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Abstract 

In  this paper we describe a method for  solving the 
Euclidean reconstruction problem with a perspective 
camera model by incrementally performing an Eu-  
clidean reconstruction with a weak perspective camera 
model. Wi th  respect to other methods that compute 
shape and motion f rom a sequence of images with a 
calibrated Perspective camera, this method converges in  
a f ew  iterations, is computationnaly e f ic ient ,  and does 
not suffer f rom the non linear nature of the problem. 
With respect t o  factorization and/or afine-invariant 
methods, this method solves for  the sign (reversal) am- 
biguity i n  a very simple way and provides much more 
accurate reconstruct ions results. 

1 Introduction and background 

The problem of computing 3-D shape and motion 
from a long sequence of images has received a lot of 
a.ttention for the last few years. Previous approaches 
attempting to solve this problem fall into several cate- 
gories, whether the camera is calibrated or not, and/or 
whether a projective or an affine model is being used. 
With a calibrated camera one may compute Euclidean 
shape up to a scale factor using either a perspective 
model [8], or a linear model 191, [lo], [6], [7]. With an 
uncalibrated camera the recovered shape is defined up 
to a- projective transformation [ a ] ,  or up to an affine 
transformation. One can therefore address the prob- 
lem of either Euclidean, affine, or projective shape re- 
construction. In this paper we are interested in Eu- 
clidean shape reconstruction with a calibrated camera. 

The perspective model has associated with i t ,  in 
general, non linear reconstruction techniques. This 
naturally leads to non-linear minimization methods 
which require some form of initialization [8], [a]. If 

*This work has been supported by “SociCtC Akrospatiale” 
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the initial “guess” is too faraway from the true solu- 
tion then the minimization process is either very slow 
or it converges to a wrong solution. Affine models 
lead, in general, to linear resolution methods [9], [ lo] ,  
[6], [7],  but the solution is defined only up to a sign 
(reversal) ambiguity. Moreover, both these two affine 
solutions are just approximations of the true solution. 

Figure 1: This figure shows a theoretical 3-D shape 
(top-left) and three reconstructions of this shape from 
10 views. The first reconstruction (top-right) was 
obtained using a perspective camera model and the 
method described in this paper. The second recon- 
struction (bottom-left) and its reversal (bottom-right) 
were obtained using a weak perspective camera model 
and the factorization method of Tomasi & Kanade. 

One way to combine the perspective and affine 
models could be to use the linear (affine) solution in 
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order to initialize the non-linear minimization process 
associated with perspective. However, there are sev- 
eral drawbacks with such an approaclh. First, such a 
resolution technique does not take into account the 
simple link that exists between the perspective model 
and its linear approximations. Second, there is no 
mat hematical evidence that a non-linear least-squares 
minimization method is “well” initialized by a solu- 
tion that is obtained linearly. Third, there are two 
solutions associated with the affine model and it is 
not clear which one to choose. 

The perspective projection can be modelled by 
a projective transformation from the 3-D projective 
space to the 2-D projective plane. Weak perspec- 
tive and paraperspective are the most, common affine 
approximations of perspective. Weak perspective 
may well be viewed as a zero-order approximation: 
1/(1 + E ) M 1. Paraperspective [1:1 is a first order 
approximation of full perspective: 1/(:1 + E )  M 1 - E .  

Recently, in [4] a method has been proposed for deter- 
mining the pose of a 3-D shape with respect to a sin- 
gle view by iteratively improving the pose computed 
with a weak perspective camera model to converge, 
at the limit, to a pose estimation using a perspective 
camera model. At our knowledge, the method cited 
above, i.e., [4] is among one of the first, computational 
paradigms that link linear techniques (associated with 
affine camera models) with a perspective model. In 
[5] an extension of this paradigm to paraperspective is 
proposed. The authors show that the iterative parap- 
erspective pose algorithm has better coinvergence prop- 
erties than the iterative weak perspective one. 

In this paper we describe a new Euclidean recon- 
struction method that makes use of affine reconstruc- 
tion in an iterative manner such that th.is iterative pro- 
cess converges, at the limit, to a set of 3-D Euclidean 
shape and motion parameters that are consistent with 
a. perspective model. The novelty of the method that 
we propose is twofold: (i) it extends the iterative pose 
determination algorithms described in [4] and in [5] 
to deal with the problem of shape anid motion from 
multiple views and (ii) it is a generalization to per- 
spective of the factoriza.tion methods [9], [7] and of 
the affine-invariant methods [lo]. More precisely, the 
afine-iterative reconstruction method that we propose 
here has a number of int’eresting features: 

0 It solves the sign (or reversal) ambiguity that is 
inherent with affine reconstruction; 

0 It is fast because it converges in i i  few iterations 
( 3  to 5 iterations), each iteration involving simple 
linear algebra computations; 

0 The quality of the Euclidean reconstruction ob- 
tained with our method is only weakly influenced 
by camera calibration errors. The only intrinsic 
camera parameter that has a crucial effect on the 
quality of the reconstruction is the ratio between 
the horizontal pixel size and vertical pixel size - 
ratio which is known to be very stable; 

It allows the use of either weak (in this paper) or 
paraperspective (see [ 3 ] )  camera model approxi- 
mations which are used iteratively, and 

0 It can be combined with almost any affine shape 
and motion algorithm. In particular we show how 
our method can be combined either with fa,ctor- 
ization methods [9], [7] or with affine-invariant 
methods [lo],  [6]. 

2 Camera models 

Let us consider a pin hole camera model. We denote 
by Pi a 3-D point with Euclidean coordinates Xi, x, 
and Zi in a frame that is attached to the object - the 
object frame. The origin of this frame may well be 
the object point Po. The relationship between object 
points and projected points can be written as: 

i . Pi + t ,  
2; = 

k . P i  +t ,  
j . Pi + t ,  
k . P i  + t ,  Yi = 

Recall the relationship between camera coordinates 
and image coordinates: 

U ,  = Q U X ,  + U ,  ( 3 )  
va = Q ~ Y ,  + U, (4) 

In these equations a, and a,  are the vertical and 
horizontal scale factors and U, and v, are the image 
coordinates of the intersection of the optical axis with 
the image plane. In an extended version of this pa- 
per [ 3 ] ,  we show that the reconstruction method de- 
scribed here depends only on the ratio au/a,  and that 
the reconstruction obtained with our method IS not 
sensitive to errors in U ,  and U, 

We divide both the numerator and the denominator 
of eqs. (1) and (2) by t,. We introduce the following 
notations: 

0 I = i/tz and J = j / t , ;  

0 2 0  = t,/t, and yo = t,/t, are the camera coor- 
dinates of po which is the projection of Po ~ the 
origin of the object frame, and 
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e We denote by ~i the following ratio: 

(5) 
k . Pi 

Ea - 
t z  

We may now rewrite the perspective equations as: 

(6) 

(7) 

I ‘ Pi + 2 0  

1 + E i  

J . Pi + yo 
1 + E i  

zi = 

yi = 

Whenever the object is a t  some distance from the 
ca.mera, the E; are small compared to 1. We may there- 
fore introduce the weak perspective model as an ap- 
proximation of the perspective equations. 

Weak perspective assumes that the object points lie 
in a plane parallel to the image plane passing through 
the origin of the object frame, i.e., Po. This is equiv- 
alent to a zero-order approximation: 

With this approximation, eqs. (6) and (7) become: 

2 y  - 2 0  = 1 . P ;  (8) 
yy -yo = J ‘Pi  (9) 

In these two equations xy and yr are the camera coor- 
dinates of the weak perspective projection of the point 
Pi. By identification with eqs. (6) and (7) we obtain 
the rehtionship between the weak perspective and the 
perspective projections of Pi: 

zy = z;(1 + E ; )  (10) 
Y? = Y i ( l + E Z )  (11) 

These equations allow us to  determine the quality 
of the weak perspective approximation with respect to 
the perspective projection. Indeed the error between 
the weak perspective projection and the “true” pro- 
jection is: 

Axw = 1.5 - = l ~ i ~ i l  (12) 
Ayw = I$’ - ~ i l  l ~ i ~ i l  (13) 

Hence the quality of the approximation depends both 
on the value of ~i AND on the position of the point in 
the image. Let’s consider for example a 512x512 im- 
age. Approximate values for the intrinsic parameters 
are: cy, = a,, = 1000 and U ,  = U ,  = 256. Therefore 
using eq. (3) and (4) we have: 

0 , yi 5 0.25 

We conclude that for objects that are quite closed 
to the camera, the weak perspective approximation is 
still valid provided that the object lies in the neigh- 
bourhood of the optical axis. 

3 Reconstruction with a perspective 
camera 

Let us consider again the perspective equations (6) 
and (7). These equations may also be written as: 

z z ( l + E i ) - 2 0  = I . P i  (14) 
~ i ( l + ~ ; ) - y ~  J . P ;  (15) 

If the values of E; are set to  zero then we obtain 
equations that approximate the camera with weak per- 
spective. The crucial point is that if the E ~ ’ S  are set 
to some fixed non zero values, then the equations re- 
main linear. In particular, there are values for the 
E ~ ’ S  for which these equations are consistent - up to 
some measurement noise - with the full perspective 
model. The key idea of our reconstruction method is 
to iteratively estimate values for the E ~ ’ S  such that the 
perspective reconstruction problem becomes a “weak 
perspective iterative” reconstruction problem. 

Let us consider now k views of the same scene 
points. We assume that image-to-image correspon- 
dences have already been established. Equations (14) 
and (14) can be written as: 

s . .  ZJ = Aj Pi (16) 
v w- 
2 x 1  2x3 3 x 1  

In this formula the subscript i stands for the ith point 
and the subscript j for the j t h  image. The 2-vector 
sij is equal to: 

In these equations ~ i j ,  i.e., eq. (5) is defined for each 
point and for each image: 

The reconstruction problem is now the problem of 
simultaneously solving 2 x n x k equations of the form 
of eq. (16). We introduce now a method that solves 
these equations by linear iterations. More precisely, 
this method can be summarized by the following al- 
gorithm: 

1. V i ,  i E (1 ... n }  and V j ,  j E {1 ... k }  set: ~ i j  = 0; 

2.  Update the values of sij using ~ i j ;  

3. Perform an Euclidean reconstruction with a weak 
perspective camera; 
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4. V i ,  i E { l...n} and Vj ,  j E { l . . . k }  estimate new 
values for ~ i j  ; 

5. Check the values of E;?: 

if V ( i ,  j )  the values of ~ i j  just eeltimated at  this 
iteration are identical with the values esti- 
mated a t  the previous iteration, 
then stop; 

else go to  step 2. 

Step 3 of the algorithm can be farther decomposed 
into: (i) affine reconstruction and (ii) euclidean recon- 
struction. The problem of affine reconstruction is the 
problem of determining both Aj and F’i, for all j and 
for all i ,  in eq. (16), when some estimates of sij are 
provided. Such a reconstruction determines shape and 
motion up to  a 3-D affine transformation. Indeed, for 
any 3 x 3  invertible matrix T we have: 

AjPi  = AjTT-lPi 

In order to convert affine shape and motion into Eu- 
clidean shape and motion, one needs to  consider some 
Euclidean constraints associated either with the mo- 
tion of the camera or with the shape being viewed 
by the camera. Since we deal here with a calibrated 
camera, we may well use rigid motion constraints in 
conjunction with weak perspective [7]. Based on the 
parameters of the Euclidean shape arid motion thus 
computed one can estimate ~ i j  for all i and for all j 
using eq. (18) - step 4. 

The first iteration of the algorithm performs a 3-D 
reconstruction using the initial image measurements 
and a. weak perspective camera model. This first re- 
construction allows an estimation of values for the ~ i j ’ s  

which in turn allow the image vectors s;j to be modi- 
fied (step 2 of the algorithm). The sij’s are modified 
according to eq. (17) such that they better fit the ap- 
proximated camera model being used. 

The next iterations of the algorithm perform a 3-D 
reconstruction using (i) image vectors that are incre- 
mentally modified and (ii) a weak perspective camera 
model. 

At convergence, the equations (16) are equivalent 
with the perspective equations (14) and (15). In other 
terms, this algorithm solves for Euclidlean reconstruc- 
tion with a perspective camera by iterations of an Eu- 
clidean reconstruction method with a weak perspec- 
tive camera - a quasi linear algorithm. 

The iterative algorithm outlined in this paper is 
best illustrated on Figure 2. At the first iteration, the 
adgorithm considers the true perspective projections 
of Pi and attempts to reconstruct the 3-D points as if 

they were projected in the image using weak perspec- 
tive. At the second iteration the algorithm considers 
modified image point positions. At the last iteration, 
the image point positions were modified such that they 
fit the weak perspective projections. The relative po- 
sitions of the perspective projections and of the weak 
perspective projections verify the theoretical relation- 
ship given by eqs. (10) and (11). Notice that the per- 
spective projection of point Po is identical to its weak 
perspective projection and hence the projection of this 
point is not modified. 

first iteration ._ 
second iteration .:, .._ 

renrer of 
+ I optical axis I .~ ~ ~ 

prqjection 

image plane 

Figure 2: The iterative algorithm described in this 
section modifies the projection of a 3-D point from 
true perspective to weak perspective (see text). 

4 Reconstruction with a weak perspec- 
tive camera 

In this section we develop step 3 of the algorithm 
outlined in the previous section. Methods that use a 
linear camera model provide a 3-D affine reconstruc- 
tion if at  least 2 views of 4 non-coplanar points are 
available and if the motion is not a pure translation. 
However, 3 views are necessary in order to convert this 
affine reconstruction into an Euclidean one. While the 
affine-invariant method allows a more direct analysis 
of the problem, the factorization method is more con- 
venient from a practical point of view. 

Affine-invariant methods have already been de- 
scribed in [6] and [lo]. The factorization method is 
due to  [9]. Tomasi & Kanade [9] noticed that uf ine  
shape and motion may be computed simultanously 
by performing a singular value decomposition of the 
2k x n matrix U which is formed by concatenation 
of s;j (equation (16)): 

U = AS = OlCOz (19) 
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The rank of cr is theoretically equal to 3. Tomasi k 
Kanade suggested to solve the rank problem by trun- 
cating the matrix C such that only the 3 largest di- 
agonal values are considered. They claim that this 
truncation amounts to removing noise present in the 
mea.surement matrix. Therefore] one can write the 
singular va.lue decomposition of the measurement ma- 
trix as: 

rJ = o;c/o; + 0pYo; 
wliere C’ is a 3 x 3 diagonal matrix containing the 3 
largest diagonal terms of C. 

Finally, affine shape and affine motion may be given 
by : 

.$ = (C’)’/’O; and A = Oi(C1)’ /2  

5 Euclidean constraints 

One ha,s to determine now Euclidean shape and mo- 
tion by combining the affine reconstruction methods 
j i i s t ,  described and the Euclidean constraints available 
with the camera model being used. As already men- 
tioned, one has to determine a 3 x 3  invertible matrix 
T such that the affine shape S becomes Euclidean: 

( P I  . . .  P,, ) = T - ’ (  SI , . .  s , )  
and the affine motion becomes rigid: 

Recall that in the case of weak perspective the 2 x 3  
matrices A,; are of the form: 

A T = ( : )  

with: Ij = ij/tz, and Jj  = j j / t z , .  Therefore for all j ,  
the row vectors of the matrices A: verify: 

llIj11 = IIJjII and Ij . Jj = 0 

These constraints are homogeneous and non linear in 
the coefficients of T. In order to avoid the trivial null 
solution the scale factor must be fixed in advance. For 
example, one may choose: 

t,, = 1 

With the substitution Q = T T T ,  we obtain 2 k  + 1 
linear independent constraints in the coefficients of Q 

(6 unknowns), which can be solved if at least 3 views 
are available. Once Q has been linearly estimated, 
T can be easily computed. Next we determine the 
parameters of the Euclidean motion: 

6 Solving the reversal ambiguity 

The algorithm outlined in Section 3 solves for Eu- 
clidean reconstruction with a perspective camera by 
iterations of an Euclidean reconstruction method with 
a weak perspective camera. In this section we show 
how this iterative algorithm has to be modified in or- 
der to solve the reversal ambiguity problem which is 
inherent with any affine camera model. Indeed, let us 
consider again the affine shape and motion equation, 
i .e. ,  eq. (19). This equation is defined up to a sign: 

0 = AS = ( -A)( -S)  

Moreover] the use of Euclidean constraints does not 
solve this ambiguity: 

= A E P  = ( -AE) ( -P)  

Because of this sign ambiguity that is associated 
with the affine model, there are 2 solutions for the 
~ i j ’ s  at each iteration of the perspective reconstruction 
algorithm. 

The first solution yields: 

~ i j  = kj . Pi/tzJ 

The second solution is different because the vector k 
remains unchanged when the signs of the row vectors 
of AE are changed: 

(-ij) x (-jj) = ij x j j  = kj 

Therefore we obtain: 

E?. = k .  . (-P;)/t = - E ? .  
2.I .I 2 3  23 

At each iteration of the perspective reconstruction 
algorithm two values for ~ i j  are thus estimated. There- 
fore, after N iterations there will be 2N possible solu- 
tions. All these solutions are not, however, necessarily 
consistent with the image data and a simple verifica- 
tion technique allows to check this consistency and to 
avoid the explosion of the number of solutions. Fi- 
nally, a unique solution is obtained. 
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1 
1st iteration 

) 2nd iteration 

i -1 

I 
1 Nth ieralion 

t 
Unique 
rollifion 

Figure 3: A strategy for selecting a unique solution 
(see text). 

Let S(') be the positive shape computed at the first 
iteration of the algorithm and R(l) be the negative 
shape (dl) = -S ( ' ) ) .  At eachone of the next itera- 
tions one has to deal with four shapes: 5':' and St' 
that are issued from the positive solution and R,") and 
R i )  that are issued from the negative solution. The 
S-shape and the R-shape the most consistent with the 
shapes selected at the previous iterations are selected. 
Finally, a unique solution is selected on the basis of 
consistency with the image data. This solution selec- 
tion process is best illustrated on Figure 3 .  

( 

7 Experimental results 

In this section we describe two types of experi- 
ments: (i) experiments with synthetic data which al- 
low UE to study both the accuracy of the 3-D recon- 
struction and the convergence of the iterative algo- 
rithm, and (ii) experiments with real data. 

Let us consider again the synthetic house of Fig- 
ure 1. We designate by D the distance between this 
object center and the camera center of projection di- 
vided by the object size - D is therefore a relative dis- 
tance. For a fixed value of D we consider 10 camera 
motions, each motion being composed of 15 images. 
Each such motion is farther characterized by a trans- 
lation vector and a rotation axis and amgle. The di- 
rections of the translation vector and rotation axis are 
randomly choosen. The angle of rotation between two 
images is equal to 2'. Moreover, the image data ob- 

tained by projecting this object onto the image plane 
is perturbed by adding gaussian noise with a standard 
deviation equal to 1. 

The accuracy of the reconstruction is measured by 
the difference between the theoretical 3-D points of 
the object and the reconstructed 3-D points. Figures 4 
summarize the results where D is allowed to vary from 
3 to 19 and for two methods: the factorization method 
with a weak perspective camera (small squares) and 
our reconstruction method (small triangles). One may 
easily notice that the precision associated with these 
two algorithms converge to the same value as D in- 
creases. However, the discrepancy between the preci- 
sion associated with the two methods increases as D 
decreases. 

0 
c 
c.3 
n -  

o" 
0 

0 

02 
I .  

c 

0 I 

d 
~ i s t o n ~ e  to c a m e r a  / Object s i z e  

Figure 4: These plots show the mean values of the dis- 
tance between object points and reconstructed points 
as a function of D.  The behaviour of the factoriza- 
tion method (small squares) is compared with the be- 
haviour of the quasi linear method described in this 
paper (small triangles). 

We consider now an experiment performed with 5 
images of a "cube". The first image of this sequence 
is shown on Figure 5 (top-left). There are 38 feature 
points that are tracked over the image sequence. The 
camera parameters have been fixed to the following 
values: a,/a, = 1.5 and uo = W O  = 256. 

The bottom of Figure 5 shows the top views of 
the reconstructed cube obtained with the factoriza- 
tion method (left) and with the method described in 
this paper (right). 

8 Discussion 

In this paper we described a method for solving the 
Euclidean reconstruction problem with a perspective 
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Figure 5: This figure shows one image (top-left) out of 
a sequence of 5 images grabbed with a moving camera, 
the result of reconstructing the scene with the quasi 
linear method (top-right and bottom-right), and the 
result of reconstructing the scene with the factoriza- 
tion method (bottom-left). 

camera by incrementally performing an Euclidean re- 
construction with a weak perspective camera model. 
The method converges, on an average, in 5 iterations, 
is computationnally efficient, and it produces accurate 
results even in the presence of image noise and/or 
camera calibration errors. The method may well be 
viewed as a generalization to perspective of shape and 
motion computation using factorization and/or affine- 
invariant methods. It is well known that with a lin- 
ear camera model, shape and motion can be recovered 
only up to  a sign (reversal) ambiguity. The method 
that we propose in this paper solves for this ambiguity 
and produces a unique solution even if the camera is 
at some distance from the scene. 

Although the experimental results show that there 
are little convergence problems, we have been unable 
to  study the convergence of the algorithm from a the- 
oretical point of view. We studied its convergence 
based on some numerical and practical considerations 
which allow us to  determine in advance the optimal 
experimental setup under which convergence can be 
guaranteed [3]. In the future we plan to  study more 

thoroughly the convergence of this type of algorithms. 
We also plan to  generalize our method such that it 

can deal with an uncalibrated camera. In that case 
one has to investigate ways to incrementally compute 
shape and motion without any explicit Euclidean con- 
straints. The result of such a method could be, for in- 
stance, an affine reconstruction with a projective cam- 
era model. 
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