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Abstract A robot can explore an unknown environ-

ment by incrementally constructing a roadmap of that

environment using line of sight sensor information. Re-

call that a roadmap is a one-dimensional representation

of a robot's environment. This paper addresses one prob-

lem that occurs while generating a roadmap: what hap-

pens when sonar sensors cannot detect sharp objects be-

cause of the specularities? To do this, a new sensor

model is combined with an already existing incremental

construction procedure for a roadmap. Experiments on

a mobile robot validate the results of this paper.

1 Introduction

Sensor based planning integrates sensor information
into the planning process, in contrast to classical plan-

ning, which requires that full knowledge of the world
be available to the robot prior to the planning event.
We believe that the realistic deployment of robots into

unknown environments requires sensor based planning.
Similarly, when full knowledge of the environment is

available, but is too di�cult to input into the robot,
sensor based planning bypasses the need to enter the

environmental model: the robot simply explores the en-
vironment and builds up its own representation.

This work uses a sensor based planning approach that

relies on a roadmap, a representation which captures all
of the salient geometric features found in a robot's free

space. Once a robot constructs a roadmap, it has in
e�ect, explored an environment. Previous work [5] in-
cludes the prescription of an incremental construction

procedure for a particular class of roadmaps. This pro-
cedure requires only line of sight information, which is

an upper bound to what sensors provide, and is thus
amenable to sensor based implementation.

Unfortunately, this approach does not consider issues,
such as sensor quantization and the physics of sonar sen-
sors. The long-term goal of this work is to adapt the

incremental construction procedure for realistic sensor
based use. This paper presents one aspect of this work:

how to deal with objects in an environment with sharp
corners that the sonar sensors cannot detect? The ap-

proach here exploits the fact that the robot is generating
a roadmap and thus handle situations where objects be-
come \invisible" because of sharp corners. (Note that

the methods in this paper generalize to higher dimen-
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sions, and thus a more broad class of robots, other than
mobile robots.)

2 Relation to Previous Work

Much of the previous work in sensor based planning
is not complete and is limited to the plane. One class
of heuristic algorithms employs a behavioral based ap-

proach in which the robot is armed with a simple set of
behaviors (e.g., following a wall) [2]. Another heuristic

approach involves discretizing a planar world into pix-
els of some resolution. Typically, this approach handles
errors in sonar sensing readings quite well by assign-

ing each pixel a value indicating the likelihood that it
overlaps an obstacle [1]. Strong experimental results in-

dicate the utility of these approaches, and thus these al-
gorithms may provide a future basis for complete sensor

based planners. Unfortunately, these approaches neither
a�ord proofs of correctness that guarantee a path can
be found, nor o�er well established thresholds for when

these heuristic algorithms fail. Finally, these approaches
do not typically generalize into higher dimensions.

There are many non-heuristic algorithms for which
provably correct solutions exist in the plane (see [9] for
an overview). Our approach is to adapt the structure of

a provably correct classical motion planning scheme to
a sensor based implementation. One such approach is

based on a roadmap [3], a one-dimensional subset of a
robot's free space which captures all of its important

topological properties. A roadmap has the following
properties: accessibility, connectivity, and departability.
These properties imply that the planner can construct a

path between any two points in a connected component
of the robot's free space by �rst �nding a path onto the

roadmap (accessibility), traversing the roadmap to the
vicinity of the goal (connectivity), and then construct-
ing a path from the roadmap to the goal (departabil-

ity). These methods are useful in higher dimensions
because the bulk of the motion planning is done in a

one-dimensional space.
We chose roadmaps because of their concise repre-

sentation and their upward compatibility into higher di-
mensions. Roadmaps are useful inm-dimensional spaces
because a bulk of motion planning occurs on the one-

dimensional roadmap. Roadmaps are also concise in
that they do not require that the entire environment be

discretized into a �ne resolution of pixels.
The roadmap, used in this work, can trace its roots

to the generalized Voronoi diagram (GVD) in the plane



(i.e., when m = 2). �O'D�unlaing and Yap [8] �rst ap-
plied the GVD, which is the locus of points equidistant
to two or more obstacles, to motion planning for a disk

in the plane. However, the method in [8] requires full
knowledge of the world's geometry prior to the plan-

ning event. In [10], an incremental approach to create a
Voronoi Diagram-like structure, which is limited to the
case of a plane, was introduced.

The GVG's incremental construction procedure [5]
gives the GVG its primary strength. This incremental

construction procedure only requires line of sight infor-
mation and this procedure places no restrictions on the

type of obstacles; obstacles need not be polygonal, poly-
hedral, nor convex, which are assumptions most motion
planners require.

For some environments, this algorithm has been suc-
cessfully implemented on a mobile robot with a ring of

sonar sensors [6]. Unfortunately, the incremental con-
struction procedure does not take into consideration the
properties of the sonar sensors such as specularities, sen-

sor range, and quantization. For example, sonar sensors
are not good at detecting sharp corners that may appear

in typical environments. A sharp corner is \invisible" to
the sensor that is facing it. The paper deals with that

situation (note the sharp corner problem for GVG edge
tracing was �rst pointed out in [6].

3 Related Work

The work presented in this paper is based on the

GVG, which is described in [4], [5], [6]. A review of
the GVG and its incremental construction procedure is

included below for the sake of completeness, but it could
be omitted by a reader already familiar with this work.

3.1 Distance Function

Assume the robot is a point operating in a work

space, W, which is a subset of an m-dimensional Eu-
clidean space, Rm. W is populated by convex obsta-

cles C1; : : : ; Cn. Non-convex obstacles are modeled as
the union of convex shapes. The distance between a
point and an obstacle is the shortest distance between

the point and all points in the obstacle. The distance
function, and its \gradient," respectively are

di(x) = min
c02Ci

kx� c0k and rdi(x) =
x� c0

kx� c0k
;

where (1) di is the distance to obstacleCi from a point x,

and (2) the vectorrdi(x) is a unit vector in the direction
from x to c0, where c0 is the nearest point to x in Ci.

Typically, the environment contains multiple obstacles,
and thus distance is measured to multiple obstacles with

the multi-object distance function, D(x) = mini di(x)

Fig. 1. The ticked line segments are the planar GVG for the

bounded environment. The ticks point at the nearest point

on an obstacle, and are thus the negated gradients.

3.2 The Generalized Voronoi Graph

The basic building block of the GVG is the set of

points equidistant to two sets Ci and Cj , such that
each point in this set is closer to the objects Ci and

Cj than any other object. We term this structure the
two-equidistant face,

Fij = fx 2 Rm : 0 � di(x) = dj(x) � dh(x) 8h 6= i; j

and rdi(x) 6= rdj(x)g:

A two-equidistant face has co-dimension one in the am-

bient space, and thus in the plane, a two-equidistant
face is one dimensional [4].

The Pre-image Theorem asserts that the union of
the two-equidistant faces, i.e., the GVD, is (m � 1)-
dimensional [4]. The GVD does reduce the motion plan-

ning problem by a dimension, but a one-dimensional
roadmap is required. Observe that the two-equidistant

faces, Fij, Fik, and Fjk intersect to form an (m � 2)-
dimensional manifold that is equidistant to three obsta-

cles. Such a structure is termed a three-equidistant face

and is denoted Fijk. That is,

Fijk = Fij

\
Fik

\
Fjk

This intersection procedure is repeated until a one-

dimensional structure is formed; such a structure is an
m-equidistant face, Fi1:::im and is a one-dimensional set

of points equidistant to m objects in m dimensions.
(Also note, an m + 1-equidistant face is formed in a
similar way and is always a point.)[4]

The generalized Voronoi graph (GVG) is the collec-
tion of m-equidistant faces and m+1-equidistant faces.

Later, the m-equidistant faces are termed generalized

Voronoi edges and m + 1-equidistant faces are termed

meet points. Note that the GVD is m � 1-dimensional



whereas the GVG one-dimensional. Also, the GVD is
the locus of points equidistant to two obstacles whereas
the GVG is the locus of points equidistant to m obsta-

cles. In the planar case, the GVG and GVD coincide
(See Fig. 1).

3.3 Incremental Construction of the GVG

A key feature of the GVG is that it can be incre-
mentally constructed using line of sight range informa-

tion. In the scenario in which the robot has no a pri-
ori information about the environment, the robot must
construct a roadmap in an incremental manner because

most environments do not contain one vantage point
from which a robot can \see" the entire world, and

thereby allow a robot to construct a roadmap from such
a single vantage point. The incremental construction

techniques described in this section provide a rigorous
approach to constructing the GVG using only line of
sight sensory information.

Incremental Accessibility. The robot accesses the
GVG by increasing its distance to the nearest obstacle.

Then, while maintaining double equidistance, the robot
increases its distance from the two closest obstacles until
it is three-way equidistant. This procedure is repeated,

until the robot ism-wise equidistant. In the planar case,
the robot simply moves in a direction opposite to which

the nearest sensor is
Tracability. Once the robot accesses the GVG,

it must trace it out. In an incremental context, the
property of connectivity is interpreted as tracability.
More speci�cally, tracability implies that using only lo-

cal data, the robot can: (1) \trace" the GVG edges;
(2) determine when to terminate the edge tracing pro-

cess, and (3) determine when to start new edge tracing
procedures.

The GVG incremental approach to edge construction

borrows ideas from numerical continuation methods [7].
Continuation methods trace the roots of the expression

G(y; �) = 0 as the parameter � is varied. For the case of
the GVG, the tracing function G : Rm�1 � R ! R

m�1

is

G(y; �) =

2
6664
(d1 � d2)(y; �)
(d1 � d3)(y; �)

...

(d1 � dm)(y; �)

3
7775 (1)

Since the G is zero on the GVG, tracing the roots
of G is akin to generating a GVG edge. Note that G
comprises the distance function and thus the GVG can

be generated from sensor data. See [5] for details of the
edge tracing technique.

Terminating Conditions. The explicit terminat-
ing conditions for edge tracing are described in [5], but

in the planar case there are two terminating conditions:

C
i

C j

Ck

GVG
Meet Point Negated Object Gradients

Meet Point

Boundary Point

Fig. 2. Meet Point Detec-

tion.

Fig. 3. Boundary Point.

The arrows delineate the

path a robot would follow

while construction the

GVG.

a meet point, where three GVG edges join, and a bound-
ary point, where a GVG edge intersects the boundary
of the environment.

Finding the meet points is essential to proper con-
struction of the graph. While a meet point occurs when

the robot is equidistant to m + 1 objects, it is unrea-
sonable to expect that a robot can exactly detect such
points because of sensor error. Furthermore, since the

robot is taking �nite sized steps while tracing an edge,
it is unlikely that the robot will pass exactly through an

(m + 1)-equidistant point. However, as shown in Fig-
ure 2, meet points can be robustly detected by watching

for an abrupt change in the direction of the (negated)
gradients to the m closest obstacles. Such a change will
occur in the vicinity of a meet point.

After reaching a meet point, the robot explores an
unexplored edges emanating from the meet point. At a

boundary point, the robot simply back tracks to a previ-
ous meet point that has unexplored GVG edges associ-
ated with it. See Figure 3. Once all meets points have no

unexplored edges emanating from them, the GVG has
been fully explored. Note that incremental construc-

tion of the GVG is akin to a graph search where GVG
edges are the \edges" and the meet points and boundary

points are the \nodes." If the robot is looking for a par-
ticular destination whose coordinates are known, then
the robot can invoke graph searching techniques, such as

the A-star algorithm, to control the tracing procedure.

4 Previous Implementation

The GVG scheme was implemented on a mobile robot

with a ring of ultrasonic sensors radially distributed
around the perimeter of the robot. These sensors de-

termine distance by measuring the time of 
ight of the
ultrasound pulses that re
ect o� an object and return
to the sensor. Although these sensors provide accurate

distance measurements, their readings are not precise in
the azimuth.

The GVG incremental construction procedure has
been implemented using a simplistic sensor model [6].

This model assumes that the sensors are rigidly at-
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Fig. 4. Simpli�ed Distance Measurement Sensor Model

Fig. 5. Naive Meet Point Detection (Later, this will be an \event"

detection). )

tached, pointing radially outward from the robot. The
sensors measure distance to nearby obstacles, along a

�xed direction termed the sensor measurement axis.
The sensor measurement axis is a function of the robot's

position and orientation (See Fig. 4). Local minima
of the distance readings correspond to distance to the

nearby obstacles. [6].
Recall that a meet point F123 the robot terminates

the edge tracing procedure of a GVG edge F12, and

begins tracing edge F13. In order to do this, the robot
�rst must determine when it encounters a meet point.

When there is an \abrupt" change in a sensor associated
with one of the two closest obstacles, then the robot
has passed by a meet point. Since the robot has few

sensors and thus a low resolution, an \abrupt" change
is indicated by a shift of the local minimum by more

than one sensor location (Fig. 5).
Our experiments indicate that this sensor model and

meet point detection scheme work well when the two
closest features on the two closest obstacles are 
at faces,
curved faces, and gentle corners. This is so, because the

sensors with the two smallest local minima (i.e., those
that correspond to the two closest obstacles) have a sen-

sor centerline axis that is nearly parallel to the obstacle
normals. See Figure 6 for the results of an experiment

where the robot generates a GVG of an unknown envi-

Fig. 6. Experiment.

Fig. 7. Working. Fig. 8. Not Working

ronment.

5 Problem with Previous Sensor Model

Unfortunately, the previous sensor model gives false
meet points and does not provide an accurate GVG rep-

resentation. Note the di�erences between the environ-
ments in Figs. 7 and 8. In Fig. 7, C3 has a blunt pro-

trusion (not sharp) in contrast to C3 in Fig. 8. Now,
compare the GVG traces in Figs. 7 and 8. The GVG
trace in Fig. 7 is correct, whereas the one in Fig. 8 is

not because there is an incorrect meet point.
In both cases, a meet point is detected when there

is an abrupt change in one of the two closest obstacles,
as perceived by the sensors. However in Fig. 8, there
is an abrupt change in one of the two closest obstacles

because the distance to C3 became in�nite as a result of
the sonar sensor's inability to see C3 because of its sharp

corner. In e�ect, C3 became \invisible" to the robot and
the two perceived closest obstacles become C1 and C2.

See Figs. 9 and 10. Note that the naive sensor model
would consider C3 to be visible.

6 Sharp Corners

Note that the problem of \false" meet points was
�rst pointed out in [6]. In that paper, the authors felt
that there was a problem with the meet point detection

scheme. In actuality, the problem lies with the sensor
model. Now, we introduce a new sensor model and enu-

merate all the conditions in which a sharp object can
cause problems. Next, we eliminate most of the con-

ditions, and show that only three such conditions can



Fig. 9. Robot has traced

out GVG edge fragment.

The lower left portion dis-

plays the sonar sensor val-

ues and the upper-right

portion contains a closeup

of the robot and its two lo-

cal minima.

Fig. 10. Robot's sensors

cannot see C3 and thus

C1 and C2 become to two

closest obstacles.
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Fig. 11. New Sensor Model.

occur and provide solutions for them.

The sensor model is an adaption of the previous one.
Again, the sensors measure distance to nearby obstacles,

along a �xed direction termed the sensor measurement

axis. However, if the normal to the obstacle and the
sensor measurement axis form an angle greater than �,

then the sensor does not detect the obstacle, although it
is in the sensor cone (Figure 11) Therefore, this model

takes into consideration the specularities of the sonar
sensors because when the normal and sensor measure-

ment axis form an angle greater than �, the ultrasound
hits the obstacle, but does not bound back to the sensor.

So, while the robot is tracing the edge in Fig. 8, the

new sensor model indicates that the distance to C3 be-
comes in�nite because the normals of C3 form an an-

gle greater than some pre-speci�ed �. The naive meet
point detection scheme would indicate that this is a meet

point, when in fact it is not. However, such a situation
is termed an event.

Definition 6.1 (Event) An event occurs when a

robot is initially tracing a GVG edge associated with ob-

jects Ci and Cj, and then sensors perceive a third object

Ck that is not farther to the robot than either Ci or Cj.

First, consider all possible relationships among di, dj ,

and dk as the robot continuously moves along the GVG.

That is,

di;j;k

8<
:

<

=

>

9=
; dj;k;i

8<
:

<

=

>

9=
; dk;i;j

�
<

=

�
1

After enumerating all possibilities above, and reduc-

ing all similar expressions (recall that di = dj prior to
the event, so they can be interchanged), following rela-

tionships result.
Case Dist. Rel. (a) Dist Rel. (b)

1. di = dj = dk <1 di = dj = dk =1

2. di = dj < dk <1 di = dj < dk =1

3. di = dk < dj <1 di = dk < dj =1

4. di < dj = dk <1 di < dj = dk =1

5. dk < di = dj <1 dk < di = dj =1

6. di < dj < dk <1 di < dj < dk =1

7. di < dk < dj <1 di < dk < dj =1

8. dk < di < dj <1 dk < di < dj =1
Note that continuity of the distance function in a

bounded environment precludes the possibilities of con-

ditions 1b, 3a, 4a, 4b, 6a, 6b, 7a, 8a, and 8b. The intu-
ition behind the continuity argument can be explained

with condition 8b. Prior to the event, di = dj < dk.
Then, at the the event the robot perceives Ck as the
closest obstacle, Ci as the second closest obstacles, and

Cj as the third closest obstacle. Note that Cj is \invis-
ible" to the robot and Ci is not (and thus the distance

to Ci is �nite). In order for di to be greater than dk,
the robot must pass through a point where di = dk, by
continuity of the distance function. Condition 8b indi-

cates that the robot did not pass through such a point
and that the distance function is not continuous. Since

the distance function is continuous, condition 8b cannot
occur (nor be an event).

Also note, conditions 2a and 2b are not events, but
rather the appropriate distance relationship the robot
perceives while tracing a GVG edge. Therefore, the fol-

lowing conditions are events.
Case Distance Relation Condition

1a. di = dj = dk <1 meet point

3b. di = dk < dj =1 sharp-meet point

5a. dk < di = dj <1 post-meet point

5b. dk < di = dj =1 two sharp objects

7b. di < dk < dj =1 pre-meet point
Condition 1a is the event that corresponds to a meet

point because the robot is triply equidistant to three ob-
stacles. Continuity of the distance function guarantees
that condition 3b is also a meet point, but one of the two

closest obstacles became invisible when the meet point
was detected. This is a rare condition, and thus we did

not implement it in our mobile robot experiments.
Now, let's consider condition 7b because it appears

in the example described in the previous section. Note



Fig. 12. Robot infers (does

not sense) distance to one

of the closest obstacles.

Fig. 13. Robot detects the

correct meet point.

that in Fig. 10 the values of the two smallest local min-
ima (distance to two smallest objects) are not the same,

nor close to each other. That is, d1 < d2 < d3 = 1
which corresponds to condition 7b because the robot

was initially tracing edge F13.
With the new sensor model, sharp corners are the

only features which can become \invisible," as what
transpires in condition 7b. When this occurs, using the
previous distance measurements, the robot can deter-

mine the location, in world coordinates, of the sharp
corner and continue measuring distance to the sharp

corner as the GVG edge is traced. Recall, that the GVG
edge tracing technique requires only the distance to the
two closest obstacles to the robot. Now, that informa-

tion is still available to the robot, although the robot
cannot \see" one of the two closest obstacles.

So, when the robot reaches the con�guration in
Fig. 10, it determines the location of the sharp corner

and continues tracing the edge until the obstacle is vis-
ible again (Figs. 12). In 13, the robot �nds the correct
meet point. Note that condition 5b is identical to con-

dition 7b, except the robot determines the location of
two sharp corners, instead of one.

In condition 5a, the robot traced by a meet point be-
cause it could not \see" the next closest object. In this
condition, the robotmay need to touch the environment.

In Fig. 14, the robot traced by the meet point because
the next closest obstacle had a sharp corner and was

invisible to the robot's sonar sensors. The robot termi-
nates the edge tracing procedure when its bumper sensor

is activated, i.e., 0 = dk < di = dj . Again, the location
of the sharp corner is determined and the robot traces
back along double equidistance between Ci and Cj until

di = dj = dk. Knowing the location of the sharp corner,
the robot can determine all of the GVG edges that em-

anate from the meet point, and begin new edge tracing
processes. Just like before, all of this can occur without

the robot explicitly \seeing" the obstacles.

Fig. 14. Robot infers (does not sense) distance to next closest

obstacle.

7 Conclusion
The GVG incremental construction procedure uses

a new sensor model, introduced in this paper. This
new sensor model takes into consideration specularities
of sonar sensor data. Future work includes an experi-
mental determination of the � parameter in this sensor
model and a rigorous derivation to determine the min-
imum of sensors a mobile robot must have to navigate
an unknown environment.
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