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Abstract

This paper presents results of a model–based approach
to visual tracking and pose estimation for a moving
polyhedral tool in position–based visual servoing. This
enables the control of a robot in look-and-move mode to
achieve six degree of freedom goal configurations. Ro-
bust solutions of the correspondence problem – known
as “matching” in the static case and “tracking” in the
dynamic one – are crucial to the feasibility of such
an approach in real–world environments. The object’s
motion along an arbitrary trajectory in space is tracked
using visual pose estimates through consecutive im-
ages. Subsequent positions are predicted from robot
joint angle measurements. To deal with inaccurate
models and to relax calibration requirements, adaptive
on–line calibration of the kinematic chain is proposed.
The kinematic predictions enable unambiguous feature
matching by a pessimistic algorithm. The performance
of the suggested algorithms and the robustness of the
proposed system are evaluated on real image sequences
of a moving gripper. The results fulfill the require-
ments of visual–servoing, and the computational de-
mands are sufficiently low to allow for real–time im-
plementation.

1 Introduction
This paper considers the problem of tracking general
motions of a robot end–effector in space, using image
sequences taken with a mobile camera mounted on a
second robot. As the camera tracks the tool’s motions,
the execution of complex trajectories by position–
based control becomes possible, even in real–world en-
vironments with limited visibility and restricted acces-
sibility such as engine compartements.

One difficulty is the non–linearity of both the sen-
sor and the actuator, i.e. perspective projection and
six–axis robot arms. For simplicity, many existing ap-
proaches use either approximate sensor models e.g. [8]
or reduce the complexity of task–space [9], [1].

Secondly, by allowing off–the–shelf robot tools that
are not ideal convex polyhedra, both the combinatoric

complexity of matching and the uncertainty in feature
measurements increase significantly. Allowing a six
degrees of freedom task-space further raises the search
complexity in prediction and optimization algorithms.

To achieve real–time execution with limited compu-
tational power, trade–offs are required between task
complexity, simplicity of approache, or the perfor-
mance, and overall capability of the system.

In previous systems, tracking focused on artificial
features on a supplementary ring [17] or plate [7]
rigidly attached to the end–effector. This allowed the
use of simplified algorithms, but the observable or ac-
cessible reach of the end–effector was significantly re-
stricted by occlusion of features as well as by the en-
cumbrance and the obstruction caused by the added
tops. Moreover, an additional calibration demand,
ring–to–hand, was introduced.

Moreover, feature or pose prediction in many cur-
rent approaches is based on trajectory extrapolation
[15]. The required model of object motion usually im-
poses lower order polynomial constraints on the tra-
jectories. As soon as non–smooth motions are to be
tracked, e.g. zigzag or stop–and–go, either short cy-
cle times or slow robot motions need to be assumed.
In addition, robustness with respect to stoppage in the
image stream or in the computational process is rather
low.

Below we demonstrate that adaptive kinematic pre-
diction allows robust and accurate tracking of end–
effector motion, even for complex non–smooth trajec-
tories. The computational demands are also within
the capabilities of current real-time systems.

The text is divided into two sections, one on the
theoretical approach and the other one on the experi-
mental evaluation. After a brief introduction, the four
major stages of the approach are further detailed: pre-
diction, matching, pose estimation, and calibration up-
date. The evaluation section describes the experimen-
tal environment and reports on the error in image and
3D–space, as well as giving the probability distribu-
tions for the adapted parameters.



2 Approach
The tracking loop consists of four stages:
1) prediction, 2) feature matching, 3) pose estimation,
and 4) adaptive calibration.

In stage 1, the spatial position of the object relative
to the camera is predicted using the online-adapted
kinematic chain. In consequence, the image location
of model features can be predicted by backprojection.

Stage 2 establishes 2D–2D correspondences between
predicted and extracted line segments with a pes-
simistic matching algorithm. 2D–3D line matches are
conjectured from the known object model. This con-
cludes feature tracking and yields the input to the pose
algorithm.

During stage 3, the object pose is estimated
from corresponding lines (not line segments) by
the Levenberg–Marquardt [11] minimization of a
quadratic error–function. The error measures the alge-
braic distance of image points from the corresponding
image line, but also has a spatial geometric interpre-
tation. The necessary initialization is provided by the
kinematic prediction. The estimated sequence of ob-
ject poses gives the tracked spatial trajectory.

During stage 4, the difference between the object
pose predicted using the nominal kinematic chain and
the pose estimated from the image is used to adapt
the calibration of the kinematic chain.
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Figure 1: Robotic cell at the FhG–IITB, Karlsruhe–
Germany.

2.1 Prediction

The prediction of the gripper position with respect to
the camera frame is determined by the product of the
homogeneous transforms1,2 T that constitute the kine-
matic chain (see Fig. 1).

T (ti)
OcMg = TOcOhT (ti)

OhObTObMbT (ti)
MbMh T (ti−k)

MhMg. (1)

1The source and target frames of the transforms are given in
right to left order by subscripts. Lowercase letters b,h,c,g denote,
respectively, base, hand, camera, and gripper frame of either the
observing robot O or the manipulating robot M , e.g. Mg is the
frame of the gripper carried by the manipulating robot.

The static transforms2 are initially determined with
powerful calibration techniques. Firstly, TOcOh and
TMcMh result from hand–eye calibration with a vari-
ation of [14] from multiple views of a calibration grid
common to both robots [5]. Secondly, the positions
relative to the grid allow the base–to–base calibration
TObMb to be calculated. Finally, T (t0)

MhMg is known for
a fixed starting configuration of the robots.

With the factory–given model of robot forward kine-
matics, the dynamically varying transforms T (ti)

OhOb and
T (ti)

MbMh follow from the joint–angle measurements at
time instant ti.

Figure 2: Image of the gripper with superimposed line
segments. Only the successfully matched segments are dis-
played by an interconnection of their mid-points.

2.2 Matching

The term matching is understood as the one–to–one
association of extracted image features with the visi-
ble features of the object model. Straight edges of the
polyhedral model turn out to be the most discriminat-
ing features, since they have in comparison with points
two additional dimensions, i.e. orientation and length.

Line–segments are represented by their midpoint
(mx,my), length l and orientation θ. Noise in the
feature extraction process is modeled by the variances
of the endpoint coordinates in an aligned frame, i.e
with axes parallel and perpendicular to the segment.
This leads [3] to a block–diagonal covariance–matrix
for the parameter vector (mx,my, l, θ)T .

This allows for the computation of the Mahalanobis–
distance dMah between the parameter vectors p and e
of predicted and extracted segments, i.e. a distance
with weights respecting the given uncertainties.

To increase robustness, particularly of pose estima-
tion, feature pairs are associated pessimistically, i.e.
possibly ambiguous pairs are considered as mismatches
and preference is given to a smaller but unambiguous
set of matches. Candidate pairs are ascertained by a
symmetric nearest–neighbour search within both fea-
ture sets, with a threshold β on the distance.

More formally, let E be the set of extracted segments
e and P the set of predicted segments p. A pair (pj , ei)

2Dynamically varying transforms bear time superscripts (ti),
static transforms have no superscription. k is the length of a
discrete time-delay.
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will be matched if and only if:

dMah(pj , ei) < β,
dMah(pj , ei) = mine∈E d(e,pj),
dMah(pj , ei) = minp∈P d(ei,p).

(2)

Thresholding corresponds to a χ2–test of the hypoth-
esis that the calculated distance is within uncertainty
bounds given the assumed distributions and covari-
ances.
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Figure 3: Orthogonal distance between a point in space
and the interpretation plane.

2.3 Pose Estimation

The error function is defined as the algebraic distance
from the projection p of an arbitrary point P on an
object edge to the extracted image line n [13], [4].
More precisely, let n and p be the coordinate vec-
tors of n and p in the projective plane IP 2. They
are incident if and only if n · p = 0. Furthermore,
let O be the object frame, C the camera frame – Mg
and Oc in our case (Fig. 1) – and (R, t) rotation and
translation of the transform from O to C. An arbi-
trary point P on a model edge with start point s and
direction vector d has the form s + λd in O, where
λ is a free parameter. Transforming it to C yields
pλ = (x, y, z)T = λRd +Rs + t. Its projection p with
vector (x/z, y/z, 1)T is on n if and only if n · pλ = 0.
Specializing to λ→ ∞ and λ = 0 gives

∆d ≡ n · (Rd) = 0 (3)
∆s ≡ n · (Rs + t) = 0 (4)

At first glance, ∆s and ∆d are the algebraic distances
of the respective points in IP 2 to n. After normaliza-
tion, n corresponds to the unit normal in C to the

interpretation plane corresponding to n [10]. As it
passes through the origin of C, n corresponds to the
Hessian form of this plane and equally ∆s and ∆d (3),
(4) turn out to be the geometric distances from this
plane to the points in C with vectors p0 and p∞. They
represent points on the model edge, namely its start–
point and the point of direction vector after translation
to the origin of C (see Fig. 3). Let ∆(i)

s,n and ∆(i)

d,n
now be the functions of R and t corresponding to the
distance or error of the match with index i.

Pose-estimation is done by non–linear minimization
of the quadratic error–function Φ(R, t)

Φ(R, t) =
∑

i

[(
∆(i)

s,n

)2

+
(
∆(i)

d,n

)2
]

(5)

using the Levenberg–Marquardt algorithm. Φ varies
with the coefficients of matrix R3×3 and vector t3×1,
representing orientation and location of the object in
the camera frame. The nine coefficients of the rotation
matrix R are parametrized by a unit quaternion q,
R = R(q). The unity of q adds another quadratic
constraint, so the minimization becomes:

min
q,t

[
µ(1 − ‖q‖2) + Φ(R(q), t)

]
. (6)

Note that we minimize both over rotation and trans-
lation, which further increases the accuracy.

Finally T (ti)
OcMg, the homogeneous transform from

gripper frame to camera frame, is given by R(q) and t
with minimal error.

2.4 Adaption

Inaccuracies in the static calibrations and especially
divergence from the modeled kinematics result in devi-
ations of the predicted position TOcMh of manipulating
robot’s hand–frame from the real position3 TOcMh!. As
these errors vary systematically during robot motion,
an on-line adaption of the kinematic chain, i.e. of its
terminal link, is advisible.

T (ti)
MhMg = T (ti)

MhMbTMbObT (ti)
ObOhTOhOcT (ti)

OcMg . (7)

In contrast, T (ti)
MhMg is assumed to be locally constant,

since for subsequent time instants only minor changes
in joint–angles occur. Given this, a time–delay k in
the prediction (1),(8) can be tolerated.

T (ti+k)
OcMg = T (ti+k)

OcMh · T (ti)
MhMg . (8)

For a fixed cycle time this means; the longer the feasi-
ble time–delay k, the higher the velocities that still can

3The frame which is rigidly attached to the terminal joint of
the robot arm and which once coincides with the tool–center–
point frame, e.g. in the reference position of the robot, is un-
derstood as “real” hand frame Mh!.

3



be tracked. What is more, values of k about 5–10 al-
low major stoppages to be tolerated, even in the case of
a zigzag–movement during failure. This distinguishes
adaptive kinematic tracking from extrapolation-based
approaches.

Additionally, the adaption T (ti)
MhMg allows the posi-

tion error in the current tool–center–point frame Mh
to be computed from the error in the gripper frame,
e.g. as observed by the camera. This is a significant
advantage as the input to the joint–level robot con-
troller is supposed to be given in the Mh frame.

Figure 4: Experimental platform for car dismantling at
FhG–IITB, Karlsruhe (Germany).

3 Experimental Evaluation
The experiments were conducted at the platform for
automatic car dismantling at FhG–IITB, Karlsruhe
(see Fig. 4, Fig. 1). It consists of two 6–DOF indus-
trial robots. The Reis robot in hanging position on the
left hand side, serves as observing robot O, carrying a
stereo-head. The Cloos robot on the right hand side
in upright position serves as manipulating robot M ,
carrying the gripper. The camera mounted on M is
required only for base-to-base calibration at installa-
tion time. As a further result of tracking the motion
by directly tracking the tool, the system could be lib-
erated from the restricting ring (see Fig. 1).

We will give results for an image sequence which is
taken from about 1.2 m distance. It shows the grip-
per translating along the three perpendicular edges
of a 20 cm cube and returning along the diagonal.
Twenty images were taken at equally spaced stops on
each of the four straight movements. Note that for a
pessimistic cycle time of 100 ms and a time-delay of
k = 5, tracking motions at velocities of 0.5 m/s should
be feasible.

3.1 Error in image

The image error is calculated as the average orthogonal
distance in pixel of the endpoints of a backprojected
segment to the image line containing an extracted seg-
ment. The total error is then the average distance be-
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Figure 5: Average image error (left) and number of
matches (right) for predicted and estimated pose compared
on the tracked sequence.

tween paired segments. The image errors during the
sequence, both before and after pose estimation, are
depicted in Fig. 5. Even before pose estimation, the er-
ror of predicted features is on average by 1 pixel. This
underlines the high accuracy obtained by the adaptive
kinematic predictions. However, the non-linear pose
estimation further halves the error to about 0.5 pixel.
Another indication of near-optimal effectiveness of the
prediction is the fact that rerunning the matching al-
gorithm after pose estimation only rarely increases the
number of matched pairs (see Fig. 5).

3.2 Error in space

To obtain ground-truth, a mathematical model of the
gripper trajectory is defined by the Cartesian output
of the joint-level controller during the execution of the
motion, e.g. a cube in case of the investigated se-
quence. The output of visual tracking - the sequence of
pose estimates T (ti)

OcMg - is fitted to this model by mini-
mizing the mean-square error. This yields an instance
of the trajectory model which is henceforth considered
as ground-truth for the gripper’s position (Fig. 6).

The standard-deviation of the tracked motion from
ground-truth is given in terms of the six pose para-
meters x, y, z, φ, θ, ψ. The latter three give the
gripper orientation in terms of the angles for roll, pitch,
yaw (Table 1).

x[mm] y[mm] z[mm] φ[◦] θ[◦] ψ[◦]

σ 0.43 0.89 5.88 0.58 0.65 1.40
σ/µ 1.3% 2.1% 0.53 % −− −− −−

Table 1: Deviation of tracked gripper pose from ground
truth and relative error in pose parameters.

The much higher standard deviation in z–direction,
parallel to the optical axis is a characteristic of mono-
cular pose estimation. The value of σy = 0.89 mm,
which is roughly two times σx = 0.43 mm, underlines
the fact that half-frame video images – each second
scan line only – are processed. This is also observed
when regarding the relative errors, whereas now the
error in z is less grave.
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Figure 6: Graph of x- and z-coordinates of the gripper
translation during tracking.

3.3 Distribution of Parameters

A disadvantage of the simple way the kinematic chain
is adapted in equation (7) is that noise in pose es-
timates immediately affects the adapted transform
TMhMg , called system state S from now on. Indeed,
as soon as the noise in the state parameters exceeds
a certain level, tracking becomes unstable and might
even break-down.

The distribution of the state estimates obtained dur-
ing tracking is being investigated in order to identify
an appropriate noise model. This should also allow
for optimal estimation of the system state by using
filtering techniques [2].

If errors in the kinematic models and pose estimates
are neglected, TMhMg or S corresponds to a fixed and
static transform from the gripper frame to a frame
rigidly attached to the terminal link of the robot arm,
the “real” hand frame. Hence, the distribution of the
state parameters is assumed to be normal with sample
mean and sample variance. This hypothesis is verified
by a χ2-test (see Table 2, Fig. 7). Even though the
sample size is comparably small, the hypothesis can
not be rejected at 0.09 < α < 0.23.

x y z φ θ ψ
χ2 6.2 8.1 7.4 8.18 11.09 10.54
α 0.18 0.09 0.12 0.23 0.09 0.10
m 4 4 4 6 6 6

Table 2: Results of a χ2-test on the hypothesis of normal
distribution of the measured state parameters. α gives the
significance level with respect to m, the degrees of freedom
of the employed partitioning.

4 Conclusions
To sum up, the visual tracking of a non-ideal polyhe-
dral manipulator is feasible by imposing merely robotic
kinematic constraints on the object position. Stan-
dard hand-eye calibration and factory-given kinematic
models are sufficiently accurate to locally predict end-
effector positions such that pessimistic matching be-
comes unambiguous. The resulting pose estimates en-

y : χ2 = 8.1 ≈ χ2
0.09,4 φ : χ2 = 8.18 ≈ χ2
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Figure 7: Sample density of the parameters φ, y (points)
and the density function of the fitted normal distribution
(curve).

able the on-line corrective adaption of the kinematic
chain, that subsequently allows for robust and global
tracking of the end-effector motion. Robustness to ma-
jor delays in the tracking process and the ability to
cope with non-smooth trajectories are significant ad-
vantages of this approach.

In practice, visual tracking by adaptive kinematic
prediction makes a step towards position-based control
of a kinematic chain with a large number of degrees of
freedom, 12 in our case. Especially in the independent-
eye configuration, this allows complex tasks to be per-
formed in environments with clutter and limited ac-
cessability.

The computational demands introduced by the
stages specific to this approach - prediction and adap-
tion - are negligible compared to those for approaches
based solely on filtering. With specialized hardware up
to the level of feature processing and recently avail-
able linear iterative methods for pose estimation [6],
an implementation running at frame-rate is feasible.
However, synchronisation of joint-angle measurements
with image acquistion still remains a crucial issue.

The evaluation in a real-world environment shows
that the approach is both robust and accurate. In
particular the results on the distribution of state pa-
rameters point out remaining potentials, which can be
exploited to further increase robustness and accuracy
by filtering the adapted parameters [16].
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servissement. Thèse, L‘Institut National Polytech-
nique de Grenoble, September 1995.

[5] V. Gengenbach: Einsatz von Rückkopplun-
gen in der Bildauswertung bei einem Hand-Auge-
System zur automatischen Demontage. Disserta-
tion, Fakultät für Informatik der Universität Karl-
sruhe (TH), Juli 1994. Erschienen in der Reihe
Dissertationen zur Künstlichen Intelligenz, Band
DISKI 72, infix Verlag, Sankt Augustin, 1994.

[6] R. Horaud, F. Dornaika, B. Lamiroy, and
S. Christy: Object Pose: The Link between Weak
Perspective, Para Perspective, and Full Perspec-
tive. International Journal of Computer Vision,
22:2 (1997), to appear.

[7] R. Horaud, F. Dornaika, B. Espiau: Visually
Guided Object Grasping . In IEEE Transactions on
Robotics and Automation, (1997) to appear.

[8] G. M. T. Cross, R. Cipolla: Affine Visual Servoing.
In Proceedings of the 7th British Machine Vision
Conference, Edinburgh, 9 – 12 September 1996,
BMVA, pp. 425–434.

[9] U. Uenohara, T. Kanade: Geometric Invariants for
Verification in 3-D Object Tracking. Proceedings
of the 1996 IEEE/RSJ International Conference
on Intelligent Robots and Systems. November 4–
8, 1996, Osaka, Japan, pp. 785–789.

[10] K. Kanatani: Geometric Computation for Ma-
chine Vision. Clarendon Press, Oxford, 1993.

[11] J.J. Moré: The Levenberg-Marquardt Algo-
rithm: Implementation and Theory. In G.E.
Watson (Hrsg.), Lecture Notes in Mathematics
630, Springer-Verlag, Berlin, Heidelberg, New
York/NY, Tokyo, 1979, pp. 105–116.

[12] N. P. Papanikolopoulos, P. K. Khosla, T. Kanade:
Visual Tracking of a Moving Target by a Camera
Mounted on a Robot: A Combination of Control
and Vision. IEEE Transactions on Robotics and
Automation RA-9:1 (1993) 14–35.

[13] T. Phong, R. Horaud, A. Yassine, P. Tao:
Object Pose from 2-D to 3-D Point and Line-
Correspondences. International Journal of Com-
puter Vision 15 (1995) 225–243.

[14] R. Y. Tsai, R.K. Lenz: A New Technique for Fully
Autonomous and Efficient 3D Robotics Hand/Eye
Calibration. IEEE Journal of Robotics and Au-
tomation RA-5:3 (1989) 345–358.
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