimation stages is shown to offer advantages in speed and precision. 

Since the clustering algorithm aggregates sonic data accumulated from arbitrary transducer locations, there 

are no constraints on the trajectory to be followed for localization except that sufficiently large portions of features 

be ensonified to allow clustering. Preliminary experiments indicate the usefulness of the approach, especially for 

accurate estimation of orientation. 



1 Introduction 

1.1 Overview 

In [ll],  a distinction is drawn between continuous localization and relocataon. The difference "rests on the use of a 

priori knowledge of the vehicle position estimate in achieving correspondence, and the weighted inclusion of this a 

priori position in the updated estimate" [ll]. Continuous localization is seen as "the normal mode of operation, with 

relocation used for initialization and error recovery". 

In this paper both forms of localization are addressed. However, unlike [ll],  our approach does not employ extended 

Kalman filtering for the estimation phase; for this reason, no weighted inclusion of a priori position information in 

the updated estimate is necessary in either type of localization. 

The problem of geonaetric model-based mobile robot localization (whether relocation or continuous) using the ultra- 

sound modality can be subdivided into the following subproblems: 

1. Extraction of geometric features, 

2. Localization of extracted features within the local coordinate frame (calculation or updating of location and 

orientation parameters of extracted features within the local coordinate frame), 

3. Establishment of correspondences between extracted features and model features, and 

4. Estimation of robot location and orientation within the global coordinate frame. 

Many approaches in the literature omit stages 1 and 2 above completely. Instead, they rely on establishing corre- 

spondences directly between actual sensor measurements and map features. The two primary difficulties with such 

an approach are 

For certain sensor modalities, a single measurement is insufficient to allow correspondence matching. An 

example is the ultrasound modality: the wide-beam nature of wave propagation results in large uncertainty in 

azimuth and orientation of the reflecting surface associated with a single measurement. This hampers direct 

correspondence matching with map features. 

Even for sensor modalities where direct correspondence matching between raw data and map features is possible, 

this correspondence has to be established on every cycle. While the process may be expedited with the aid of 

the previous pose estimate, the essential difficulty of correspondence matching cannot be averted. 



By matching extracted features with map features, we avert these difficulties in this work. While stages 1 and 2 are 

necessary for the relocation problem, once correspondences have been established, the same correspondences may be 

used for many cycles, with new data readings being used to update the parameters of the extracted features. It may be 

argued that establishing correspondences between new measurements and extracted features is no less difficult a task. 

While this is true in essence, at least the correspondence problem has been decoupled from the localization problem. 

This decoupling allows for pose estimation techniques which are both fast and precise. Further, since localization 

is now performed using extracted features, it is much less sensitive to individual noisy or spurious measurements; 

each extracted feature contains the combined information from many measurements over relatively long periods. In 

theory, false matches become less frequent, and localization benefits from the resultant improved robustness. 

We employ the algorithm described in [15, 161 for the first two subproblems above. The algorithm accepts a stream of 

transducer locations, orientations and corresponding measurements, and outputs a list of planar and corner features 

extracted from the input data. The location and orientation parameters of the extracted features are given in the 

local coordinate frame. For a more detailed exposition of the operation of the feature extraction algorithm, the 

reader is referred to [15, 161. 

The current paper focuses on an approach to subproblems 3 and 4 for both continuous localization and relocation. 

In section 2 we describe our approach to correspondence matching, while the pose estimation problem is addressed 

in section 3. We show that once correspondence has been achieved, the pose estimation phase may be performed in 

time linear in the number of extracted features. 

1.2 Notation 

Define the pose p E R2 x [0, 27r] of a mobile platform to be a combination of its current position and orientation 

within a global coordinate frame (GCF). Denote the set of possible poses by Q . If the extent of the platform's 

motion is confined to the region [0, X] x [0, Y], then p E Q = [0, XI x [0, Y] x [0, 27r]. 

Let R+ represent the non-negative real numbers. P(A) denotes the power set of A. [x] represents the largest integer 

less than or equal to x. Z is the set of integers. c[A] B denotes the image of set A A under the mapping 

c : A -, B. Similarly, c-'[B] denotes the inverse image of set B C B under the mapping c. 

A H  denotes the pseudo-inverse of a non-square matrix A. 



1.3 Related work 

The issue of localization (geometric as well as other) has been addressed extensively in the literature. Approaches 

may be divided into the following four broad categories according to the basic primitives used for correspondence 

matching between the local and global coordinate frames: 

1. Rastor-rastor localization: Many approaches which use an occupancy grid representation of the environment 

[8, 91 attempt localization by finding the optimal match of the local bitmap of occupied space with a global 

occupancy grid. The goodness of a match is a function of three parameters x ,  y, and 0: It is a measure 

of the (discrete) correlation between the 2D function approximated by the occupancy grid and the function 

approximated by the local bitmap translated by (x, y) and rotated by B .  Drawbacks of this approach are the 

computational complexity of correlation as well as the trade-off between efficiency and precision, embodied in 

the choice of grid resolution. In [18] it is concluded that even for systems using an occupancy grid represen- 

tation, more reliable position estimates are obtained by extracting segments from the grids and performing 

segment-segment matching. Of course, extracting features such as segments from an occupancy grid can be 

computationally expensive. It is also often conceptually inefficient: in constructing the occupancy grid, one 

discards relevant data such as surface orientation. One then attempts to re-extract this information with some 

operator on the grid. 

2. Rastor-feature localization: This category comprises approaches which represent the environment paramet- 

rically in features; Localization is performed by establishing correspondences between individual unclustered 

sensor measurements and the map features. Once correspondence has been established, some form of optimiza- 

tion is performed to minimize some function of the vector of spatial discrepancies between measurements and 

features. Approaches differ in how the correspondences are established, the definition of spatial discrepancy 

and the function to be minimized. 

In [5 ] ,  the entire environment space of the robot is searched for locations which would yield sensor readings 

consistent with the measured range readings. It is recognized that due to noise, there may be no location 

at  which all readings are consistent; the location which yields the greatest number of consistent readings 

is selected. While mention is made of the need for a metric over pose space Q , no such metric is described. 

Despite numerous tools borrowed from computational geometry, the algorithm is computationally prohibitively 

expensive: it is stated to be O(m2n2 log(mn)) where m is the number of range readings taken and n is the 

complexity of the map (compare with O(n) for pose estimation using the approach described in section 3. The 

rastorized version runs in time O(mr2e21) where the rastorized environment is r by r ,  e is the radius of an 

"error ball", and 1 is the size of the greatest range reading. Hence, this algorithm is not practical for coraiinuous 



localization. Moreover, the approach does not address orientation uncertainty at all. Inclusion of this dimension 

would make it even more computationally infeasible, so that the utility of the approach is questionable even for 

the less constrained problem of relocation. Furthermore, the algorithm is based more on intuitive arguments 

than mathematical rigor, nor does it deal with uncertainty and sensor error in a satisfactory manner. 

In [13], the pose estimation problem is formulated as an iterative optimization in terms of the extent to which 

the map explains the observed measurements. The approach assumes a coarse initial position estimate is 

available, and estimates the correct position assuming the orientation i s  known. Each data point, representing 

the position of a reflecting point in the environment, is classified to a target line segment. A correction vector is 

then associated with each data point, and weighted voto'ng of the correction vectors yields an overall translation 

vector to correct position. Various estimators are introduced to indicate whether a calculated pose is probable. 

For pose calculations deemed reliable, orientation is then corrected by maximizing one of the estimators with 

respect to rotation. The new orientation estimate is used as an initial orientation estimate for the next iteration. 

Though the general approach presented in [13] seems valid, it suffers from a few drawbacks. A pencil-beam 

model for ultrasound propagation is assumed and forms an integral part of the entire approach; this is an 

inadequate model, glossing over the issues introduced by the wide-beam nature of the propagation. Further, 

many of the estimators used are heuristic and ad hoc. Though "correct" behavior is shown for a single example, 

no general behavior is proved, either theoretically or empirically. The orientation estimation procedure is 

particularly deficient in this regard: Global maximization is performed on a poorly characterized function. 

Methods employing Kalman filters to model both robot pose and map features abound [I, 4 ,3 ,6 ,  11,121. These 

approaches may be categorized as rastor-feature localization methods, since each unclustered measurement is 

used individually to update the various Kalman filters. Though features are extracted from the data, these 

features are not used for correspondence. 

A consistent shortcoming of systems employing Kalman filters is that often the system in question is not shown 

to meet the underlying assumptions of the Kalman filter. One of these assumptions is the Gaussian nature of 

both process and measurement noise: many researchers assume this noise model with no empirical or theoretical 

justification at all. 

3. Feature-feature localization: This category consists of approaches in which measurements are clustered into 

features. Correspondence is established between extracted features and map features. A new estimate for 

location is obtained by minimizing a function on the vector of feature-feature discrepancies. These discrepancies 

may be based not only on spatial distances between extracted and map features, but also on any of the features' 

other parameters such as size, shape or orientation. 



New data is incorporated into already existing clusters, and is used to update the clusters' parameters, prior 

to another phase of feature-feature localization. In this way, the correspondence and localization problems are 

decoupled. 

The main advantages of feature-feature localization are twofold: Firstly, it is robust in the face of noise since each 

feature's parameters are derived from multiple measurements. This reduces the sensitivity of the localization 

to noisy or spurious measurements. Secondly, the same correspondence match may be used over many cycles, 

reducing overhead and speeding up the localization procedure. The major disadvantage of feature-feature 

localization is the longer start-up period during which features are extracted. During this period, some other 

form of localization such as odometry must be employed. 

The approach described in this paper is a member of the feature-feature category. 

In [lo], regions of common depth (RCD's as defined in [ll]) are extracted from ultrasonic data from a rotating 

scanning transducer. Each RCD is classified into one of four types according to neighboring RCD's and the 

width of the RCD. Pairs of RCD's are matched with pairs in the map; each match of a pair has an associated 

transformation under which the local coordinate frame is brought into correspondence with the global frame. 

The set of transformations is analyzed for clusters, and the centroid of the largest cluster selected as the 

"optimal" transformation. Though at first glance this approach appears to belong to the feature-feature 

category of localization algorithms, in essence it belongs more to the rastor-feature category: though features 

(RCD's) are extracted from the data before correspondence is attempted, new features are extracted during 

each cycle. New data is not analyzed for correspondence with previously found clusters. One of the main 

advantages of feature-feature localization is not exploited in that previous correspondence matches are not re- 

used. In effect, rastor-feature localization is being performed, though the "rastor" data is slightly more refined 

than individual sonar measurements. 

The are several other difficulties with the approach described in [lo]. First of all, the search for clusters 

is performed on a 4-dimensional space. Each coordinate is assumed to be independent of the remaining 

three coordinates; in fact, two of the coordinates are non-linearly dependent, and related to each other by 

a trigonometric relationship. Points within the space are assumed to be uniformly distributed, though no 

justification for the assumption is presented, either theoretic, intuitive or empirical. Similarly, no justification 

is given for the assumptions that the largest cluster in the space of transformations is the "correct" one, or that 

the centroid of this cluster is a reasonable choice for the localization transformation. Finally, the approach is 

suitable only for systems using scanning rotating sonars. 

4. Landmark-landmark localization. Many systems base the localization procedure on landmarks detected in 

the environment. The distinction drawn here between a feature and a landmark lies in the amount of knowledge 



about identity: A feature is a summary description of a cluster of data points; its identity within a large class 

of similar features is not known. A landmark, on the other hand, is a feature with a unique identity based on 

some distinguishing characteristic such as spatial location or some sensed property. 

Landmark-based localization, then, differs from feature- or rastor-based localization in that no correspondence 

matching is necessary. This phase is rendered superfluous by a more comprehensive recognition phase. 

Various approaches to landmark localization are explored in [2, 19, 20, 211 among others. 

Localization based on the detection of beacons - easily recognizeable features placed in the environment 

- falls into the landmark-landmark or feature-feature category depending on whether detection of a beacon 

uniquely determines its identity or whether correspondence must still be established between extracted and 

map beacons. 

2 Establishing correspondences 

2.1 Problem statement 

In this section we describe an approach to establishing correspondences between extracted features and model 

features. In the present work, extracted features comprise planar surfaces only. 

In 2D, a planar feature is a line-segment. We use a redundant normal parametrization representation ([7], page 

336) for line-segments: the line of which the segment forms a part is represented by the pair (p, 4) where p is the 

perpendicular distance of the line from some fixed (0,O) point; 4 is the inclination of the normal to the line relative 

to the x-axis in a counter-clockwise direction. This pair is supplemented with parameters to specify the locations 

of the end-points. Only two extra parameters are necessary, but for simplicity we use three: two for the location 

of the center-point of the line-segment (c,, c,) and one for the length of the segment I. Hence, each line-segment is 

represented by the 5-tuple (p, 4, c,, c,, 1) E I? x x C, x Cy x L. 

Let M = {mi = (pi, +i, c,i, cYi, li) I 1 5 i < IMI) be the set of planar features in the given map. Let 3 M be 

the set of planar features within the mobile robot's current ultrasonic 'Yield of view". Let E be the set of features 

extracted by the clustering algorithm described in [16]. Let C be the class of functions C = {c : E 4 3 U g).  Each 

element c E C represents an assignment of correspondences: for a specific e E E, c(e) is the map feature to which e 

corresponds under this assignment c. Note that we do not insist that elements of C are either injective or surjective: 

multiple elements of E may correspond to the same feature in 3 since the clustering algorithm may extract multiple 



sections of the same underlying planar surface; further, not all elements of 3 will necessarily be detected. Note also 

the augmentation of 3 with the zero element 0 to form the range of elements of C . The zero element 0 may be 

made the image of spurious extracted features. In this way, phantom extracted features need not to be mapped to 

elements of 3 , though elements of C are still well-defined. 

In essence, these properties of elements of C highlight some of the difficulties with which we are faced in the corre- 

spondence problem: Some features may be detected multiple times, while others are not detected at all, and the set 

of extractions may include phantom features which should not be associated with any real feature. The set E must 

be mapped to 3 despite these structural differences in the sets. 

Let q : C + R+ be a quality measure of assignments. The correspondence problem may be then be formulated as a 

search over C for an element 2 E C which maximizes q. A combinatorial analysis shows that ICJ = (IF1 + l)IEl. Hence 

the correspondence problem is inherently exponential. We describe here an approach to find 2 in polynomial time. 

2.2 The 1-dimensional case 

Consider the special case where no two line-segments in 3 are parallel. We deal with more general cases in sub- 

sections 2.3 and 2.4. As a working example, let 3 be the set of line-segments making up an arbitrary triangle, as 

shown in figure 1. Let the normals to the three segments have orientations a1, a 2  and a3 relative to the global 

coordinate frame (GCF). Then the histogram of @-values of 3 has value 1 at al, a 2  and as, and is 0 elsewhere on 

the interval [0, 27r). Denote this histogram 'Hz. Similarly, let 7-l: denote the (discrete) histogram of @-values of E 

. However, instead of each element of E contributing to the histogram equally, let the contribution of e E E be the 

number of ultrasound readings which were clustered to form e (see [16] for an exposition of the clustering algorithm). 

The width of the "bins" in 'H:, w, represents the "slop" in orientation of extracted features which is to be tolerated. 

Examples of E and 7-l: are shown in figure 1. Note that the intervals between local modes of 31: are invariant under 

translations and rotations of the local coordinate frame (LCF) relative to the GCF. It is this invariance we exploit 

in order to find a good correspondence assignment c E C. 

We now attempt to find the best correlation of 7-l: with a shifted version of 7-l:. Let ?i:(~) denote 7-l: shifted in 

the positive @-direction by p,  with wrap-around at  27r. Assuming that the pairwise separations of al, a g  and a s  are 

all greater than the bin width w, the product 7-l: . 'H:(,B) will consist of at most three non-zero bins for each value 

of p. Let p(P) represent the three-vector of bin values of 7-l:(~) "picked out" by 7-l: for each P = iw,  0 5 i 5 
Examples of p(P) are shown in figure 1. 



The final step consists of evaluating all the vectors jj(P), P = iw, 0 5 i 5 121, and selecting the "optimal" shift P. 
In other words, if h : 23IFI 4 R represents an evaluation function of vectors of length 131 of integers, we search for 

a value of p, call it p, which maximizes h(p(P)). The choice of h depends on which properties of a correspondence 

assignment we choose to emphasize. In our case, we chose to stress two properties: 

1. We wish to account for the greatest possible number of ultrasound readings. In other words, we wish to reward 

a high mean value of components of p(P). 

2. We prefer the correspondence matches to be spread evenly over the elements of F . In other words, we wish to 

reward low standard deviation among components of p(P). 

Thus, the function h we selected for our experiments has the form h(jj) = X1 . m(p) - Xz . s(p) where rn : 271Fl + W 

and s : 271FI 4 R are, respectively, functions giving the mean and standard deviation of the components of a vector 

of length 171, and X1 and X2 are non-negative weighting factors. 

Once p has been found, the correspondence matching is complete: use that c E C which makes the following 

assignments: 

Tor each element f E 3 with orientation + f  in the GCF, map all elements in E which contributed to the bin 

in 7f:(b) picked out by f .  In other words, let the inverse image of f under c be 

4f  + P , }  c - ' [ { f } ]  = { e  E E I iw 5 q ! ~ ~  5 (i+ l)w, i = 1- 
w 

where 4,  is the orientation of element e in the LCF. 

Map all remaining elements of E to the zero vector in T U 0. i.e. 

2.3 The 2-dimensional case 

A difficulty arises when either 3 or E contains parallel line-segments (or at least line-segments whose angular 

separation is smaller than w so that they fall into the same bin in 3-1: or 31:) but whose perpendicular spatial 

separation is substantial. In this case, projecting 3 and E into the O axis in the construction of 'Hz and 7f:, erases 

the distinction between these line-segments. This, in turn, leads to ambiguous correspondence matching if 3 contains 

the parallel segments, or at least one mismatched "phantom" segment if it is E that contains the parallel segments. 
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Figure 1: The 1-dimensional histogram case: (a) Map features in the GCF, (b) Extracted features 

in the LCF, (c) The histogram 3t9 with three non-zero values, one for each feature in 3 . The 

labels represent correspondences between map features and histogram points. (d) The histogram 

31;. The labels represent correspondences between map feature clusters and histogram points. (e) 

Sample values of p(P). 
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Figure 2: The 2-dimensional histogram case: (a) Map features in the GCF, (b) Extracted features 

in the LCF, (c) The histogram 3t;lr with five non-zero values, one for each feature in F . The 

labels represent correspondences between map features and histogram points. (d) The histogram 

3 ~ : ~ ~ .  The labels represent correspondences between map feature clusters and histogram points. (e) 

Example shearing necessary to bring 3t:lr into good correlation with 7fzpr after a suitable (rigid) 

shift in the O direction. 

In order to distinguish between parallel line-segments, we extend the histogram matching approach to the 2- 

dimensional case: Let 3t:lr be the 2-dimensional histogram of 3 with respect to O and J?. A point f in 3 contributes 

to the bin in H : ~ ~  at location ([&], 1 % ~ ) ~  where d1 and pj are the a- and I'-values o f f ,  and w.g, and wr are the 

resolutions of in the O and I' directions respectively. Similarly, let 7f:>r denote the 2-dimensional histogram 

of E . See figure 2 for a graphical depiction of the current running example. 

As in the 1-dimensional case, the task is now to find shifts in 7 - l : ~ ~  which will bring it into greatest correlation with 

Unfortunately, however, in the 2-dimensional case, the relative locations of points in 'H:*r are not invariant 

under translations and rotations of the LCF relative to the GCF. In fact, a straightforward trigonometric argument 

(see figure 3) shows that a rotation of the LCF by P followed by a spatial translation of (x, y) transforms a line with 
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Figure 3: Rotation of the Local Coordinate Frame by P followed by spatial translation 

of (z, y) transforms a line with normalized parameters (p, 4) into the line with parameters 

( P + ~ c o s ( ~  -P) +ysin(4-P) ,  4-PI. 

normalized parameters (p, 4) into the line (p', 4'), where 

Hence, relative differences in @ are preserved. Similarly, for any fixed value of q5 E @, relative differences in I' are 

preserved, since all lines with orientation 4 are shifted in I' by a constant factor z cos (4 - P)+y sin (4 - P). However, 

lines with different @ values are shifted by different amounts in the r direction. In other words, a rotation of the 

LCF corresponds to a rigid shift of 'Hzpr in the @ direction; a translation of the LCF with respect to the GCF, 

however, corresponds to a non-linear shearing of 'Hzrr. See figure 2 for a graphical depiction. 

Let z ,  Y) denote the Zdimensional histogram of E after a rotation of P and a translation of (x, y). We 

describe here an approach to find the triple (p, 2, fi) for which ~ : ' ~ ( p ,  2, $) is in best correlation which 'Hz'r. Once 

this has been done, we deduce the correspondence assignment c E C in much the same way as in the 1-dimensional 

case. 

Our approach to finding the triple (p, 2, fi) is to decouple the searches for the rotation f i ,  and the translation (2 ,  jj). 



T h e  search for ro ta t ion j: After a pure rotation, 3.1fpr(p, 0, 0) is related to 3.1:~~(0, 0, 0) by a rigid shift of /3 

in the direction. A heuristic approach to finding p consists of projecting 3.1:" onto 3.1: and onto 3.1: and 

then finding the best correlation of 3.1: with a shifted version of 3.1; as in the 1-dimensional case. We note that it is 

possible for the highest correlation estimate of 3.1; with 3.1: to result in a non-optimal correlation of with 'H;lr. 

Cases for which this occurs usually involve multiple elements in F being regularly spaced in the and I' directions; 

we address this issue in section 2.4. For many cases, however, the computational efficiency afforded by the heuristic 

outweighs the sacrifice of a guarantee of optimality. 

T h e  search for translat ion (2, y): Once a suitable rotation of the LCF relative to the GCF has been found, 

it is possible to use a spatial representation of elements of 3 and £ to find the translation necessary for a good 

correspondence match. However, the rotation of all elements of £ may be computationally prohibitive. We describe 

here an alternative approach which finds the parameters of shearing of 7ffvr(p, 0, 0) necessary to bring it into best 

correspondence with 3.1:~~. These parameters correspond to the translation ( 2 ,  jj). 

The approach consists of finding the amount of shearing of ~ f ' ~ ( f i ,  0, 0) for each value of 7, 7 = iwa, 0 5 i < [Sl. 
Let 3.1;~~ Id=, denote the 1-dimensional histogram "slice" of at  q5 = 7. Similarly, let x:'~(/?, 0, 0) I+=, denote 

the corresponding 1-dimensional histogram in 3.1;lr(@, 0, 0). For each y = i w ~ ,  0 5 i 5 1 % ~  for which 3.1:~~ I)=, is 

non-zero, we find the best correlation between the 1-dimensional histograms 3.1:lr Id=, and x;'~($, 0, 0) I+=, using 

the method described in section 2.2. Denote by di the I'-shift in 3.1ftr(p, 0, 0) lo=, necessary to achieve greatest 

correlation with 7f:3r I)=-, . 

We note from equation 1 that 

di = (pOCP - pLCF) at q5 = iwo 

= i cos (iw* - p) + jjsin (iwo - p) 

= a i i  + bijj 

where ai = cos (iwa - p) and bi = sin (iw* - p). We may therefore estimate 2 and $ by a least squares fit: 

T - T - where A = [a, $1, a = [ail, ai,, . . .] , b = [bi,, bi,, . . .] , d = [di,, di,, . . .lT, and i l ,  i2, . . . are the values of i for 

which 3.1:~~ I9=iw* is non-zero. As a caveat, we note that a least squares approach is sensitive to outliers. For this 



reason, least squares estimation may be replaced here with truncated least squares, least median of squares, or some 

other more robust estimator. 

Once the triple (p, P, 6) has been found, the correspondence matching is complete: use that c E C which makes the 

following assignments: 

For each element f E 3 with and J? values and pf in the GCF, map all elements in E which contribute 
o r  - to the bin in x:*~($, i, 6) picked out by f.  In other words, if f picks out bin (i, j) in X, (P, P, y) (i.e. 

i = ~ @ j  and j = 1 p j  -2 cos (4, +B)-d sin (4j+B) 
w * w r A), let the inverse image of f under c be 

where 4, and p, are the and I' values of an element e E & in the LCF. 

Map all remaining elements of & to the zero vector in 3 U 0. i.e. 

c [E - c-'[A] = 0 

2.4 The general case 

Even in the Zdimensional case, ambiguity may arise in the search for the triple (B, f ,  6). Instances where ambiguity 

may arise include the following cases: 

1. For certain values of y = iwo, X;lr I+=-, has regularly spaced non-zero bins, but not all the features corre- 

sponding to these bins are detected. In this case, the goodness of a match of X:>r I+, with x:*~($, 0, 0) I+=-, 
may be approximately equal for multiple values of I'-shift di. An example of such an 3 is a set of parallel line 

segments, not all of which are detected. In this case a "mismatch" would be rejected as an outlier by a robust 

estimator of translation (2, y). 

2. 3 contains features regularly spaced in @. In this case, if not all features in 3 are detected, the goodness of 

match of 'H;'~(P) with x;'~ may be approximately equal for multiple values of P. An example of such an 3 

is the set of linesegments representing a square room. In this case, the correlation between 7-1:'~ and %:~~(p) 

is equally good for four distinct values of P. 

In the first case, the ambiguity may be resolved, or at least reduced, by using a different method for finding the best 

translation (2, 6). As suggested in section 2.3, once p has been found, it is possible to use a spatial representation of 



elements of 3 and E to find the translation necessary for a good correspondence match. Translations by (x, y) are 

evaluated according to the amount by which each element e E E ,  rotated by p and translated by (x, y) overlaps its 

counterpart in 3 . For the second case, each candidate rotation can be evaluated by finding the best possible transla- 

tion by the afore-mentioned spatial approach. The drawback of the spatial correlation approach is its computational 

inefficiency. This is exacerbated in the second case, where rotation and translation are no longer decoupled. 

3 Pose estimation 

Once correspondences have been established between extracted features and map features, a transformation must be 

found between the local and global (map) coordinate frames which maximizes some matching evaluation function. 

This decoupling of the correspondence matching phase from the pose estimation phase improves the precision of 

localization: correspondence matching is rastor-based and therefore computationally efficient but accurate only 

to the resolution of the 'Hzpr and 'Hzsr histograms; we can now afford to use a more precise approach to pose 

estimation with the knowledge that only "correct" correspondences are contributing to the final pose estimate. As 

far as  orientation estimation is concerned, we describe an approach which is linear in the number of extracted features, 

combining precision with efficiency. 

We divide the approach to aligning the LCF with the GCF into three phases: feature merging, translation estimation 

and rotation estimation. 

3.1 Feature merging 

The correspondence matching approach described in section 2 produces as output a many-bone function c : E -+ 

3 U 0 where 3 is the set of planar features within the mobile robot's current ultrasonic "field of view," and E is the 

set of features extracted by the clustering algorithm described in [16]. 

In order to reduce the computational intensity of the translation and rotation estimation phases described in sec- 

tions 3.2 and 3.3, we merge into a single feature all extracted features in £ which have been deemed to correspond 

to the same underlying feature in 3 . In the notation of section 2, we construct a new set of features &' and a new 

correspondence function c' : £I + 3 U 0 as follows: Let Merge : P ( 3 )  + r x x C, x Cy x L be a function 

which takes a set of extracted line-segments as an argument and produces the line-segment resulting from a merger 

of scatter matrices, as described in [16]. Begin with E' = c-'[{ij)] and Vel E &I, ci(e') = c(el). Then, for each feature 
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Figure 4: The locus (dotted) of positions (xp, yp) of the mobile robot within the GCF for which 

le' = (pel, $el) (not shown) lies on If = (pf , 4f). 

f E F, add to 8' the line-segment e' = Merge (c-l[{f)]) and define cl(e') = f .  

Computational complexity: The weighted summation of 2 x 2 matrices is linear in the number of matrices. 

Computation of the eigenvectors of the resultant 2 x 2 scatter matrix requires a constant number of operations. 

Computation of endpoints of a line-segment representing a cluster of features may be performed in time linear in the 

size of the cluster. Hence, feature merging is linear in the number of extracted features. 

3.2 Translation estimation 

Let e: be the ith element of (E' - c'-~[{o)]). Denote the infinite line of which e: is a segment by I,!. The normal 

parameters of 1,; in the LCF are p,! and $,!. Denote the underlying feature corresponding to e: by fi = c1(e:) E F, 

and the infinite line of which it is a segment by lfi. The normal parameters of lfi in the GCF are pfi and dfi. 

If the LCF is rotated counter-clockwise by dfi - $,!, then I,; can be made to lie on lfi for a suitable translation of 

the LCF. The locus of positions (xp, yp) of the mobile robot within the GCF for which I,; lies on lfi is the line with 

normal parameters pfi - p,! and dfi. See figure 4. Hence, xp and yp are such that 

XP cos hi + Y, sin $fi = pfi - p,! 



Hence, the set of constraints governing the position (z,, yp) of the mobile robot within the GCF may be expressed 

as 

where n = I (&I - c ' - ~ [ { ~ ) ] )  I. A least squares estimate of the necessary translation of the LCF is, therefore, 

where A = 

Note the similarity in structure with the least squares approximation of translation described in section 2.3. The 

difference is that in section 2.3, rastorized histograms of F and & were used to obtain a coarse approximation to 

translation, and to eliminate mismatched features; in the present section, we assume knowledge of correspondence 

between features, and use non-discretized data to obtain a refined estimate of translation. 

Once again, least squares estimation may be replaced here with truncated least squares, least median of squares, or 

some other robust estimator. 

- 
COS d f l  sin dfl  

cos d f ,  sin d f ,  
: - 

_ cos d f ,  sin dfm 

Computational complexity: The number of operations required for the evaluation of the matrix A is linear in 

n. The various matrix multiplications are also linear in n. The matrix inversion is performed on a 2 x 2 matrix, 

requiring a constant number of operations. Hence, the translation estimation phase is, overall, linear in n. 

Pf,  - Pei 

and d =  [ p f a 7 p e '  ] 
pf ,  - Peh 

3.3 Rotation estimation 

Once a suitable translation of the LCF has been found, all that remains is to find the rotation Bp of the translated 

LCF which minimizes some disparity criterion. The criterion we have selected is the sum of squared perpendicular 



Figure 5: Perpendicular distance dk of an arbitrary point k = ( rk ,  a k )  (polar coordinates) from a 

line with with parameters pk, dk)  as a function of rotation 6 of k: dk(6) = pk - rk sin (ak  - dk + 8) 

distances between the endpoints of extracted features and the infinite lines to which these features have been deemed 

to correspond. 

Let k = (rk,  a k )  be an arbitrary point in the LCF expressed in polar coordinates. Let dk denote the perpendicular 

distance of k: from some line in the LCF with parameters pk and dk. As can be seen from figure 5, after a counter- 

clockwise rotation of by angle 8, 

dk = PL - rk sin (ak  - dk + 6) (3) 

Now, once again let e: be the ith element of (I' - c'-'[{G)]). Let the endpoints of e: be ki and j i .  Let the polar 

coordinates of ki and ji be (rki ,  ski) and (rji, a j , )  respectively. Denote the underlying feature corresponding to e: 

by fi = cl(e:) E 3, and the infinite line of which it is a segment by lfi. The normal parameters of lfi in the GCF are 

ptCF and $tCF. By equation 1, the parameters of lfi in the unrotated LCF are 

For ease of notation, in what follows denote pkCF simply by pi and 4kCF by q5i. Hence, for n = I (&' - C'-~[{G)]) I, 
the sum of squared perpendicular distances after a counter-clockwise rotation of endpoints by 8 is Cy=l ( d i i  + dj,), 



where, by equation 3, 

C (pi - rk, sin (aki  - +i + 8 ) ) ~  

and since sin2 y = 

C P: - 2 C pirki sin (or, - mi + 0) + C r:; sin2 (ak i  - 4 + 8) 
i=l i=l i=l 

1 - cos 27 
2 '  

n 
1 - Cos (2ak; - 2 4  + 28) C P? - 2 5 pirt, sin (ak, - )i + 8) + 5 r:, ( 

i=l i=l i= 1 
2 ) (4) 

C;=l dji has similar form. As a function of 8, the second term in equation 4 is the sum of sinusoids of equal 

frequency 1. It is, hence, also a sinusoid of frequency 1. Similarly, the third term in equation 4 is the sum of 

sinusoids of frequency 2. It is, therefore, also a sinusoid of frequency 2. Hence, we may write 

n 

g(8) = C (dZi + d;,) = B1 + B2 sin (8 + pl) + B3 sin (28 + pz) 
i=l 

for some constants B1, B2 and B3, p l  and p2. We seek the value of 8 which minimizes g(8). This function has at 

most two troughs in the interval 8 E [O,2a). It can be shown that if we sample g at four points equally spaced in 

8, call them 81, 82, 83 and 84, ej - Bj-1 = $, 2 5 j 5 4, then rninl<jL4 - g(Oj) lies in a trough containing a global 

minimum of g(8). Hence, an efficient approach to finding Op for which g(Op) is a global minimum is 

1. Evaluate g(0), g($), g(a) and g ( F )  using equation 4. 

2. Find the minimum of these four values. 

3. Use the value of 8 corresponding to this minimum as an initial estimate in a Newton-Raphson (NR) iterative 

approximation of Bp . 

Since the NR algorithm converges rapidly, only a few evaluations of the function xy=l (di, + dj,) by way of the right 

hand side of equation 4 will be necessary. Nevertheless, for large values of n, evaluations of Cy=l (di, + d f i )  may 

become prohibitively computationally intensive. For this reason, we use the following approach: 

We evaluate Cy=l (d;, + dj,) at five points in order to solve for the five unknown parameters of g(8) in equation 5. 

Let the five values of 8 at which we evaluate Cy=l (dii + dj,) be 0, 5 ,  5,  a and 9. Then, substitution into equation 5 



g(0) = B1+Bzsinpl+B3sinp2 

s ( 5 )  = EL + Bl cos pl - B3 sin p2 

s (r) = B1 - Bz sin pl + B3 sin pz 

!(%I = B1 - Bz cospl - B3 sinp2 
?T 

g ( : )  = B I - B ~ C O S ( ~ + ~ ~ ) - B ~ C O ~ ~ ~  

(6) + (7) + (8) + (9) + Bi = s(0) + s ( i > +  s ( 4  + s ( 9 )  
4 

(6) - (8) +- BZ sinpl = s (0)  + g (5) 
2 

(7)-(9) + Bzcospl = s($)+s(f)  

(13) / (14) + p1 = tan-' 
s ($1 + s  (F) 

(13) + B2 = s (0) + s (4 
2 sin p1 

(6) + (8) + B3 sin p2 = s (0) + s ( 4  - 2B1 
2 

(10) -, B3 cos p2 = BZ sin (f + p1) - g (f) 

( 1 7 ) ( 1 8 )  pz = tan-' 
2 (Bz sin (5 + PI) - s (5) ) 

(17) B3 = 
s (0) + s (4 - 2B1 

2 sin p2 

From equations 12, 15, 16, 19 and 20, we obtain an explicit formulation by which g(9) may be evaluated iteratively 

at  low computational cost. 

Computational complexity The five evaluations of Cy=l (di, + dj,) may be performed in time linear in the 

number of matched extracted features n. The time required for the iterative application of the NR algorithm is 

negligible compared to this. Thus, rotation estimation may be performed in time linear in n. 

In this way, a precise estimate of the pose (xp, yp, Bp) is obtained. The overall computational complexity of the pose 

estimation phase is linear in the number of extracted features. 



4 Experiments 

We are currently involved in the empirical testing and evaluation of the algorithm, both in simulation and on our 

physical testbed agents. Simulation results are very encouraging. A thorough analysis of the localization algorithm's 

properties on a real testbed system requires a measure of ground truth against which pose estimates may be compared. 

A system for establishing this ground truth is currently under development. See [17] for an analysis of the algorithm's 

empirical performance in terms of speed, precision and region of attraction1. See [14] for a comparison of localization 

characteristics using this modality with localization using various combinations of other modalities. 

Two preliminary testbed experiments illustrate the usefulness of our approach: 

Region of at traction:  In this experiment we show the large region of attraction of the localization algorithm, 

both for relocation and for conlinuous localization, at least for the simple case (131 = 2) shown in figure 6. 

Ultrasound localization versus odometry  In this experiment we compare odometry-based against ultrasound 

feature-based localization. In the absence of a method of establishing ground truth, we proceed as follows: 

1. Begin from some marked point in space. Identify the GCF with the LCF. 

2. Steer the robot in a loop, and return to the original point in space. 

3. Compare the estimates of final location and orientation according to odometry and the ultrasound feature-based 

localization algorithm. 

We note that in our case, no continuous localization was performed; all data was subject to odometric error, so 

that the feature-based localization algorithm was at a distinct disadvantage. If continuous localization or some form 

of ground truth positioning system were to be used instead of odometry to keep track of the robot's pose for the 

duration of the experiment, we would expect an improvement in the quality of the parameters of the extracted 

features. This would lead to a corresponding improvement in relocation at the conclusion of the experiment. 

Nevertheless, as is shown in figure 7, the relocation algorithm succeeds in reducing odometric error by at least 50%. 

'The region of attraction for a known pose q E Q is defined as the region in pose space Q' Q such that, for any q' E Q', a robot 

with initial LCF origin at q' is be able to localize itself to within some threshold distance of q. The region of attraction depends on the 

nature of the environment, the point q ,  and the features that have been extracted thus far. 



Figure 6: Experiment for which region of attraction is large. (a) Relocation. Light grey represents 

clusters of extracted features. Darker grey denotes features in the map. Dark lines on left show p 

values of extracted features in the LCF. Robot location in the LCF is shown on left. Dark features on 

right hand side represent the extracted features cast into the GCF after localization. The relocated 

robot is shown in its new pose in the upper right corner. (b) Continuous localization. Light grey 

represents the trajectory followed by the robot in the LCF. Darker grey represents environment 

structures (features in F ). Black represents the trajectory of the robot in the GCF as a result of 

continuous localization. 



Figure 7: Experiment to compare odometry-based against ultrasound feature-based relocation. (a) 

Comparison of final orientation estimate. Light grey represents clusters of extracted features in the 

LCF, p values for these features, and the final pose of the robot according to odometry. Darker 

grey denotes features in the map. Dark features represent the extracted features cast into the 

GCF after relocation. Note the goodness of fit with map features. The relocated robot is shown 

in its new pose as a dark triangle. Note that localization algorithm reduces the odometric error 

in orientation by about 50%: in reality, final orientation was due west. This is in spite of the 

corruption of each individual ultrasound measurement by odometric error. (b) Comparison of final 

translation estimate. Light grey represents the trajectory followed by the robot in the LCF (i.e. 

according to odometry readings). Starting point is at the right. Endpoint cannot be clearly seen as 

the robot was maneuvered back and forth to ensure that, in reality, it ended at its starting point. 

Odometric slippage is clearly visible. Darker grey represents environment structures (features in 3). 

Black represents the final estimated pose of the robot in the GCF as  a result of relocation. The 

localization algorithm is seen to reduce translation error by about 50%, placing the robot closer to 

its known starting point. Once again, this is in spite of the corruption of each individual ultrasound 

measurement by odometric error. 



5 Conclusion 

We have described a feature-basedlocalization algorithm for mobile robots equipped with fixed ultrasonic transducers. 

We do not assume the presence of beacons, nor do we require the modification of the environment in any way. 

We employ the method delineated in [15, 161 for the extraction of planar features from ultrasound data in the local 

coordinate system of the mobile robot. The advantages of using extracted features rather than unclustered ultrasonic 

measurements for localization include 

1. Greater robustness and noise immunity: each feature represents the combined information from many mea- 

surements over relatively long periods. 

2. Greater speed since the same feature matches may be used over long periods. 

We address the issues of correspondence matching and pose estimation. The algorithm described here decouples 

these two phases. The matching stage is histogram-based, yielding a coarse estimate of pose and a function mapping 

extracted features to features in the map. Using this function, the pose estimation stage makes use of least squares 

estimation to yield a refined estimate of translation and rotation. The pose estimation stage is shown to be linear in 

the number of extracted features. 

The decoupling of the matching and pose estimation phases allows the speed of rastorized techniques to be combined 

with the precision and finer resolution of non-discretized estimation. Furthermore, the complete correspondence 

matching phase need only be invoked for the purposes of relocation. For the case of continuous localization, the same 

correspondence matches may be used over long periods; only the pose estimation phase need be invoked during these 

periods. 

The approach we delineate minimizes a sum of squared errors expression. Rapidly convergent gradient-descent 

techniques are employed for this minimization in the case of orientation estimation; we avoid local minima by 

selecting a initial estimate which guarantees convergence to the global minimum. The overall result is a localization 

algorithm which is both computationally efficient and accurate. Such an algorithm is a key component for the tasks 

of navigation, exploration of partially known environments, and cooperative material handling by multiple agents. 

We are currently involved in the empirical testing and evaluation of the algorithm, both in simulation and on 

our physical testbed agents. As part of this effort, a system for establishing ground truth is under development. 

The accuracy and region of attraction of the localization algorithm are under analysis. Further, the algorithm is 



being extended to incorporate point-type ultrasound features (corners), as well as features extracted by other sensor 

modalities. See [14] for details. 
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