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Abstract 
 
This paper describe���i���E�[� -an automated visual inspection 
system – which selectively processes the incoming image data �~�����E�����6� ���F���E� �F��������� � ¡¢���c¡~�����e��£:¤�¥1��£1� ¡L� �:¦�§©¨rª�«[¬­� ���d�~�L�E�1�c�
with biologically motivated visual  capabilites:  oculomation, 
attention  and spatio-temporal reasoning. The advantages of 
such a system are being real-time and robust while running on 
very simple hardware. 
 

1. Introduction 
 
The design of artificial systems has long been guided by 
disciplines like physiology, cognitive science and 
neurology [15, 16, 17].  Studies have revealed that such 
systems must have oculomotion, attention and spatio-
temporal reasoning capabiliti es [8, 9, 18, 19, 20]. Vision 
researchers haven then proposed selective perception in 
pursuit of developing systems mimicking some of this 
behavior [11, 10, 4, 21, 22, 23]. Interestingly, few studies 
have focused on employing selective perception 
mechanisms in higher level tasks.   One such example has 
been APES [3]. In our work, we extend  these ideas to 
automated visual inspection – a  task assumed to be  
simple, yet still posing problems in real-time and robust 
applicabilit y in factory manufacturing settings - and 
investigate the possibilit y of overcoming these problems. 
The novelty of our vision system is that it can direct its 
attention to spatial points of interest and both the temporal 
and spatial nature of the visual information thus gathered 
is used in the accomplishment of its task. 
 
The inspection setup is as shown in Figure 1. Metal car 
parts - odd shaped and having several holes and extrusions  
(hence are not necessarily planar) - are placed on an 
assembly line at an arbitrary position and orientation. A 
camera located exactly above the assembly line views the 
objects orthographically. Let us remark that despite 
orthographic viewing, since the parts are not planar and 
are arbitrarily positioned, there is significant perspective 
distortion on the image plane. The goal of the inspection is 
to determine whether all the holes on a given part are 
located correctly and of correct shape within acceptable 
tolerances.  

1.1. Related Work: Object Recognition 

 
There have been hundreds of articles describing various 
methods for  2D object recognition [24,25] - based on 
contour or region descriptors. Most of these papers – 
although having well -thought  schemes of  representation 
– have nevertheless problems with real-time applicabilit y 
(one or two seconds at most!) and robustness at the same 
time running on simple hardware. This motivated us to 
explore the use of biologically motivated ideas in object 
recognition.  
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Figure 1: Visual inspection setup. 

1.2. Related Work: Automated Visual Inspection 

 
Due to the inherent problems with respect to real-timeness 
and robustness, automated visual inspection is one task 
within manufacturing that has been realizing at a 
comparatively slow pace [1,6]. Although such systems are 
available commercially for a wide variety of inspection 
tasks including automobile, electronics, metal industries, 
they have had nevertheless limited applicabilit y in 
complex industrial environments. Furthermore, tasks 
requiring intensity based image processing have had 
problems regarding real-time operabilit y.  One common 
feature of such systems – also contributing to this problem 
– is that they usually process the whole image and use 
image subtraction or localized histogramming methods for 
defect detection [7].   
 



Proceedings of  the 1998 IEEE/RSJ 
Intl. Conference on Intelli gent Robots and Systems 
Victoria, B.C. Canada October 1998 pp:1808-1813 

1.3. Related Work: Selective Vision 

 
Physiological studies reveal two crucial features of 
biological vision: a visual field with a centered small 
region of high acuity (fovea) and a surrounding region of 
lower acuity  (periphery) that together see only a limited 
part of the scene and oculomotion that enables the shift of 
the visual field to different regions of the scene [8,9]. 
Vision researchers - motivated by these findings - have 
then proposed selective vision where limited resources 
process only the most relevant parts of the incoming visual 
data [10,11]. Interestingly, studies focusing on integrating 
selective vision to actual tasks requiring recognition have 
been limited.  One such work has been the integration of 
biologically motivated visual capabiliti es to robots 
engaged in physical motion [2,3]. In this paper, we present 
a real-time and robust automated inspection. 
 
         New fixation point                                       States  

 
 
 

                                  New visual Field 

 
 

Figure 2. General flow of processing. 

2. Visual Processing 

 
The visual processing consists of three stages of operation: 
pre-attention, attention and cognition as shown in Figure 
2. The aim of the pre-attention stage is to determine where 
to look next in the visual field. As a result of this behavior, 
visual resources are allocated to process only a small part 
of the whole scene. After the occurrence of physical 
attention, this region is subjected to further processing  - in 
order to extract more complex features. These two stages 
of vision occur repeatedly – collecting data in space and 
time and generating an attentional sequence and thus 
contribute to the pool of information used by the cognition 
stage to accomplish the given inspection task. The 
attentional sequences thus collected are subjected to 
further processing to  accomplish the given visual 
inspection task. In particular cognition two possible 
modes: 1.) Learning, where the system assumes that it is 
presented with an ideal part and forms a library model of 
the part; and 2.) Inspection, where the system compares 
the part-being-inspected to the library model and 
determines whether the part is faulty or not and if faulty, 
what the faults are. 

2.1. Pre-attention: Where to Look Next 

 
The aim of this stage is to determine where to look next in 
the image. In order to find next fixation point, simple 
computations are applied on the periphery region of the 
current fixation point by considering all candidate image 
points, computing their saliency - a measure of interest 
based on the presence of simple features with low 
computational requirements - and designating the image 
point with the greatest saliency as the potential fixation 

point. The periphery region is defined by a window of 
adaptive size. The window grows in four directions - up, 
down, right and left.  The saccade direction - namely the 
direction from the previous fixation point to the current 
fixation point - determines which pixels in the periphery 
are subjected to further processing. In particular, those 
whose relative position wrt the current fixation point are in 
the direction of the saccade, are processed and are favored 
depending on their closeness to this direction. For the first 
fixation point of each contour segment - where a saccade 
direction is not yet defined - equal amount of growth in 
each direction occurs, as ill ustrated in Figure 3. 
 
For each size of the window, a measure of saliency for 
each candidate next-fixation-point located on the window 
border is computed. In our case, saliency is defined as the 
weighted sum of the distance, d, and angular edge 
difference, ∆θ, between the current fixation point and 
point under consideration as well as the number of edge 
points in its 8-neighborhood. The first two measures assess 
the proximity of the two respective points with respect to 
nearness and edge orientation, while the third measure 
assesses the degree of centeredness of point under 
consideration. Window growth continues until either upper 
limit for the window is reached or a point with a saliency 
greater than a predefined threshold is detected.Once the 
window stops growing, the point with the maximum 
saliency measure is designated to be the next fixation point 
and is added to the current fixation point chain.  It may 
happen that given a fixation point, the system cannot find 
any unlabeled edge points to take into consideration for 
computing saliency. In this case, the chain ends and an 
arbitrarily chosen nearby edge point is taken to be the 
initial fixation point of the next fixation point sequence 
with a new label. If such an initial point cannot be found, 
the process of fixation sequence generation ends.  
 

     
 
Figure 3. (Left) Detection of first fixation point and shift of visual field 
along the saccade direction; (Right) Detection of next fixation point. 
 

2.2. Attention 

 
In the attentive stage, the properties which charaterize the 
state of  the fovea thus extracted. The feature vector 
obtained in this  way is then added to the attentional 
sequence. The type of processing during attention is 
determined by the task at hand  and is much more detailed 
in nature than that of the pre-attentive stage. In our case, 
we use edgetype as the feature. Edgetype is a valued entry 
consisting of edge   magnitude and orientation. Let us 

Pre-attention Attention Cognition 
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remark that by choosing edgetype as feature,  the saccades 
track the contour of the subparts. However, by choosing 
other types of features,  other types of visual behavior can 
be realized. 

2.3. Recognition Using Attentional Sequences 

 
In the cognition stage, the attentional sequences thus 
generated are subjected to further processing. An 
attentional sequence  corresponds to a spatio-temporal 
representation of the image – since it not only represents 
the locations of the features, but also the manner in which 
they were traversed.   
 

2.3.1. Grouping Attentional Sequences 

 
The first type of  cognitive processing aims to group 
attentional sequences together. In particular, two segments 
are possibly to be grouped  if their end-points are close to 
each other. However, this is not an easy task. Fortunately, 
the representation of the segment as a chain of fixation 
points also provides such information approximately. The 
initial and the end fixation points may be taken roughly to 
be the end points of the segment and assessment of 
closedness of two segments can be made based on their 
physical and feature proximity, as shown in Figure 4 
(Left). In our case, we use distance as a measure.       
 

       
 
Figure 4:  (Left) Merging and  (Right) contour construction.  
 

2.3.2. Interpolation of  Grouped Attentional 
Sequences: Contour Construction 

 
Next, the grouped attentional sequences are used in an 
interpolation aimed at constructing the contours of all the 
subparts. As fixation points are sequentially ordered, this 
task is reduced to a series of  - given two fixation points - 
determining a connected set of edge points starting from 
the first and ending at the second fixation point as 
ill ustrated in Figure 4 (Right). All those image points 
whose edges are within a predefined threshold proximity 
to that of the current fixation point and are connected to 
the current fixation point taken to be part of the contour. 
Two image points are connected to each other if there is 
an 8-connectivity path from one to the other and all the 
image points along the path have the same label.  Let us 
remark that due to the adaptively growing window and 

connectivity-based interpolation, isolated image points do 
not pose any problems. 

2.3.3. Shape Representation 

 
The representation of shapes is based on elli ptic Fourier 
descriptors [12,13]. Elli ptic Fourier descriptors represent a 
shape weighted sum of elli psoids. Using elli ptic Fourier 
descriptors, each shape i is defined by a vector 

p Pi
k∈ ⊆ ℜ +4 2  where k is the number of harmonics: 

  [ ]p a b a b c d a b c di i i i i i i ik ik ik ik
T

= 0 0 1 1 1 1, ,�  

 
The order of harmonics k represents the accuracy of the 
model. The set of n shapes is then described by 

p P n k∈ ⊆ ℜ +( )4 2  via concatenating p i  [14]. In our case, 

n = 5.  The parameter set aik , bik , cik  and dik  can be used 

to extract geometric features such as major and minor axis 
length, orientation. Furthermore, geometric relations 
within and between shapes can be easily formulated 
mathematically. Finally, given a sequence of points 
forming a complete contour, a simple procedure can be 
used to compute the elliptic Fourier parameters [13]. 
 

2.3.4. Construction of Part Model 

Once the shape descriptors are extracted, the next stage is 
to examine all the subparts on the part and then construct a 
part model that represents where all the subparts are 
located on the part. Note that as the part is randomly 
positioned and oriented, this is not an easy task. We use 
shape invariants for representing each sub-part [12] and 
then use a particular -Euclidean-invariant graph for 
constructing the complete part model.   For shape 
invariants, we use the major and minor axis lengths of the 
ellipse (corresponding to second order moments) passing 
roughly through the contour of each subpart as computed 
based on elliptic Fourier descriptors. To construct our 
Euclidean-invariant graph, we first compute the vector 
anchored at the center point of the part in the direction of 
the center point of a subpart which is assumed to be 
always present, use this vector to generate a rotated x-y 
coordinate frame and calculate the radial coordinates 

)
pi

,
pi

r( θ of the center point of each subpart i=1,..,N where 

N is the number of subparts as shown  in Figure 5. 

 
Figure 5. (Left) Reference vector, (Right) Euclidean-invariant graph. 

2.3.5. Decision Stage 
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The decision stage has two modes. In the learning mode 
the system is presented with a non-defective part. Part’s 
model is constructed and then stored in a library file to be 
later used. In the inspection mode, a “ to-be-inspected” part 
is presented to the system and a decision regarding 
whether the part is defective or not is made. If found 
defective, the defective parts are listed. In order to 
accomplish this task, a model of the part is constructed 
and then compared with the model of the ‘ ideal’ part. The 
comparison is based on identifying corresponding subparts 
on each respectively and then using a measure of 
proximity to determine whether the positioning and shape 
of each subpart on the inspected part is as it should be. In 
our Euclidean-invariant graph representation of the parts, a 
mere comparison in radial coordinates suff ices to identify 
corresponding subparts. The j’ th subpart on the model is 
matched with the i’ th subpart on the part being inspected 
that minimizes the Spatial-Similarity-Criterion, SSC ji , 

5.0)

(
2

)mj(Sin*mjr)pi(Sin*pir

2
)mj(Cos*mjr)pi(Cos*pirjiSSC




 θ−θ

+


 θ−θ=

 

 

where pir  and mjr  are the radial distance of i’ th 

subpart of to-inspected-part and j’ th subpart of model to 
the starting point of the reference vector respectively and 

ipθ  and jmθ  are the angular displacements of 

corresponding subparts relative to the reference vector. 
The average SSC ji  for all subparts, defined as follows, 

ASSC
N

SSCj matched subpart on inspected part
j

N
= − − − −

∑1

( )  

 
can be used as a feature to determine if a subpart is 
missing. The ASSC value is almost invariant for a part no 
matter what its orientation is. Due to a missing subpart 
(i.e. a missing hole), the value of ASSC will change 
considerably compared with the model’s ASSC. Having 
determined that there exists a missing subpart, the missing 
subpart can easily be identified through SSC ji values.  

 
Having matched the segments on both images, our next 
objective is to determine whether the segments are 
properly shaped within some tolerance. The invariants 
computed out of first few harmonics successfully aids in 
rough inspection of the shape of the segments.  

 

3. Experiments 
 
We have developed an inspection system -BUVIS - based 
on TMS320C31 where visual processing is based on our 
approach. The system components are shown in Figure 6. 
Visual processing is done on the Smarteye Vision System 
which is designed around a high performance DSP chip 
TMS320C31PQL. Computationally intensive parts of the 
program are directly programmed in TI assembly 

language. The remaining parts are programmed in C and 
then cross-compiled to TI assembly code. The ill umination 
system consists of four lamps located so as to minimize 
the shadowing effects of each lamp.  An image of the ‘ to-
be-inspected’ part is taken and is subjected to further 
inspection to determine whether  it has any deviations 
from its CAD  specs. 
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Figure 6 . Inspection  system components . 

 
Experiments were held on several industrial parts. Let us 
note that although these images look like high-contrast 
images due to the printing quality, in reality they are pretty  
noisy. In these experiments, the center  of the boundary of 
the part is  the reference point and the reference vector is 
directed to the center of a subpart (or hole) which is 
known to exist on every part whether the part is defective 
or not. The ASSC value, explained in section 2.6, is 
computed for different orientations of each part’s model 
and defective samples of the part. Let us remark that the 
difference in ASSC value between normal and defective 
parts can be used to determine a threshold for deciding 
whether a given part is acceptable or not. 
 
3.1 Experiments with Part 1  
 

Figure 7. PART1 (a) Model and reference vector; (b) Euclidean-
invariant graph of the model; (c) and (d) reference vector and Euclidean-
invariant graph for faulty sample where holes b and f are missing. 

 
The part in Figure 7.a, out of which the model is 
constructed is rotated around itself, to measure the 
variances of placements of subparts on a part at different 
orientations and the results are displayed  in Figure 8.  
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Figure 8. ASSC vs orientation graph for Model of Part1 .  
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The model of the industrial part was constructed  with a 
randomly selected orientation at 270 degrees. The part is 
then rotated around itself and ASSC at every orientation is 
computed as shown in Figure 8. The average similarity 
measure   varies between 0-4 pixels per subpart.  Let us 
remark that ASSC does not turn out to be zero because  
from the perspective of the camera, the transformation of 
the part is not completely Euclidean-invariant. Rather, as 
our parts have extrusions and holes on them,  
foreshortening effects come into play and distort the image 
very slightly – thus causing variation of the ASSC. We can 
use the upperbound value 4 as the maximal tolerance for 
mismatching. The faulty sample shown in Figure 7.c is 
compared with the model shown in Figure 7.a . ASSC 
values for different orientations for the faulty part is 
shown in Figure 9. The ASSC value varies between 5-8, -
all above the upper bound. Furthermore the variations (not 
shown in the graph) are much larger. In addition to 
detecting  faulty parts, the system easily identifies the 
faulty subparts.  
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Figure 9. The ASSC vs orientation graph for an erroneous Part1. 

 
It takes the system approximately 4.5 seconds to perform 
the whole process and the inspection duration does not 
change significantly for varying orientations of the part. 
The experiment is repeated for parts with many different 
types of faults. As expected, as the number of faults of 
type ‘missing holes’ increases, ASSC also increases.  
 
3.2 Experiments with Part 2 
 

Figure 10. PART2 (a) Model and reference vector; (b) Euclidean-
invariant graph of the model; (c) and (d) reference vector and Euclidean-
invariant graph for faulty sample with hole b. 

 
Similar experiments were held for the industrial part, Part2 
- shown in Figure 10.a. The model of the industrial part 
was constructed  with a randomly selected orientation at 
300 degrees. The part is rotated around itself in order to 
measure the variances of placements of subparts on a part 
at different orientations and the results are displayed  in 
Figure 11. It is observed that ASSC varies between 0-6. 
Let us remark that there is more variation as compared to 
Part 1 due to the increased foreshortening effects caused 
by the uneven surface of Part 2. Again, we can use the 

upperbound value 6 as the maximal tolerance for 
mismatching. 
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Figure 11. ASSC vs orientation graph for Model of Part2. 
 
The faulty sample of Part2 shown in Figure 10.c, is 
compared with the model shown in Figure 10.a . The 
experiment is repeated for varying orientations of the 
faulty sample. ASSC values for different orientations of 
erroneous Part 2 object are shown in Figure 12. The ASSC 
value varies between 10-15, -all above the upper bound. 
Furthermore the variations (not shown in the graph) are 
much larger. Again, additionally the system easily 
identifies the faulty subparts of the part currently being 
inspected. Experiments with faulty parts reveal that the 
greater the number of faults, the greater ASSC value gets. 
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Figure 12. The ASSC vs orientation graph for an erroneous Part 2. 
 
It takes the system approximately 2.5 seconds to perform 
the whole process and the performance duration does not 
change significantly for varying orientations of the part.  
Let us remark that using college students as inspectors, we 
tried to compare human inspection times with our system. 
The inspection time for first few parts is about 7-8 seconds 
for this part, Part 2. Due to the learning ability of human, 
the inspection duration reduces to 2 seconds after  few 
parts. However, after a certain period of time, due to 
fatigue and tediousness of the task, the inspectors were 
observed to have a loss of concentration and  the  
inspection time goes back to initial durations. 

4. Summary 
 e�fhgjilkHmonqp�n�rts uwvyx{z{|~} – an automated visual inspection 
system endowed with visual attention capabilit y – is 
presented. The advantages of this system are that it is fast 
and robust while running on simple hardware. In this 
system, the visual processing consists of a continuum of 
pre-attentive and attentive stages,  and generates an 
attentional sequence which represents the visual data 
spatio-temporally.  This processing is occasionally 
followed by cognition, where  attentional sequences are 
grouped together, the grouped attentional sequences are 
used as anchor points for contour interpolation,  shape 
parameters of all subparts are extracted and compared with 



Proceedings of  the 1998 IEEE/RSJ 
Intl. Conference on Intelligent Robots and Systems 
Victoria, B.C. Canada October 1998 pp:1808-1813 

the library models for fault detection. We are currently 
working on reducing inspection times even further. Also, 
we are investigating the use of optimal control ideas in 
bringing a mathematical formulation to the  problem of 
attentional sequence generation. 
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