
Abstract

A terrestrial geologist investigates an area by systemati-
cally moving among and inspecting surface features, such
as outcrops, boulders, contacts, and faults. A planetary
geologist must explore remotely and use a robot to
approach and image surface features. To date, position-
based control has been developed to accomplish this task.
This method requires an accurate estimate of the feature
position, and frequent update of the robot’s position. In
practice this is error prone, since it relies on interpolation
and continuous integration of data from inertial or odomet-
ric sensors or other position determination techniques.

The development of vision-based control of robot
manipulators suggests an alternative approach for mobile
robots. We have developed a vision-based control system
that enables our Marsokhod mobile robot to drive autono-
mously to within sampling distance of a visually designated
natural feature. This system utilizes a robust correlation
technique based on matching the sign of the difference of
the Gaussian of images. We will describe our system and
our initial results using it during a field experiment in the
Painted Desert of Arizona.

1 Introduction
Local inspection of remote planetary surfaces is a key part
of understanding the geological processes at work in our
Solar System. Upcoming missions, such as the Mars Path-
finder mission, will offer planetary scientists their first
opportunities to use a mobile robot to make close observa-
tions of surface features, and to help answer long-standing
questions regarding planetary development. In order to
make these observations, scientists must have the capabil-
ity to maneuver the rover to within centimeters of the fea-
ture of interest. Many of the control solutions pursued to
date are position-based in nature: the position of the feature
must be estimated, the position of the rover must be contin-
uously estimated as it moves, and some control process
must act to close the distance between the rover and the fea-
ture. This technique is in practice error-prone, since it usu-
ally involves some form of dead-reckoning, or integration
of motion along various headings over time, to calculate
rover position. Even with good odometric and inertial sen-
sors and sophisticated filtering, errors grow rapidly.

A more direct approach to rover navigation is sug-
gested by emerging work in vision-based control of fixed-
base manipulators. (For survey see [1].) Since the given
geologic feature is of primary interest, not its exact loca-
tion, closing the rover’s control loop by visually servoing
offers a more direct means of navigating the vehicle. This
technique avoids the problems of estimating the feature
position accurately, as well as the complexity of maintain-
ing an accurate running estimate of the rover’s motion.

We have developed a robust image correlator based on
binary correlation of the sign of the difference of Gaussian
of an image. This correlator allows us to track a feature
from frame to frame as the robot moves, as well as perform
stereo correlation to estimate feature range. The correlator
has been integrated into the control loop of our Marsokhod
robot (Figure 1)  to control both the motion of the vehicle

and its pan-tilt camera head. In this paper, we will describe
the implementation of the correlation algorithm and how it
integrates into the control of both the pan-tilt head and
mobile robot. We will also describe our initial results using
the correlator to autonomously navigate to geologic fea-
tures in an unstructured outdoor testsite in the Painted
Desert of Arizona.

Figure 1: Ames Marsokhod rover at the Painted
Desert field site
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2 Marsokhod rover
The Ames Marsokhod rover is a prototype planetary rover
being developed jointly by Russia and America for future
Mars exploration. The rover is approximately 100 cm wide,
150 cm long, and 30 kg unloaded mass. The chassis con-
sists of three pairs of independently driven titanium wheels,
joined together by a three degree-of-freedom passively
articulated chassis. Two of these degrees-of-freedom allow
the segments to roll relative to one another, while the third
allows the segments to pitch relative to one another. This
design allows the rover to conform passively to very rugged
terrain. Terrainability is further increased by mounting the
rover’s battery packs inside the wheels, lowering the center
of mass of the vehicle to within 30cm of the ground.

The imaging hardware used in this work consists of a
monochrome stereo pair of cameras mounted on a pan-tilt
base, giving the cameras a 360° pan range and a 120° tilt
range. The pan-tilt base is mounted on a mast about 130 cm
above the center axle of the rover, and is offset to the left-
hand side of the vehicle by about 30 cm. The mast is sup-
ported by an averaging linkage such that it always bisects
the angle formed between the front and rear segments; this
provides passive pitch stability to the imaging hardware.

The pan-tilt device, which can be seen on the lower
crosspiece of the mast in Figure 1, is capable of velocities
as high as 200° per second, is accurate to 3 arc minutes in
both pan and tilt, with minimal backlash.

The stereo pair are very inexpensive “pinhole” cam-
eras with a 28° horizontal field-of-view, 26° vertical field-
of-view and a baseline of approximately 25 cm. The
images from these cameras are digitized using a frame
grabber, and all subsequent processing is performed by an
on-board 68060-based processor board.

3 Vision-based control of Marsokhod
The vision-based control scheme we have developed for
the Marsokhod is diagrammed in Figure 2. Input imagery
comes from a stereo pair of cameras mounted atop a com-
puter controlled pan-tilt head, which is itself mounted on
the rover mast. Outputs from the control system consist of
angle commands to the pan-tilt head, and steering and
velocity commands to the base.

After a human operator designates a target feature, two
control loops are activated to drive the robot to the feature.
A gaze fixation loop correlates between previous and cur-
rent images from one of the cameras, controlling the pan-
tilt head to keep the target feature centered in the camera’s
field-of-view. A robot motion control loop correlates
between left and right images, and uses the stereo range
data in conjunction with the bearing data from the fixation
loop to keep the vehicle driving to the feature. This control
loop also halts the vehicle when the feature is within the
desired distance for geologic examination.

3.1 Correlating with a sign-based operator
Both the gaze fixation loop and the vehicle control loop use
the same binary correlation algorithm, which was first
described in [2]. This algorithm exploits the invariance of
the sign of the zero crossing in the Laplacian of the Gauss-
ian (LOG) of an image. Even in the presence of noise and
image intensity shifts, this sign information is stable.[2]
Binary correlation also offers simpler implementation over
other schemes, such as sum-of-squared differences (SSD)
[3][4][5] and frequency domain matching[6], since it uses
logical rather than arithmetic operations to match the
binary sign information, and hence operates on several pix-
els at once. This allows adequate performance on relatively
slow, general purpose computing hardware found on space-
craft.

Figure 2: Overview of vision-based control of the Marsokhod
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Input images are subsampled to a resolution of
128x120, then processed using a difference of Gaussian
(DOG) operator. This operator offers many of the same sta-
bility properties of the LOG operator, but is far simpler to
implement on our hardware. We maintain sixteen bit preci-
sion in computing this Gaussian, which allows us to use up
to a 16 pixel wide Gaussian in computing the DOG image.
By selecting different Gaussian sizes and differences, the
overall sharpness of the filter can be tuned to match to input
images. In our experiments, 10x10 and 14x14 windows
were empirically selected to achieve best correlation for
natural terrain features.

The DOG image is then binarized based on its sign
information, and the resulting single bit pixels are packed
into 32 bit words (the native word size of our CPU). This
packed, binary image is then processed by the correlator,
which matches a small window of another image (called
the template), either from a previous frame in the case of
tracking, or a stereo frame in the case of ranging. Because
we need to maintain 32 bit alignment on our processor, we
actually store 32 separate copies of the template, each
shifted by one bit relative to the other; this allows us to per-
form shifting and masking once per image.

A logical exclusive OR (XOR) operation is used to
correlate the template with the input image; matching pix-
els will always give a value of zero, while non-matching
pixels will give a value of one. A lookup table is then used
to count the number of matched pixels. Our current corre-
lator operates with a fixed, 32x32 pixel template and can
perform a correlation in about 40 msecs. By performing
correlation of the template over the entire image, the corr-
elator locates the peak where the best match occurred. The
distance from center indicates pixel disparity and thus
either heading or range to the target.

3.2 Correlating images to track a feature
We use a sequence of images from the left camera of the
mast-mounted stereo pair to track the feature. The target is
centered within the image from this camera and a target
template is extracted. The target, and specifically the tem-
plate, must exhibit sufficient texture to be distinctive from
its surroundings[7]. We have found that even though there
are no structured targets, natural terrain has sufficient fea-
tures of an appropriate scale. The motion correlator
matches this template with subsequent images taken as the
robot advances. Using a 66 MHz 68060 processor, tracking
can be performed at 2 Hz.

The appearance of the target can change drastically as
the rover drives toward it; for example, examine the initial
and final appearance of this rock ledge (Figure 3) which
was successfully reached. The greatest change in appear-
ance occurs when the robot nears the target, within two or
three meters. At longer distances, the image to image
change in appearance, and pixel correlation, is slight. Sim-
ply updating the template every correlation cycle would
seem to solve this aspect change problem, but leads to the

problem of small tracking errors being integrated each time
the template is updated. In the worst case, this would cause
the correlator to “slide” off the feature of interest. By using
the same template for several correlation cycles, the effect
of accumulated error can be reduced. We have found
empirically that updating the template every five correla-
tion cycles, or about every 15cm of vehicle motion, is suf-
ficient to handle appearance change without suffering from
excessive accumulated correlation error.

3.3 Correlating images to estimate range
Range to a feature is estimated by correlating between left
and right stereo images. The range correlator extracts a
template containing the feature from the left image, and
correlates it against the right image to determine the dispar-
ity. This disparity is then converted to an absolute range
based on a function determined in a calibration procedure.

An advantage of our approach is that a rough calibra-
tion is sufficient. The stereo cameras are mounted on a
beam of imprecisely known baseline (approximately
25cm) and pointed so that distant (farther than 50m) targets
have zero pixel disparity. Relative roll about the optical axis
is minimized by maximizing the distant target correlation.
We calibrated the range estimate by measuring the pixel
disparity for twelve targets placed at various distances from
the cameras. In general, disparity is linearly related to the
inverse range.[4] If we fit such a function to the disparity
and target distance data, we obtain a function which con-
verts between pixel disparity and range. (Figure 4)

Figure 3: Initial image with final field-of-view
boxed

Figure 4: Plot of pixel disparity versus distance
from camera

Initial image Final image

0 10 20 30 40 50

5

10

15

20

25

30

Disparity (number of pixels)

D
is

ta
nc

e 
(m

et
er

s)



In practice, the calibration data sometimes does not
follow such a linear relationship, owing to image distor-
tions and noise. We have also used a fourth degree polyno-
mial to calculate range from disparity; this polynomial was
fitted numerically to the data.

3.4 Controlling the pan-tilt and robot motion
The correlator determines the pan and tilt offsets of the fea-
ture relative to the center of the image. These offsets are
converted to absolute angles and used by the pan-tilt con-
troller to fix the gaze of the cameras at the feature, regard-
less of base motion. This gaze fixing is important because
the Marsokhod, like many outdoor mobile robots, has a
rigid suspension and will pitch, yaw, and roll in response to
terrain disturbances. In practice, we have had to add a small
amount of deadband to this gaze-holding loop, since sin-
gle-pixel errors make the pan-tilt head move unnecessarily.

The pan angle calculated in the pan-tilt controller is
combined with the range estimates from the range correla-
tor to command robot motion. The robot is steered left or
right to maintain a desired pan offset angle; this offset
allows the rover to closely approach a feature without self-
occluding. As pan angle increases, the robot increases rota-
tion and slows, at the extreme, turning in place.

The tilt angle and range estimate are used as cues to
tell the rover when it has reached the feature; since most
features are well below the cameras, tilt angle will drop as
the feature is neared. Range data at long ranges is rather
noisy, owing to the aggressive sub-sampling done on the
images, but at short ranges is reasonably accurate. Range
data is calculated every 2.5 seconds, or about every 15 cm
of motion. Thresholds on range values are used to deter-
mine rotation and translation rates and when to stop.

4 Performance in the Painted Desert
In an ongoing series of field experiments, the Ames Mar-
sokhod rover is deployed to remote locations and operated
by scientists in mock planetary explorations. These experi-
ments provide insight for both scientists preparing for real
planetary exploration and for robotics researchers. During
the latest experiment, our vision-based control system was
used as the primary means of navigation. We intended to
demonstrate that it would simplify navigation and make
robot control more directly accessible to scientists.

4.1 Description of the field experiment
In early November 1996, a field experiment using the Mar-
sokhod took place on the Navajo reservation in the Painted
Desert of Northern Arizona. The site was chosen for its
sparse vegetation and Mars-like geology. Three separate
science teams with different mission objectives took part in
the 6-day test, each team having 2 days to characterize the
geology of the site using the Marsokhod.

The first team, which simulated the upcoming Mars
Pathfinder mission, proceeded without any foreknowledge
of the site since the Pathfinder lander does not have descent
cameras.  This limited the team to selecting features

directly visible to the Marsokhod’s cameras.  All visual fea-
tures selected were of scientific interest.

The second and third teams were given simulated
descent imagery at the start of operations.  This allowed the
team to select not only nearby science sites, but areas out-
side the “landing area” that looked significant.  With these
teams, visual targets alternated between features of scien-
tific interest and navigation waypoints chosen by the oper-
ator to traverse from one site to the next.

An important lesson is that some method of position
determination is still helpful. The technique of using visual
navigation waypoints was successful but did require care-
ful inspection to determine whether the location identified
in the descent image corresponded to the features observed
on the ground. Each 8-hour day of the experiment involved
about 2 hours of robot driving; the remaining time was
spent collecting and analyzing science imagery.

4.2 Operator interface for vision-based control
The operator interface for vision-based control of the Mar-
sokhod is simply the window (implemented in the TCL/Tk
scripting language) shown in Figure 5. This window pro-

vides an obvious and intuitive method of selecting a visual
target from an image: the operator designates a target sim-
ply by clicking the cursor (indicated with a small cross) on
the feature. The interface sends a command to the pan-tilt
head, centering the feature in the field-of-view. In this man-
ner the operator can also look around until she has found a
target. She may then command the robot to begin driving to
the target. The interface has additional features that allow
the operator to set various parameters, for example, to set
the stopping distance from the target or the driving speed,
and also the parameters to the correlator, like the averaging
window size or the minimum correlation threshold.

4.3 Performance of vision-based control
During the field experiment the vision-based control pre-
formed so well as to be transparent to the planetary scien-
tists. They selected interesting features and the rover drove
to them, sometimes in a few steps. We were successful in
demonstrating the utility of the control scheme.

Figure 5: Operator interface for designating the
visual target



In total the Marsokhod drove over 400 meters with two
long traverses exceeding 45 meters. To characterize our ini-
tial examination of the performance, almost all targets were
tracked at first, but very few were tracked all the way to the
stopping position. The majority were lost during the inter-
mediate traverse as the vehicle drove over obstacles. In
some cases, a single wheel on a rock induced a roll of 2°
and caused the correlation to fail; for example, see Figure 6.

Looking at a traverse in detail, in this case between the
images in Figure 3, as the robot approaches the target the
range decreases and the variation in range estimate also
decreases, as shown in Figure 7.

Paralleling the trend in Figure 7, in Figure 8 the value
of the motion correlation peak trends upward toward a per-

fect correlation of 1024. This indicates that the feature is
becoming more visibly distinctive, the correlation is more
closely matched, and the pixel disparity is more stable. This
fits with our observation that, for our scale of target, at
ranges of eight to three meters visual servoing is stable.
This time the Marsokhod drove 8.5m in 2. 4 minutes to stop
fixated exactly where the geologist had indicated.

In another successful traverse, the target, initially
thought to be a rock outcrop, turned out to be some infre-
quent vegetation. Figure 9 overviews the traverse in which
distance traveled was 12.3m at average velocity 7cm/sec.

Visual-servoing, cycling at 2Hz, was able to keep the Mar-
sokhod driving at its maximum safe speed and the target
closely centered in the field-of-view (Figure 10).

The Marsokhod stopped itself when it correlated the
target within its stopping distance (<2m); however without
higher resolution subsampling (for target designation at
long range) the target can be miscorrelated at short range,
resulting in gradually sliding off the target

Figure 6: Roll about the chassis causes rotation
and translation in the image and leads
to correlation failures

Figure 7: Correlation range versus range as the
robot drives toward the target

Figure 8: Iteration of the motion correlation ver-
sus peak intensities as the robot drives
toward the target
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Figure 9: Overview of a vision-guided traverse
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The vision-based control method is particularly advan-
tageous when operating with a communication time-delay,.
The operator uploads a target designation, and in the next
download cycle receive images from the robot, already at
that target, perhaps even with its sample collection equip-
ment deployed on the feature. We introduced a 6-minute
delay (typical for Mars) in our communication system and
drove the robot; this run is shown in Table 1, The rover first

makes a long traverse, losing its target after 40 meters and
then spends time taking images in various directions (a pro-
cess that should be performed in one command cycle),
before it drives to targets of interest.

In the final drive of the field experiment we targeted
the distinctive bumper of the command truck. The Mar-
sokhod drove continuously for 45.3m, in one area climbing
a 20° slope, to stop less than 2m from its destination.

5 Discussion
There are three significant failure modes for this vision-
based control scheme: target loss due to robot motion and
subsequent appearance change, above-threshold correla-
tion for an erroneous target (false positive), and correlation
that slowly drifts off the target due to weak feature texture.

The most frequent cause of target loss is excessive
vehicle pitch or roll. We have already implemented a target
loss strategy in which the robot stops after a series of
below-threshold correlations, and executes an expanding
search pattern. On occasion, the robot has reacquired the
target, but stronger strategies would anticipate target
motion to constrain search.

By far the most frequent reason why the vision-based
control method fails is that roll about the optical axis

(which the pan-tilt head cannot compensate) leads to corre-
lation failure. An improvement may be to compensate for
some vehicle motion in the pan-tilt control. Affine transfor-
mation of the correlation template has been used by others
[5] to mitigate camera roll.

To reduce the occurrence of false positive correlations,
an improvement suggested by related work is to incorpo-
rate more robust correlation peak detection—complexity
here must be traded with processing speed.

Our current correlator derives subsamples by averag-
ing over the entire image. Given that our cameras fixate on
the target feature, high-resolution foveal processing sug-
gested in [6] could be more effective. A hybrid approach
that uses high and low resolution templates may ease the
mid-range transition as features change appearance.

6 Summary
We have developed a vision-based control system for coor-
dinated motion control of an actively pointed pan-tilt
device on a mobile robot. Our system enables a mobile
robot to visually guide itself to a designated natural feature.
This capability provides a valuable degree of autonomy to
remote planetary rovers.

Our implementation runs onboard a general purpose
processor and is able to drive the Marsokhod prototype
rover at its maximum speed. Improvements being pursued
include foveal processing and vehicle motion compensa-
tion. Our initial results indicate promising performance in
visually-servoing a mobile robot in natural terrain.
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Figure 10: Location of the correlation peak during
motion

Time X Y Heading Distance

15:15 -76.2 10.1 27.5°
15:27 -31.8 22.0 339.7° 39.4m

15:48 -24.2 23.4 336.1° 6.2m

16:06 -13.9 28.4 1.3° 11.4m

Table 1: Time-delayed performance
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