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Abstract

In this paper, we are interested in inferring the sources
of various types of sonar features typically observed by

a mobile robot. After a brief discussion of terrestrial
sonar sensing, we develop a set of operators that asso-
ciates arc-shaped features extracted from sonar scans
with real world primitives. Our classi�cation scheme is
probabilistic and is based on empirical data: the con-

�dence of the association hypotheses produced by the
operators is evaluated statistically. Some of our exper-
imental results suggest that methods based on models
of perfect sonar sensors may not be completely consis-
tent with observed data. The management and merging

of a collection of hypotheses concerning various sonar
features allows the system to produce a coherent and

mutually-compatible set of inferences for the entire ob-
served environment.

1 Introduction

Sonar data is frequently used for map construction
and position estimation. The most common models
for sonar data involve representing a sonar echo as a
data point at a distance given by the time of ight
along a line normal to the transducer. Collections of
these data points are then used to build a grid-based
environment model [1, 2], or modeled using linear geo-
metric primitives. Under the best conditions, some of
these geometric models match physical structures in
the environment while others are the results of echos
that have bounced on several surfaces. Traditional ap-
proaches to modeling sonar data involve generating ge-
ometric primitives from either a single position, or by
combining data from multiple positions to minimize
either a squared error measure between the data and
the models, or via an Extended Kalman Filter [3, 4, 5].
Circular geometric models typify the pattern of

responses obtained by taking a series of observa-
tions at di�erent orientations from a �xed position;
these models are known as \regions of constant depth
(RCDs)" [6]. By a careful comparison of the size of
circular models, one can derive an analytic expression
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that allows for the discrimination of walls and cor-
ners [7]; in principle, this allows some of the original
environmental structure of be inferred. However, such
methods depend on important assumptions regarding
the makeup of the environment. To our knowledge,
they have not been extensively evaluated in practice
on functioning \standard" robots.

In this paper, we focus only on primitive identi�-
cation, and assume the robot's absolute position is
always known. We show that some of the distinc-
tions between di�erent types of sonar features based
on \well-behaved" environments, with very consistent
reectance properties, appear to be rather unreliable
in practice. In contrast, we show that various types
of feature classi�cation are possible in a probabilistic
context. The next section recalls well known prop-
erties of terrestrial sonar sensors, presents the sonar
features (RCDs) used to model the environment, and
describes the model we aim to build. Section 3 in-
troduces the basic technique we propose to generate
primitives/RCDs associations, based on a Bayesian
classi�cation procedure. Section 4 presents how RCDs
extracted from data sets acquired from various view-
points are matched, and how the matches can lead to
a primitive identi�cation. Section 5 explains how asso-
ciation hypotheses are managed to produce a coherent
model.

2 Sonar features and world
primitives

2.1 Sonar sensors characteristics

A standard model for sonar sensing is to represent the
sonar sound wave as a ray that is emitted normal to
the transducer surface, and whose echo returns along
the same path (we will refer to this as the ray model).
Unfortunately, this model would be optimistic even
for a laser range sensor. However, the understanding
of the physics of sound waves has permitted faithful
modeling of sonar sensing devices [8, 9, 10]. We briey
review here the properties of this model, as they play
a critical role in the development of our technique.

Beam width: A nominal range estimate can be
obtained directly from the delay time in the reception
of an acoustic echo. The ultrasonic wave emitted by a



sonar sensor transmitter is contained in a lobe1 with
a 2� angular width (nominally 46� for the Polaroid
transducers we use). In many cases, it is the side of
this beam that reects o� a surface in the environment
(Figure 1) : as a consequence, the returned ranges
are often much smaller than one would expect with
the simpli�ed ray model. This phenomenon also occur
when perceiving edges, and actually with many objects
present in an indoor environment.
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Figure 1: Consequences of the beam width (left) and the sur-
face specularity (right) on the measured ranges

Surface specularity: Most of the surfaces that
make up typical indoor environments act as specular
reecting surfaces at ultrasonic frequencies. When the
sonar wave hits such a surface, it is reected such that
the angle of reection is roughly equal to the angle of
incidence. As a consequence, the sonar beam is re-
ected away from the transducer for surfaces that are
not almost facing it. In this case, either no echo is
detected by the receiver, or an echo corresponding to
multiple reections with other objects is detected [11]
(Figure 1). The latter case is known as the "multi-
ple reection" phenomenon, and produces totally erro-
neous range measurements. Depending on the number
n of object encountered during the beam propagation,
the sonar echo is said to be a nth order echo [6].

Di�raction: When the sonar beam hits an edge,
it is di�racted: the resulting echo wave spreads cylin-
drically from the corner. The signal received by the
sensor has then a much lower amplitude than the
echo produced by a wall since the energy is dissipated
widely [8]. The maximal distance from which an edge
can be perceived is then smaller than for walls.

These properties have an important consequence:
any interpretation of sonar data based on the ray
model exhibits many artifacts, such as apparent fail-
ures to detect nearby obstacles (due to specularity or
di�raction), or spurious objects (nth order echos). As
a consequence, sonar sensors as a basis for environment
mapping have been regarded with suspicion within the
robotics community, especially since laser range sen-
sors have become readily available.

1Sonar sensors also emit waves in secondary side lobes, but
the energy is much smaller than in the central lobe: we actually
never observed any range measure outgoing from one of these
lobes during our experimentations.

2.2 Sonar scans and RCDs

We interpret panoramic sonar scans acquired with a
ring of 16 Polaroid sensors on our Nomad 200 robot:
a set of data taken after several equal rotations of the
robot produces a sonar scan. Figure 2 presents such
a scan2, superimposed on a map of the environment.
Note that several clusters of points form circular arcs
(or RCDs) corresponding either to walls (clusters 1, 3,
and 7), corners (clusters 2, 9, and 6), cylinders (cluster
8), edges (cluster 10) or multiple reections (clusters 4,
5, and 15). The arcs on top of the �gure are produced
by unmapped chairs and tables.

Figure 2: A 256 points sonar scan

The way RCDs are produced by corner, wall and
edge primitives is clearly a consequence of the sonar
properties (Figure 3):
� The echo reected by a wall reaches the sensor

receiver only if the sonar is directed toward the wall
with an angle comprised in [��; �]. At higher angles
of view, the side of the sonar lobe hits the wall at such
an angle that the wave is reected away. Theoretically,
when perceiving a purely specular wall, the width ��
of the RCD is then twice the sonar lobe width.
� In the case of a corner, the received echos are the

one that are reected twice at the corner angle. Simi-
lar considerations as for the RCDs produced by walls
lead to the conclusion that the corner RCDs width is
theoretically also twice the lobe width.
� The echo returned by edges is due to di�raction.

Using wave propagation theory, R. Kuc showed that
the width of the corresponding arc should be smaller
than for walls and corners [12].
Our technique is based on statistically-observed

properties of individualRCDs in the sonar scan. RCDs
are extracted by the application of a threshold on the
distance between successive range data points. An
RCD de�ned by its distance to the sensor r and two
bounding angles (�min, �max). Associated parameters
are the angular width ��, and an absolute orientation
� = (�min + �max)=2. There are, of course, uncer-
tainties in the values of these parameters: a stability

2Throughout the paper, we will deal with 256 points sonar
scans.
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Figure 3: RCDs generated by a wall, a corner and an edge.
The leftmost sonar lobe of each RCD is shown.

analysis over several scans acquired from the same po-
sition shows a standard deviation in the feature's ori-
entation of roughly 3 degrees. The origin of these devi-
ations is that points at the edges of an RCD typically
have amplitudes near the thresholds of detectability
for the transducer (that is why the cluster ends at
these points). Thus these terminal points are very
unstable: small amounts of noise (either acoustic or
electrical) lead to the appearance or disappearance of
a data point3. We could not precisely determine the
uncertainty in the distance to a RCD as it is below
the accuracy threshold for our transducers: the value
returned by the sensors is coded with insu�cient preci-
sion (8 bits encoding ranges up to 8:0 meters)4. How-
ever, the returned range appears quite stable: when a
feature is detected, it is consistently detected.
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Figure 4: Two \RCD scans" extracted from sonar scans ac-
quired in the environment mapped in Figure 2.

2.3 World primitives

We model the environment as a collection of primitives
classi�ed into the following types:
� Walls W are de�ned by a supporting line de�ned

by (�;R) in a global frame and two endpoints.
� Corners C correspond to a right-angled intersec-

tion of two walls, or to a "break" in a wall (see Fig-
ure 5). They are de�ned as \oriented" points.
� Edges E correspond to the ending of a wall or to a

normal intersection of two walls; they are also de�ned
as \oriented" points.
� Cylinders Cy are de�ned by the position P (x; y)

of their center, and a radius r.
There are numerous objects that generate RCDs

and that do not correspond to any of these primitives
(chairs, shelves. . . often composed of numerous edges

3We therefore chose to keep only RCDs that contain more
than 5 points for subsequent interpretation purpose

4New hardware has alleviated this problem but the revised
data was not available at this time.

Wall Edges Corners

Figure 5: The primitives of our world model. The dashed
arrows represent the \directions" of corners and edges

and cylinders). Thus, we de�ne an additional prim-
itive type that represents these cluttered areas (Cl),
to describe anything not accounted for by one of the
prior primitives. Finally, when an RCD corresponds to
a third or higher order of reection, it will be identi�ed
as a multi-bounce RCD (Mu).
Any observed RCD corresponds then to one of the

primitives in the set P = fW;C;E;Cl;Mug. An hy-
pothesis H(Fj; Pi), where Fj is an RCD and Pi 2 P, is
a correspondence between one primitive and one fea-
ture (one feature can be associated with several primi-
tives, and one primitive can be associated with several
features). Each hypothesis has an associated probabil-
ity PH(Pi;Fj) of existence.

3 Local primitive extraction
Using existing models of sonar sensors, it is di�cult
in practice to establish the di�erent sources of RCDs.
This is one of the reason why sonar arrays have been
introduced to map the environment [13, 14, 15]. How-
ever, we establish in this section that statistical analy-
ses of the attributes of a single RCD scan can be used
to determine its causative source, sometimes with high
con�dence.

3.1 RCDs classi�cation

According to [8], only edges can be di�erentiated from
corners or planes using the angular width of an RCD
(in an occlusion-free environment). But an analysis
of empirical sonar data scans reveals that the angular
width can lead to a better di�erentiation. To clearly
establish this, we manually classi�ed and examined a
set of 750 RCDs extracted from sonar scans, taken
from various positions in our lab. Figure 6 shows the
probability density for the width of an RCD for various
types of feature (P (�� j Pi)=P (��)). These data lead
to several interesting observations:
� The width of RCDs corresponding to walls have

a peak probability around the value �� = 45� (twice
the sonar lobe width; smaller widths correspond to
partially occluded walls).
� Corner RCDs also have a peak at roughly 15�, and

seldom reaches the wall's peak value, which con�rms
that �� is a quite discriminant attribute to distinguish
them from wall RCDs [7].
� Edges also have a peak around a much smaller

value (15�) than walls, which con�rm the theoretical
models validity. However, these models predict that
edge RCD widths is a function of the distance from
which they are observed [7]: we have not observed this
dependence on our edge prototypes: this may relate to
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Figure 6: Probability density functions of RCD widths

the fact that our experimental data was collected in an
environment several meters wide.
� As for multi-bounce RCDs, their width never ex-

ceeds 25� and has a peak around 10�.
The data for cylindrical targets is not conclusive and

is included for illustrative purposes only: only a single
7cm diameter cylinder was present in our test data (it
produced data much like an edge).
If we suppose that walls are almost all oriented along

two orthogonal directions (a reasonable heuristic in
indoor environments), the histogram of their orienta-
tions is composed of two peaks, separated by a distance
of 90 degrees. Corners are then also oriented along two
normal directions, that make a 45� angle relative to the
associated walls. This hypothesis obviously has impli-
cations for the corner and walls RCDs absolute orien-
tation, but also on the multi-bounce RCDs, which ap-
pear when perceiving a wall with an angle of incidence
greater than the sonar lobe width. Figure 7 shows the
probability density functions P (� j Pi) of the angular
orientation for our 750 prototypes, for RCDs corre-
sponding to walls, corners and multi-bounces5. Note
that using � as an attribute to identify RCDs requires
the knowledge of the robot orientation with respect to
an absolute coordinate frame, which we assume pro-
vided by a localization algorithm.
Using these a priori probability density functions,

we can now estimate the probability of hypotheses
H(Fj; Pi) using the Bayes rule:

PH(Pi;Fj) = P (Pi j ��j ; �j) =
P (��j; �j j Pi)P (Pi)

P (��j; �j)
;

where P (Pi) is the a priori probability of the prim-
itive Pi to be present in the environment, and

P (��j; �j) =
X
Pi2P

P (��j; �j j Pi)P (Pi)

is the probability for an RCD has width ��i and an
orientation �. A priori probability density functions
are determined with a non-parametric nearest neigh-
bors technique, and in the absence of other knowl-
edge, we can assume that primitives are uniformly dis-
tributed in the environment.

5The other primitives (cylinders, edges and cluttered areas)
orientation repartitions are not plotted: they are of course uni-
form.
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Figure 7: probability density functions of RCD orientation.
Due to symmetry, the functions are plotted between 0 and 45�)

Table 1 presents the probability of the various hy-
potheses using the width and orientation attributes
for several of the RCDs from Figure 2. This illustrates
that some RCDs can be quite faithfully identi�ed di-
rectly from this data: in particular, unoccluded walls
can be detected due to the large width of their corre-
sponding RCD.

RCD 1 (W) 2 (C) 6 (C) 10 (E) 15 (Mu)
�� 49.2 33.8 14.1 21.1 12.1
� 1.6 44.5 12.1 25.5 14.2

P (W ) 1.00 0.00 0.00 0.06 0.01
P (C) 0.00 0.97 0.58 0.35 0.49
P (E) 0.00 0.02 0.05 0.21 0.06
P (Cy) 0.00 0.00 0.07 0.31 0.07
P (Cl) 0.00 0.01 0.03 0.07 0.04
P (Mu) 0.00 0.00 0.26 0.00 0.34

Table 1: Association hypotheses probabilities for several RCDs
of �gure 2, using the RCDs width and absolute orientation

3.2 Finding corners

One of our objectives is to combine hypotheses across
features in a relaxation-like frame to produce a more
consistent and robust interpretation. The following
procedure illustrates the �rst step in this direction.
We can exploit the hypotheses that corners are pro-

duced by a pair of mutually orthogonal walls to de�ne
an additional inference process for corner primitives.
Indeed, the attributes of a triplet fF1; F2; F3g of RCDs
produced by 2 orthogonal walls and the associated cor-
ner (such as the triplets f1; 2; 3g and f3; 6; 7g in Fig-
ure 2) should satisfy the following relations :

�F3 � �F1 = �=2 (1)


(F1; F2; F3) =
q
r2F1

+ r2F3
� rF2 = 0 (2)

where fF1; F3; F2g � fW;C;Wg.
We classi�ed and analyzed all of the RCD triplets

whose corresponding primitives are contained in a 90�

angular sector (i.e. the ones that satisfy k�F3��F1k �
�=2 + �) in our sonar scans, and discovered that the
relation (1) is actually of little utility for detecting
corners. This is due to errors in the estimates of the
orientation of the RCD, to occlusions that produces
wall RCDs with small width and biased orientation,
and to the fact that numerous pairs of arbitrary RCDs
can satisfy it, without being associated with a pair of
two orthogonal walls. The second relation 
, however,
provides a powerful discriminator (Figure 8): most of
the triplets that are not due to actual corners produce



a large value of the estimator (2), whereas this value is
always below 0:15m for triplets associated with actual
corners.
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Figure 8: Relative pdf 's as a function of the estimator 

(Equation 2) for corners and non-corners triplets. Entire range
(left) and zoomed-in relevant subregion (right)

Table 2 presents the triplets extracted from the scan
shown in Figure 2 to which a non-null probability of
representing a wall-corner-wall triplet has been com-
puted using to the probabilities produced by the sec-
ond estimator value. The 2 corners present in the en-
vironment are detected with a high associated prob-
ability, and only three supplementary triplets (out of
170 triplets that satisfy k�F3 � �F1k � �=2 + � in the
scan) have a non null probability to represents corners.

Triplet 1,2,3 3,6,7 7,9,10 8,11,12 13,14,1
PfW;C;Wg 0.97 0.92 0.82 0.91 0.30

Table 2: The RCD triplets from the RCD scan of Figure 2 for
which the estimator (2) returns a non-null probability to match
a fW;C;Wg primitive triplet. The three rightmost triplets are
false detections.

4 Matching RCDs
Observing changes in RCD characteristics as a func-
tion of changes in robot position can provide impor-
tant information for classi�cation. Indeed, it is easy to
understand how two RCDs corresponding to the same
primitive perceived from two di�erent positions are re-
lated: a pair of corner or edge RCDs should intersect
at their center, and a pair of RCDs associated with a
single wall should be \parallel". It is di�cult to predict
how multi bounce RCDs will relate without knowing
the surfaces which generated them. In general, they
are highly unstable.
Prior work can considered the evolution of sonar

data with robot motion. This idea was introduced [7]
to di�erentiate walls from corners, and they play a cen-
tral role in the algorithms developed in [6] and [16].
Similar considerations have been applied to build a
qualitative description of the environment [17]. We
consider here how RCDs extracted from two di�erent
positions are matched, and how numerical relations on
their attributes can be analyzed to identify them.

4.1 Determining matches

Once two RCD scans have been acquired from two
di�erent positions, one must �nd the pairs (matches)
of RCDs that actually correspond to the same prim-
itive. This is accomplished by checking the following
constraints :

kr1 � r2k � kP1P2k (3)

kC1C2k � kP1P2k (4)

sin(k�1 � �2k) � kP1P2k=r1 (5)

��1 = ��2 (6)

These constraints are derived from geometric rela-
tions easily established on the illustrations shown in
Figure 9. Note that they hold only for small robot mo-
tions (constraint (5), in particular, is unde�ned when
kP1P2k � r1), and that they are satis�ed for RCD
pairs produced by walls and edges, but also by cor-
ners and small cylindrical primitives whose matchings
behave much like edges.

P2
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γ
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P2 γ

δ r1
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Figure 9: Objects observed from two di�erent positions and
their associated RCDs, for a wall (left) and an edge (right)

The matching procedure then entails simply check-
ing these constraints on all the possible RCD pairs
that can be de�ned in two RCD scans. In practice, the
thresholds are slightly relaxed to cope with the uncer-
tainties on the RCD attributes and the robot position.
False matches can occur, but we have discovered that
when matches are unequivocally established (i.e. when
an RCD from the �rst scan can be matched with only
one RCD from the second scan), they are consistent.
This matching procedure works very well for less than
one meter translations.

4.2 Matches identi�cation

Matches can be used to di�erentiate wall RCDs from
corner and edge RCDs. As can be seen on Figure 9, the
RCDs orientation remains stable for wall primitives,
whereas it changes for other primitives, and there are
formulas that relates two wall RCDs distance with the
robot motion that are not satis�ed for other primitives
matches. We retained the following estimators6 :

Walls Others
k�2 � �1k 0 � 0

r2 � r1 + sin(�) 0 � 0

If the robot moves on a line normal to an RCD, the
new observations will assure that the estimators are
identically equal to zero in all cases. The estimators
become more discriminative as the direction of robot
motion diverges from the orientation of the �rst RCD,

6The predicted result that two corner RCDs intersect at their
center [7] was rarely observed with our empirical data



and as the distance moved increases. These is illus-
trated by the angle  in Figure 9:

tan  =
kP1P2k sin �

r1 � kP1P2k cos �
:

Figure 10 shows the values of the two estimators as
a function of  for a set of prototyped matches. One
can see that matches can not be di�erentiated for a
value of  below 10�, and that the distribution of es-
timator values as a function of  can be con�dently
partitioned into regions for large . The interpreta-
tions of the matches between RCDs of the two scans
shown in Figure 4 are presented in Table 3.
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Figure 10: Value of the angular variation (left) and of the
second estimator (right) as a function of  for a set of proto-
typed matches (+ signs are walls prototypes, and dots are the
other primitives prototypes).

RCDs matched Decision
11 and 12 Wall
21 and 32 No decision
31 and 42 Wall
51 and 52 Not a wall
71 and 72 Not a wall
81 and 92 No decision
91 and 102 No decision
101 and 132 Not a wall

Table 3: Identi�cation of the matches from the scans of Fig. 4

5 Hypotheses management
Up to now, we de�ned three operators that generate
associations hypotheses. Below, we outline a simple
approach to integrate the informations provided by
these estimators to produce a coherent world model.

5.1 Merging local informations

The corner extraction operator estimates the prob-
ability P(H(fF1;F2;F2g;fW;C;Wg) that the triplet of
RCDs fF1; F2; F3g corresponds to the primitive triplet
fW,C,Wg. An estimation of the same probability is
also provided by the RCDs classi�cation procedure, by
multiplying the individual identi�cation probabilities :
P(H(fF1;F2;F2g;fW;C;Wg) = PH(F1;W )PH(F2;C)PH(F3 ;W ).

These two estimations can be fused thanks to the
Bayes rule. This combination is of a very good help to
discard the false detection of the corner extractor: one
can see on the table 4 that the three triplets of the scan
from Figure 2 that do not correspond to a fW,C,Wg

triplet have a very low score after the combination.

Triplet 1,2,3 3,6,7 7,9,10 8,11,12 13,14,1
PfW;C;Wg 0.97 0.92 0.82 0.91 0.30
PWPCPW 0.97 0.51 0.04 0.00 0.00

Combination 0.99 0.92 0.16 0.00 0.00

Table 4: Results of the introduction of the informations pro-
vided by the individual RCDs classi�cation on the corners de-
tected in the RCD scan of Figure 2 : the false detections are
easily discarded

5.2 Constraint propagation

We can introduce two realistic \primitive completion
constraints" that links the primitives together (they
can be considered as a part of the primitives de�ni-
tion):
� Each wall is ended by an edge, a corner or a clut-

tered area.
� Each edge or corner is supported by two walls that

are normal or parallel.
Walls, corners and edges primitives are said to be

completely detected when their ending or supporting
primitives are identi�ed.
Let's consider that the RCD triplet f2; 4; 6g of Fig-

ure 11 has been identi�ed as a fW;C;Wg primitive
triplet (i.e. RCD 4 is a completely detected corner).
From this hypothesis, we can derive new hypotheses:

5
7

6 : Wall 4 : Corner8

R

3

2 : Wall

1

Figure 11: A set of RCDs in which a corner has been com-
pletely detected

� RCD 5 must be a multi bounce RCD. Indeed, it is
located behind the line supported by RCDs 4 and 6,
which corresponds to a wall ;
� RCD 3 must be a primitive that can not be com-

pleted (a cylinder or a cluttered area): it is located in
front of the line supported by RCDs 2 and 4 (a wall),
and can therefore not be a multi bounce RCD ;
We can also seek possible completions for uncom-

pleted hypotheses (walls 2 and 6 in this example). For
instance, RCD 8 may correspond the right end of the
wall supported by RCD 6 (it intersects an angular sec-
tor that bounds the orientation uncertainty on RCD
2, the dotted line in the �gure). But in this case, RCD
7 would be a multi bounce RCD, which is impossible
because of its large width (see section 3.1): RCD 8 can
not correspond to the right ending of wall 6. And since
there are no other RCDs between 6 and 8, the right



ending of wall 6 must be an edge, located somewhere
between RCD 6 and RCD 7.
This example illustrate the kinds of inference that

can be performed on the basis of con�dent hypotheses.
The di�culty here relies on the hypotheses manage-
ment and probability evaluation: a good formaliza-
tion of the relations between hypotheses (dependen-
cies, compatibilities) is required, and a relaxation-like
formalism should be applied to update the likelihood
of the hypotheses. Various contributions within an ob-
ject recognition framework could be adapted to such a
problem.

5.3 Results

R

R

R

R
W

E

W

Cy

W

CWC

W

C

W

E

Figure 12: Accumulation of RCDs observed after 4 data scans.
Labeled primitives are those with an hypothesis with a likelihood
greater than 0:9

In preliminary trials, we have considered simple il-
lustrative heuristics to combine hypotheses. Walls de-
tected via matching (Sec 4.2) and corners detected as
above have their association probability set to 1. As
for the other results of the matching process (i.e. those
features with the \Not a wall" labeling), they are \pro-
jected" on the RCD's individual classi�cation: the wall
probability for the two RCDs is set to zero, and the re-
maining partial probabilities are normalized. Finally,
the partial probabilities of the matched RCDs are com-
bined using Bayes rule.
Figure 12 presents an environment model built from

4 sonar acquisitions, in which only the hypotheses
whose likelihood value is greater than 0:9 are kept.
Despite the simplicity of the rules, the labels that are
produced appear to be be completely correct.

6 Discussion

We have shown that it is possible infer the environmen-
tal source of sonar features. Using statistical geometric
properties derived from a large data set, we have de-
veloped various processes that are able to assign like-
lihoods to associations between sonar features and ex-
planatory hypotheses. While prior work on theoretical
and idealized modeling is highly relevant, it appears
to su�er from certain limitations in practice. Indeed,

such models are not directly applicable to sonar data
acquired in a realistic application context.
The way the association hypotheses generated by

these processes are combined and managed is for the
moment essentially heuristic: we are currently tackling
this problem within a more formal framework. Fu-
ture work will focus on the process of active modeling,
which consists in seeking the relevant data in order
to both instantiate new hypotheses, to delete existing
ones, or to update the certainty of existing hypotheses.
The behavior of our primitive detection processes can
be statistically modeled, and the utility of a point of
view can therefore be determined.
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