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Abstract 
An important issue tha t  a-rises isn the au tomat ion  of 
m a n y  security, surveillance, and ,reconnaissance tasks 
is that of moni tor ing  (or observing) the m,ovements o f  
targets navigating in a bounded w e a  of interest. A 
key research issue an these problems i s  tha t  of sensor  
placement - determiaing where sensors  should be lo- 
cated to  ma in ta in  the  targets in view. In complex ap-  
plications involving limited-range sensors: the use  of 
mu&de Qegsars :$yna.mically rnovarq over t i m e  is re- 
QUir&5 a tiLis'picpir, *we investigate the  use  of a co- 

u tonomous  sesnsor-based robots ,for 
ultiple *moving turgets. W e  focus  

p r i m a ~ l y  o n  developing the  distributed control strate- 
gies that allow the robot t e a m  to  a t tempt  to  min imi ze  
the  total t i m e  in. which targets escape observation by 
some  robot t e a m  member  in the  area of interest. This 
paper f irs t  formal i zes  the  problem and discusses related 
work. W e  t h e n  present a distributed approximate gp- 
proach to  solving this problem that  combines low-level 
multi-robot control with higher-level reasoning control 
based o n  the  ALLIANCE fo:or.malism. W e  analyze the 
eflectiveness of o u r  upproach by  comparing it to three 
other feasible algorithms ,for cooperative control; show- 
ing the superiority of our  approach ,for a large class of 
problems. 

1 Introduction 
An important issue that arises in the automation of 
many security, surveillance, and reconnaissance tasks 
is that  of monitoring (or observing) the movements of 
targets navigat.ing in a bounded area of interest. A key 
research issue in these problems is that of sensor place- 
ment - determining where sensors should be located 
to maintain the targets in view. In the simplest ver- 
sion of this problem, tlic number of sensors and sensor 
placement can be fixed in advance to ensure adequate 
sensory coverage of the area of interest. However, in 
more complex applications, a number of factors may 
prevent fixed sensory placement in advance. For ex- 
ample, there may be little prior information on the 
location of the area to  be monitored, the area may 
be sufficiently large that economics prohibit. the place- 
ment of a large number of sensors, the available sensor 
range may be limited, or the area may not be physi- 
cally accessible in advance of the mission. In the gen- 

eral case. the combined coverage capabilities of the 
available robot sensors will be insufficient to cover the 
entire terrain of interest. Thus, the above constraints 
force the use of multiple sensors dynamically moving 
over time. 

In this paper, we investigate the use of a cooperative 
team of autonomous sensor-based robots for applica- 
tions in this domain. SYe focus primarily on developing 
the distributed control strategies that allow the team 
to attempt to minimize the total time in which tar- 
gets escape observation bv some robot team member 
in the area of interest. Of course, many variations 
of this dynamic, distributed sensory coverage problem 
are possible. For example, the relative numbers and 
speeds of the robots and the targets to be tracked can 
vary, the availability of inter-robot communication can 
vary, the robots can differ in their sensing and move- 
ment capabilities, the terrain may be eithe-r enclosed 
or have entrances that allow targets to enter and exit 
the area of interest, the terrain may be either indoor 
(and thus largely planar) or outdoor (and thus 3D), 
and so forth. Many other subproblems must also be 
addressed, including the physical tracking of targets 
(e.g. using vision, sonar, IR, or laser range), predic- 
tion of target movements, multi-sensor fusion, and so 
forth. Thus, while our ultimate goal is to develop dis- 
tributed algorithms that address all of these problem 
variations, we first focus on the aspects of distributed 
control in homogeneous robot teams with equivalent 
sensing and movement capabilities working in an un- 
cluttered, bounded area. 

- 

The folloming section defines the rnultitarget obser- 
vation problem of interest in this paper, and is followed 
by a discussion of related work. We then describe our 
approach, discussing each of the subcomponents of the 
system. Next, we describe and analyze the results of 
our approach. compared to three other feasible algo- 
rithms for cooperative motion control. Finally, we of- 
fer concluding remarks. 

2 Problem description 
The problem of interest in this paper - the cooper- 
ative multi-robot observation of multiple moving tar- 
gets (or CMOMMT for short) - is defined as follows. 
Given: 
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S :  a tr~ro-diIncIlsioIlal~ bounded, cnclosed 

R : 
spat id  region, with entrances/exits 

a team of 7n robots with 360’ field of view 
observation sensors that are noisy 
and of limited range 
a set of n targets 0 3 ( t ) .  such that 
1n(03(t),S) is true (where In(o j ( t ) ,S )  
means that target o j ( t )  is located 
within region S at time t )  

O( t )  : 

Define an  m x TL matrix A(t) ,  where 

1 if robot r ;  is monitoring target o j ( t )  in 
S at time t { 0 otherwise 

U i j ( t )  = 

We further define the logical OR operator over a 
vector H ils: 

1 
0 otherwise 

if there exists an i such that hi = 1 

i= 1 

?Ve say that  a robot is monitoring a target when the 
target is within t.hat robot’s observation sensory field 
of view. Then, the goal is to maximize: 

-Trim v ai i ( t> 
t=O j=1 i=l 

over time steps At under the assumptions listed below. 
In other words, the goal of the robots is to maximize 
the collective time during which targets in S are being 
monitored by at least one robot during the mission 
from t = 0 to  t = T .  Note that we do not assume that 
the membership of O(t)  is known in advance. 

In addressing this problem, we assume the following: 
Define sensor-cowerage ( r ; )  as the area visible to robot 
r;’s observation sensors, for ri  E R. Then we assume 
that,  in general, 

U sensor-coverage (ri) << S. 
r ; E R  

That  is, the maximum area covered by the observation 
sensors of the robot team is Inuch less than the total 
area to  be monitored. This implies that  fixed robot 
sensing locations or sensing paths will not be adequate 
in general, and that, instead. the robots must move 
dynamically as targets appear in order to maintain 
observational contact with them and to maximize the 
coverage of the area S. 

We further assume the following: 

The robots have a broadcast communication 
mechanism that allows them to send (receii-e) 
messages to  (from) each other within the area S .  

0 For all r ;  E R and for all o J ( t )  E O(t), 
nuz -c ( r , )  > rnaz-c(oJ(t)) ,  where maz-v(a) gives 
the maximum possible velocity of entity u, for 
u E R u O(t).  

Targets in 0 can enter and exit region S through 
distinct entrances/exits. 

The robot team members share a known global 
coordinate system. 

To somewhat simplify the problem initially, me re- 
port here the results of the case of an omni-directional 
2D sensory system (such as a ring of cameras or 
sonars), in which the robot sensory system is of lim- 
ited range, but is available for the entire 360’ around 
the robot. 

3 Related work 
Research related to  the multiple target observation 
problem can be found in a number of domains, in- 
cluding art  gallery and related problems, multitarget 
tracking, and multi-robot surveillance tasks. While a 
complete review of these fields is not possible in a short 
paper, we will briefly outline the previous work that is 
most closely related to the topic of this paper. 

The work most closely related to the CMOMMT 
problem falls into the category of the art  gallery and 
related problems [l], which deal with issues related to  
polygon visibility. The basic art gallerv problem is 
to  determine the minimum number of guards required 
to ensure the visibility of an interior polygonal area. 
Variations on the problem include fixed point guards 
or mobile guards that can patrol a line segment within 
the polygon. Most research in this area typically uti- 
lizes centralized approaches to the placement of sen- 
sors, uses ideal sensors (noise-free and infinite range), 
and assumes the availability of sufficient numbers of 
sensors to  cover the entire area of interest. Several au- 
thors have looked at the static placement of sensors for 
target tracking in known polygonal environments (e.g. 
[ 2 ] ) .  These works differ from the CMOMMT prob- 
lem. in that our robots must dynamically shift their 
positions over time to ensure that as many targets as 
possible remain under surveillance, and their sensors 
are noisy and of limited range. 

Sugihara et u1. [3] address the searchlight schedulzng 
problem, which involves searching for a mobile -‘rob- 
ber” (which we call tucyet) in a simple polygon by a 
number of fixed searchlights, regardless of the move- 
ment of the target. Thev develop certain necessary 
and sufficient conditions for the existence of a search 
schedule in certain situations. under the assumption 
of a single target, no entrances/exits to the polygon, 
and fixed searcher positions 

Suznki and Yamashita [4] address the polygon search 
problem, whkh dealls with searching for a mobile tar- 



get in a simple polygon by a single mobile searcher. 
They examine two cases: one in which the scarcher’s 
visibility is restricted to  k rays emanating from its po- 
sition, and one in which the searcher can see in all 
directions simultaneously. Their work assumes no en- 
trances/exits to the polygon and a single searcher. 

LaValle et ul. 151 introduces the visibility-based mo- 
tion planning problem of locating an unpredictable 
target in a workspace with one or more robots, re- 
gardless of the movements of the target. They define 
a visibility region for each robot, with the goal of guar- 
anteeing that the target will eventually lie in at least 
one visibility region. In LaValle e t  ul. [6] ,  they ad- 
dress the related question of maintaining the visibility 
of a moving target in a cluttered workspace by a single 
robot. They are also able to optimize the path along 
additional criteria, such as the total distance traveled. 
The problems they address in these papers are closely 
related to  the problem of interest here. The primary 
difference is that  their vork does not deal with mul- 
tiple robots maintaining visibility of multiple targets, 
nor a domain in which targets may enter and exit the 
area of interest. 

Another large area of related research has addressed 
the problem of multitarget tracking (e.g. Bar-Shalom 
[7, 81, Blackman [9], Fox e t  ai. [lo]). This problem is 
concerned with computing the trajectories of multiple 
targets by associating observations of current target 
locations with previously detected target locations, In 
the general case, the sensory input can come from mul- 
tiple sensory platforms. Our task in this paper differs 
from this work in that our goal is not to calculate the 
trajectories of the targets, but rather to find dynamic 
sensor placements that  minimize the collective time 
that any target is not being monitored (or observed) 
by at least one of the mobile’ sensors. 

4 Approach 
4.1 Overview 
Since the CMOMMT problem can be shown to be NP- 
complete, and thus intractable for computing optimal 
solutions. we propose an approximate control mech- 
anism that is shown to work well in practice. This 
approximate control mechanism is based upon our pre- 
vious work, described in [ll, 121, which defines a 
fully distributed, bcliavior-based software architecture 
called ALLIANCE that enables fault tolerant, adap- 
tive multi-robot action selection. This architccture 
is a hybrid approach to robotic control that  incorpo- 
rates a distributed. real-time reasoning system utiliz- 
ing behavioral motivations above a layer of lowlevel. 
behavior-based control mechanisms. This architecture 
for cooperative control utilizes no centralized control: 
instead, it enables cacli individual robot to select its 
current actions based upon its own capabilities, the ca- 

pabilities of its teammates, a previous history of inter- 
action with particular team members, the current state 
of the environment, and the robot’s current sensory 
readings. ALLIANCE does not require any use of ne- 
gotiation among robots, but rather relies upon broad- 
cast messages from robots to announce their current 
activities. Th.e ALLIANCE approach to communica- 
tion and action selection results in multi-robot coop- 
eration that gracefully degrades and/or adapts to real- 
world problems, such as robot failures, changes in the 
team mission., changes in the robot team, or failures 
or noise in the communication system. This approach 
has been successfully applied to a variety of coopera- 
tive robot problems, including mock hazardous waste 
cleanup, bounding overwatch, janitorial service, box 
pushing, and cooperative manipulation, implemented 
on both physical and simulated robot teams. 

Our proposed approach to the CMOMMT problem 
is based upon the same philosophy of control that  \vas 
utilized in XLLIANCE. In this approach, we enable 
each robot team member to make its own action se- 
lections, without the need for any centralized control 
or negotiation. The low-level, behavior based control 
of each robot calculates local force vectors that  at- 
tract the robot to nearby targets and repel the robot 
from nearby teammates. Added above the low-level 
control is a higher-level reasoning system that gener- 
ates weights to  be applied to  the, force vectors. ‘These 
weight.s are based upon previous experiences of the 
robot, and can be in the form of motivations of behav- 
ior or rule-based heuristics. The high-level reasoning 
system of an individual robot is thus able to  influence 
the local, low-level control of that  robot, wit.h the aim 
of generating an improved collective behavior across 
robots when ut.ilized by all robot team members. 

4.2 Target and robot detection 
Ideally, robot team members would be able to pas- 
sively observe nearby robots and targets t o  ascertain 
their current positions and velocities. Research fields 
such as machine vision have dealt extensively with this 
topic. and have developed algorithms for this type of 
passive posit ton calculation. However, since the pliys- 
ical tracking and 2D positioning of visual targets is 
not the focus of this research, we instead assume that 
robots use a global positioning system (such as GPS for 
outdoors, or the laser-based MTI indoor positioning 
system [13] that is in use at our CESAR laboratory) 
to determine their own position and the position of 
targets within their sensing range, and communicate 
this information to the robot team members within 
their communication rangel. 

‘This approach to  communication places an upper limit on 
the total allowable number of robots and targets a t  about 400. 
Since the communication is O ( n m ) .  we compute this upper limit 
by assuming a 1.G Mbps Proxim radio ethernet svstem (such as 
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Figure 1: Functions defining the magnitude of the force 
vectors to  nearby targets and robots. 

For each robot r 2 ,  we define the yredactave track- 
any ’range as the range in which targets localized by 
other robots rk # i i  can affect r,’s movements. Thus, 
a robot can know about two types of targets: those 
that  are directlv sensed or those that are %rtually-” 
sensed through predictive tracking. Tt’hen a robot re- 
ceives a communicated message regarding t he location 
and velocity of a sighted target that is within its pre- 
dictive tracking range, it begins a predicth-e tracking 
of that  target’s location, assuming that  the target will 
continue linearly from its current state. We assume 
that if the targets are dense enough that their posi- 
tion estimations do not supply enough information to  
disambiguate distinct targets, then existing tracking 
approaches (e.g. Bar-Shalom [SI) should be used to  
uniquely identify each target based upon likely trajec- 
tories. 

4.3 Local force vector calculation 
The local control of a robot team member is based 
upon a summation of force vectors which are attractive 
for nearby targets and repulsive for nearby robots. The 
function in figure 1 defines the relative magnitude of 
the attractive forces of a target within the predictive 
tracking range of a given robot. Note that to  minimize 
the likelihood of collisions, the robot is repelled from a 
target if it is too close to  that  target (dzstunce < do l ) .  
The range between do:! and do3 defines the preferred 
tracking range of a robot from an object. In practice, 
this range will be set according to  the type of tracking 
sensor used and its range for optimal tracking. The 
attraction to  the object falls off’linearly as the distance 
to the object varies from do?. The attraction goes to  
0 beyond thc predicted tracking range, iriclicating that 
this object is too far to  have an cffcct on the robot’s 
movements. 

Figure 2 dcfiines the magnitude of the repulsive 
forces between robots. If the robots are too close to- 
gether (drstunce < t l r l ) ,  they repel strongly. If the 
robots are far c~iough apart ( d r s t u r u  > dr2). thcy 

the one in our laboratory) and assuming that messages of length 
10 bytes per robot per target are transmitted everv 2 seconds. 
\Yith these numbers. Re find that nnz must be less than 4 x 10“ 
bps to  avoid saturation of the cornmumcation bandwidth. 

Figure 2: Function defining the magniture of the force 
vectors to nearby robots. 

have no effect upon each other in terms of the force 
vector calculations. The magnitude scales linearly be- 
tween these values. 

One problem with using only force vectors, however, 
is that  of local minima. As defined so far, the force 
1-ector computation is equivalent for all targets, and 
for all robots. Thus, we need to  inject additional high- 
level reasoning control into the system to take into 
account more global information. This reasoning is 
modeled as predictive weights that  are factored into 
the force vector calculation, and are described in the 
next subsection. 

4.4 High-level reasoning control 
To help resolve the problems of local minima, the 
higher-level reasoning control differentially weights the 
contributions of each target’s force field on the total 
computed field. This higher-level knowledge can ex- 
press any information or heuristics that are known 
to result in more effective global control when used 
by each robot team member locally. Our present ap- 
proach expresses t his high-level knowledge in the form 
of two types of probabilities: the probability that a 
given target actually exists, and the probability that  
no other robot is already monitoring a given target. 
Combining these two probabilities helps reduce the 
overlap of robot sensory areas toward the goal of min- 
imizing the likelihood of a target escaping detection. 

The probability that  a target exists is modeled as a 
decay function based upon when the target was most 
recently seen, and by whom. In general, the probabil- 
ity decreases imerselv with distance from the current 
robot. Bevond the predictive tracking range of the 
robot, the probability becomes zero. 

The probability that no other robot is already mon- 
itoring a nearby target is based upon the target’s posi- 
tion and the location of nearby robots. If the target is 
in range of another robot, then this probability is gen- 
erally high. In the future. we plan to  incorporate the 
ALLIANCE motivation of “impatience”, if a nearby 
robot does not appear to  be satisfactorily observing 
its local targets (perhaps due to  faulty sensors). This 
impatience will effectively reduces the probability that  
the other robot is already monitoring nearby targets. 
In more complex rersions of the CMOMMT problem, 



robots could also learn about the viewing capabilities 
of their teammates, arid discount their teammates' ob- 
servations if that teammate has been unreliable in the 
past. 

The higher-level weight information is combined 
with the local force vectors to  generate the commanded 
direction of robot movemerit. This direction of move- 
ment is given by: 

iv .\I 

C ( F V O i  x P ( e z i s t s ; )  x P ( S T i ) )  + 
i=O j=O 

FVRj 

where F V O k  is the force vector attributed to target 
o k ,  P ( e X i s t S k )  is the probability that target ok exists. 
P(IITTk) is the probability that  target Ok is not already 
being tracked, and FVR1 is the force 1-ector attributed 
to  robot ri. This movement command is then sent 
to  the robot actuators to  cause the appropriate robot 
movements. We also incorporate a lom-level obsta- 
cle avoidance behavior that  overrides these moirement 
commands if it would likely result in a collision. 

4.5 Experimental results and discus- 
sion 

To evaluate the effectiveness of the algorithm we de- 
signed for the CMOMMT problem (which we will refer 
t.o as A-CMOMMT, we conducted experiments both in 
simulation and on a team of mobile robots. In the sim- 
ulation studies, we compared four possible cooperative 
observation algoritl-ims: (1) A-CMOMMT (high-level 
plus local control), ( 2 )  Locd control only, (3) Ran- 
dom/lanear robot movemen t ,  and (4) Fixed robot posi- 
tions. 

In all of these experiments, targets moved according 
to  a "random/linear" movement, which causes the tar- 
get t o  move in a straighbline until an obstacle is met, 
followed by random turns until the target is able to  
again move forward without collision. The locul control 
only algorithm computed the mot.ion of t.he robots by 
calculating the unweighted local force vectors between 
robots and targets. This approach was studied to  de- 
termine the effectiveness of the high-level reasoning 
that  is incorporat.ed into t.he A-CMOMMT algorithm. 
The last two algorithms are control cases for the pur- 
poses of comparison: the rcmdom/larLcu,r. .robot move-  
m e n t  approach caused robots to move according the 
the "random/lirieiLr" motion defined above, while t.he 
fixed robot posit ions algorithms distributed the robots 
uniformly over the area S, where they maintained fixed 
positions. In both of these control approaches, robot 
movements were not dependerlt upon target locations 
or movements (other than obst.acle avoidance). 

We compared these 4 approaches by measuring t.he 
average value of the A(t) matrix (see PR.0BLE.M DE,- 
SCRIPTION section) during the execution of the al- 
gorithm. Since the algorithm performance is expected 

to  be a function f of the number of robots n. num- 
ber of targets m, the range of a given robot's sensor r ,  
and the relative size of the area S, we collected data  
for a wide range of values of these variables. To sirn- 
plify the analysis of our results, we defined the area 
S as the area within a circle of radius R, fixed the 
range of robot sensing at 2.600 units of distance, and 
included no obstacles within S (other than the robots 
and targets themselves, and the boundary of S). 

We collected data  by varying 71 from 1 to 10. rn from 
1 to 20, and R from 1,000 to  50,000 units. For each 
instantiation of variables n, m, and R, we computed 
the average A ( t )  value every At = 2 seconds of a run of 
length 2 minutes: we then repeated this process for 250 
runs for each instantiation to derive an average A(t) 
value for the given values of n, rn, and R. In all runs 
of all 4 algorithms, the targets were placed randomly 
at the center of S within a circle of radius 1,000. In all 
runs of all algorithms (except for ,fixed robot posi t ions) ,  
the robots were also placed randomly within the same 
area as the targets. 

To analyze the results of these experiments, me spec- 
ulated that  the function f ( n ,  m, r ,  R) would be propor- 
tional t o  ratio of the total collective area that could 
be covered by the robot sensors (Le. rmr') over the 
area that would be allotted to  one target (call it a tar- 
get slot), were S divided equally over all targets &e. 
TR2 -), we have: m 

- 

nmL nmr' 
- R2 = . f(n, r n ,  I', R) = 

m 

Thus, this function \vas used to  compare the simi- 
larity of experiments that  varied in their instantiations 
of n, rn, and R. 

Since the optimum value of the average A(t) for a 
given experiment depends upon the value of m (and, 
in fact, equals m). we normalized the experiments by 
plotting the average A( t ) /m  which is the average per- 
centage of targets that  are within some robot's view 
at a given instant of time. 

Figure 3 gives the results of our experiments, plot- 
ting the average A( t ) /m  versus f(n,rn.r,R) for all 
of our experimental data. For each algorithm, we 
fit a curve to  the data  using the locally weighted 
Least Squared error method. Since there is consid- 
erable deviation in the da ta  points for given values of 
f ( n ,  m. 1', R), we computed the statistical significance 
of the results using the Student's t distribution, com- 
paring the algorithms t n o  at a time for all 6 possible 
pairings. In these computations, me used the null hy- 
pothesis: HO : 111 = p 2 ,  arid there zs e s s e n t z d y  n o  
dzaerence between the two ulgorzthms. Under hypoth- 
esis HO : 



f 

Comparison of 4 Observation Algorithms 
1 

0.8 

0 M 

e $ 0.4 

0.2 

0 2 4 6 8 10 
nmr2 
R2 

x = f(n,m,r,R) = - 

Figure 3: Comparison of 4 cooperative observation algo- 
rithms. 

Then, on the basis of a two-tailed test at a 0.01 level 
of significance. we would reject Ho if T were outside 
the range -t .995 to t.995, which for n1+ n2 - 2 = 250+ 
250 - 2 = 498 degrees of freedom, is the range -2.58 
to  2.58. For the data given in figure 3, me found that 
we could reject Bo at a 0.01 level of significance for 
all pairing of algorithms that show a visible difference 
in performance in this figure. Thus, we can conclude 
that the variation in performance of the algorithms 
illustrated by the fitted curves in figure 3 is significant. 

We see from figure 3 that  the A-CMOMMT and lo- 
cal control only  algorithms perform better than the two 
naive control algorithms, which is expected since the 
naive algorithms use no information about target po- 
sitions. Note that all approaches improve as the d u e  
of f(n,  m, r,  R) increases, corresponding to a higher 
level of robot coverage available per target. The 'run- 
dom/linear robot movemen t  approach performed bet- 
ter than the fixed robot posztions. most likely due to  
the proximity of the initial starting locations of the 
robots and objects in the rundom/Fmeur ,robot move- 
m e n t  approach. This seems to  suggest that much ben- 
efit can be gained by learning areas of the environment 
S where targets arc more likely to be founcl. and con- 
centrate on locating robots in those areas. 

Of more interest, we see that the A-CMOMMT ap- 
proach is superior to the local coatrol anby approach for 
values of f(n, r n .  I', I?) greater tlian about 2:  the local 
control only  approach is slightly better for f ( n .  m. r .  E )  
less than 2 .  This means that vhen the fraction of 
robot coverage available per target is low (< 2 ) .  rel- 
ative to the size of S, then robots are better off not 
ignoring any targets, which is essentially what liap- 
pens due to the high-level control of' A-CMOMMT. 

Examples of experimental scenarios where the local 
control only approach is better than the A-CMOMMT 
approach are (71. m, R) = (2.1.5000-50000), (2.2,4000- 

50000), and (3,4,8000-50000). However, for more 
complex cases, where the number of targets is much 
greater than the number of robots, and the environ- 
mental area is not *'too large", we find that the higher- 
level reasoning provided by A-CMOMMT works bet- 
ter. Examples of scenarios where A-CMOMMT is 
better include (rL,  m, R) = (2,4,1000-5000), (2,6,1000- 
6000) (2,20,1000- 10000) , (3,3,1000-5000), (3,4,1000- 
6000), (3,6, 1000-7000), and (3,12,1000-11000). Note 
that A-CMOMMT approaches perfect performance as 
f ( n ,  m, I ,  R) reaches 10, whereas the results of the ran- 
dom/lznear robot movemen t  and local control on2y ap- 
proaches begin to level off at around 85%. In contin- 
uing and future work, we are determining the impact 
of these results on multi-robot cooperative algorithm 
design. 

We have also implemented the A-CMOMMT algo- 
rithm on a team of a team of four Nomadic Technolo- 
gies robots to illustrate the feasibility of our approach 
for physical robot teams. We have demonstrated a 
very simple case of cooperative tracking using these 
robots. The Nomad robots are wheeled vehicles with 
tactile. infrared, ultrasonic, 2D laser range, and indoor 
global positioning systems. In addition, the robots are 
equipped with a voice synthesizer and radio ethernet 
for inter-robot communication. In the initial phase of 
research in this problem, which concentrates on the 
cooperative control issues of distributed tracking, we 
utilize an indoor global positioning system as a substi- 
tute for vision- or range-sensor-based tracking. Under 
this approach, each target to be tracked is equipped 
with an indoor global position sensor, and broadcasts 
its current 2, y position via radio to  the robots within 
communication range. Each robot team member is 
also equipped with a positioning sensor, and can use 
the targets' broadcast information t o  determine the 
relative location of nearby targets. 

Figure 4 shows an example of the robot implemen- 
tation. In these experiments. we typically designated 
certain robots to  be targets, and other robots as ob- 
servers. Since we are not dealing with the issues of 
visual tracking of objects in our current work, using 
some robots as targets allowed us to  take advantage of 
the global positioning system on the robots to perform 
"virtual" tracking. Thus, the robots acting as targets 
were programmed to broadcast their current location 
to the robot team: this information could then be used 
by the observers to  calculate their desired movements. 
We programmed the robots acting as targets to move 
in one of two ways: movements based on human joy- 
stick commands, or simple wandering through the area 
of interest. In figure 4, the robot targets are indicated 

50000), (3,1,5000-50000), (3,2,5000-50000), (3,3,8000- 



other feasible control algorithms. 

. . .I. : 

i 
Figure 4: Results of robot team performing task us- 
ing summation of force vectors. The robots with the 
triangular flags are acting as targets. while the robots 
without the flags are performing the distributed obser- 
vation. 

by the triangular flags. 
The first frame in figure 4 shows the arrangement 

of the observers and targets at the very beginning of 
the experiment. The second frame shows horn the two 
observers move away from each other once the experi- 
ment is begun, due t o  the repulsive forces between the 
observers. In the third frame, a humanjoysticks one of 
the robot targets away from the other target and the 
observers. As the target is rrioved, the two observers 
also move in the same direction, due to  the attractive 
forces of the target that  is moving away. However, if 
the target exits the area of interest, S, as illustrated in 
the fourth frame, then the observers are no longer in- 
fluenced by the moved target, and again draw nearer 
to  the stationary target, clue t o  its attractive forces. 
Note that  throughout the example, the observers keep 
away from each other. due t o  the repulsive forces. 

5 Conclusions 
Many real-world applications in securitv, surveillance, 
and reconnaissance tasks require multiple targets to  
be monitored using mobile sensors. TVc have presentcd 
an approximate, distributed approacl~ based upon the 
philosophies of the ALLIANCE architecture and have 
illustrated its effectiveness in a wide range of coop- 
erative observation scenarios. This approach is based 
upon a combination of high-level reasoning control and 
lower-level force vector control that  is fully distributed 
across all robot tearri members and involves no central- 
ized control. Empirical in~-estigations of our coopera- 
tive control approach have shown it to be effective at 
achieving the goal of maximizing target observation 
for most experimental scenarios, as compared to  three 
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