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Abstract

This paper describes BUVIS -an auomated visua inspedion
system — which seledivdy processes the incoming image data
and combines vision with behavior. For this, BUVIS is endowed
with biologically motivated visual capabilites: oculomation,
attention and spatio-temporal reasoning. The advantages of
such a system are being real-time and robust while running on
very simple hardware.

1. Introduction

The design of artificial systems has long been guided by
disciplines like physiology, cognitive science ad
neurology [15, 16, 17]. Studies have reveded that such
systems must have oculomotion, attention and spatio-
tempora reasoning cgpabilities [8, 9, 18, 19, 20]. Vision
reseachers haven then proposed seledive perception in
pursuit of developing systems mimicking some of this
behavior [11, 10, 4, 21, 22, 23]. Interestingly, few studies
have focused on employing seledive perception
mechanisms in higher level tasks. One such example has
been APES [3]. In our work, we extend these ideas to
automated visual inspedion — a task asumed to be
simple, yet still posing problems in red-time and robust
applicability in fadory manufaduring settings - and
investigate the paosgbility of overcoming these problems.
The novelty of our vision system is that it cen dired its
attention to spatia points of interest and bah the temporal
and spatial nature of the visual information thus gathered
isused in the acomplishment of its task.

The inspedion setup is as $own in Figure 1. Metal car
parts - odd shaped and having several holes and extrusions
(hence ae not necessxrily planar) - are placed on an
asembly line & an arbitrary position and arientation. A
camera located exadly above the essembly line views the
objeds orthographicdly. Let us remark that despite
orthographic viewing, since the parts are not planar and
are abitrarily paositioned, there is sgnificant perspedive
distortion on the image plane. The goal of the inspedionis
to determine whether al the holes on a given part are
locaed corredly and of corred shape within acceptable
tolerances.
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1.1 Related Work: Object Recognition

There have been hurdreds of articles describing various
methods for 2D objed recognition [24,25] - based on
contour or region descriptors. Most of these papers —
athough having well-thought schemes of representation
— have nevertheless problems with red-time gplicability
(one or two seconds at most!) and robustnessat the same
time running on simple hardware. This motivated us to
explore the use of biologicdly motivated ideas in objed
recogniti on.
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Figure 1: Visual inspedion setup.

12 Related Work: Automated Visual Inspection

Due to the inherent problems with resped to red-timeness
and robustness automated visual inspedion is one task
within manufaduring that has been redizing a a
comparatively slow pace[1,6]. Although such systems are
available commercialy for a wide variety of inspedion
tasks including automobile, eledronics, metal industries,
they have had nevertheless limited applicability in
complex industrial environments. Furthermore, tasks
requiring intensity based image processng have had
problems regarding red-time operability. One @mmon
feaure of such systems — also contributing to this problem
— is that they usually process the whole image and use
image subtradion or locdized histogramming methods for
defed detedion [7].
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1.3. Related Work: Selective Vision

Physiologicd studies reved two crucial fedures of
biologicd vision: a visual field with a ceitered small
region of high aauity (foveg and a surrounding region of
lower aauity (periphery) that together see only a limited
part of the scene and oculomotion that enables the shift of
the visua field to dfferent regions of the scene [8,9].
Vision reseachers - motivated by these findings - have
then proposed seledive vision where limited resources
processonly the most relevant parts of the incoming visual
data [10,1]]. Interestingly, studies focusing on integrating
seledive vision to adual tasks requiring recognition have
been limited. One such work has been the integration of
biologicdly motivated visual cgpabilities to robas
engaged in physicd motion [2,3]. In this paper, we present
ared-time and robust automated inspedion.

Pre-attention Attention

New visual Field

Figure 2. General flow of processng.

2. Visual Processing

The visual processng consists of threestages of operation:
pre-attention, attention and cognition as sown in Figure
2. The am of the pre-attention stage is to determine where
to look next in the visual field. Asaresult of this behavior,
visual resources are dlocaed to processonly a small part
of the whole scene. After the occurrence of physicd
attention, thisregion is subjeaed to further processng - in
order to extrad more awmplex feaures. These two stages
of vision occur repeaedly — colleding data in space ad
time and generating an attentional sequence and thus
contribute to the pod of information used by the cognition
stage to acomplish the given inspedion task. The
attentional sequences thus colleded are subjeded to
further processng to  acwomplish the given visual
inspedion task. In particular cognition two passble
modes. 1.) Leaning, where the system assumes that it is
presented with an ided part and forms a library model of
the part; and 2) Inspedion, where the system compares
the part-beinginspeded to the library model and
determines whether the part is faulty or not and if faulty,
what the faults are.

2.1. Pre-attention: Whereto L ook Next

The am of this gage isto determine where to look next in
the image. In order to find next fixation point, smple
computations are gplied on the periphery region of the
current fixation point by considering al candidate image
points, computing their saliency - a measure of interest
based on the presence of simple feaures with low
computational requirements - and designating the image
point with the gredest saliency as the potential fixation

point. The periphery region is defined by a window of
adaptive size The window grows in four diredions - up,
down, right and left. The saccale diredion - namely the
diredion from the previous fixation point to the arrent
fixation paoint - determines which pixels in the periphery
are subjeded to further processng. In particular, those
whose relative pasition wrt the aurrent fixation point arein
the diredion of the saccale, are processed and are favored
depending on their closenessto this diredion. For the first
fixation point of ead contour segment - where asaccale
diredion is not yet defined - equal amount of growth in
ead diredion occurs, asill ustrated in Figure 3.

For ead size of the window, a measure of saliency for
ead candidate next-fixation-point loceted on the window
border is computed. In our case, saliency is defined as the
weighted sum of the distance d, and anguar edge
difference, AB, between the aurrent fixation point and
point under consideration as well as the number of edge
pointsin its 8-neighborhood The first two measures assess
the proximity of the two respedive points with resped to
neaness and edge orientation, while the third measure
aseses the degree of centeredness of point under
consideration. Window growth continues urtil either upper
limit for the window is readed or a point with a saliency
greder than a predefined threshold is deteded.Once the
window stops growing, the point with the maximum
saliency measure is designated to be the next fixation point
and is added to the current fixation point chain. It may
happen that given a fixation point, the system cannot find
any unlabeled edge points to take into consideration for
computing saliency. In this case, the chain ends and an
arbitrarily chosen neaby edge point is taken to be the
initial fixation point of the next fixation point sequence
with a new label. If such an initial point cannot be found,
the processof fixation sequence generation ends.

-

Figure 3. (Left) Detection of first fixation point and shift of visual field
aong the saccale direction; (Right) Detection of next fixation point.

2.2. Attention

In the dtentive stage, the properties which charaterize the
state of the fovea thus extraded. The fedure vedor
obtained in this way is then added to the d&tentional
sequence. The type of processng during attention is
determined by the task at hand and is much more detail ed
in neture than that of the pre-attentive stage. In our case,
we use elgetype @ the feaure. Edgetype is a valued entry
consisting of edge magnitude and orientation. Let us
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remark that by choosing edgetype & fedure, the saccales
tradk the mntour of the subparts. However, by choosing
other types of feaures, other types of visual behavior can
be redized.

2.3. Recognition Using Attentional Sequences

In the aognition stage, the dtentional sequences thus
generated are subjeded to further processng. An
attentional sequence ©rresponds to a spatio-tempora
representation of the image — since it not only represents
the locdions of the feaures, but aso the manner in which
they were traversed.

2.3.1. Grouping Attentional Sequences

The first type of cognitive processng aims to group
attentional sequences together. In particular, two segments
are posshly to be grouped if their end-points are close to
ead other. However, thisis not an easy task. Fortunately,
the representation of the segment as a dain of fixation
points also provides such information approximately. The
initial and the end fixation points may be taken roughy to
be the end points of the segment and assessment of
closedness of two segments can be made based on their
physicd and feaure proximity, as gown in Figure 4
(Left). In our case, we use distance & a measure.

=
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i fixation point.
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O :location of fix. pt.
ey contour of the segment.

Figure4: (Left) Merging and (Right) contour construction.

2.3.2. Interpolation of Grouped Attentional
Sequences. Contour Construction

Next, the grouped attentional sequences are used in an
interpolation aimed at constructing the cntours of all the
subparts. As fixation points are sequentially ordered, this
task is reduced to a series of - given two fixation points -
determining a wnneded set of edge points garting from
the first and ending at the second fixation point as
illustrated in Figure 4 (Right). All those image points
whose elges are within a predefined threshold proximity
to that of the aurrent fixation point and are wnneded to
the aurrent fixation point taken to be part of the cntour.
Two image points are mnneded to ead other if there is
an 8-connedivity path from one to the other and all the
image points along the path have the same label. Let us
remark that due to the adaptively growing window and

connedivity-based interpolation, isolated image points do
not pase ay problems.

2.3.3. Shape Representation

The representation of shapes is based on elliptic Fourier
descriptors [12,13]. Elli ptic Fourier descriptors represent a
shape weighted sum of ellipsoids. Using elli ptic Fourier
descriptors, eat shape i is defined by a vedor

pi O PO O%*2 wherekis the number of harmonics:

T
Pi :[aiobioailbillcildil"'aikbik'Cikdik]

The order of harmonics k represents the accuracy of the
model. The set of n shapes is then described by
p O PO O"“k*2) via concatenating p; [14]. In our case,
n=5. The parameter set &, , B, , G, and d, can be used
to extract geometric features such as major and minor axis
length, orientation. Furthermore, geometric relations
within and between shapes can be easily formulated
mathematically. Finaly, given a sequence of points
forming a complete contour, a simple procedure can be
used to compute the elliptic Fourier parameters [13].

2.3.4. Congtruction of Part M odel

Once the shape descriptors are extracted, the next stage is
to examine al the subparts on the part and then construct a
part model that represents where all the subparts are
located on the part. Note that as the part is randomly
positioned and oriented, this is not an easy task. We use
shape invariants for representing each sub-part [12] and
then use a particular -Euclidean-invariant graph for
constructing the complete part model. For shape
invariants, we use the magjor and minor axis lengths of the
ellipse (corresponding to second order moments) passing
roughly through the contour of each subpart as computed
based on elliptic Fourier descriptors. To construct our
Euclidean-invariant graph, we first compute the vector
anchored at the center point of the part in the direction of
the center point of a subpart which is assumed to be
aways present, use this vector to generate a rotated x-y
coordinate frame and calculate the radia coordinates
(rIoi ,epi) of the center point of each subpart i=1,..,N where

N isthe number of subparts as shown in Figure 5.

Figure 5. (Left) Reference vector, (Right) Euclidean-invariant graph.

2.35. Decision Stage
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The dedsion stage has two modes. In the learning mode
the system is presented with a non-defedive part. Part’s
model is constructed and then stored in alibrary file to be
later used. In the inspedion mode, a “to-be-inspeded” part
is presented to the system and a dedsion regarding
whether the part is defedive or not is made. If found
defedive, the defedive parts are listed. In order to
acomplish this task, a model of the part is constructed
and then compared with the model of the ‘ided’ part. The
comparison is based on identifying corresponding subparts
on ead respedively and then wing a meaure of
proximity to determine whether the positioning and shape
of ead subpart on the inspeded part is as it should be. In
our Euclidean-invariant graph representation of the parts, a
mere comparison in radia coordinates suffices to identify
corresponding subparts. The j’th subpart on the model is
matched with the i’th subpart on the part being inspeced
that minimizes the Spatial-Simil arity-Criterion, SC

SSG = (ﬁpi S ECIE COs(emj)g +
ﬁpi *Sin(8 ;) = Sin(e ) E)O-S

are the radial distance of i'th

i

where Mo and T

subpart of to-inspeded-part and j'th subpart of model to
the starting point of the reference vedor respedively and
6 and 6y ae the agdar displacements of

corresponding subparts relative to the reference vedor.
The average sC; for all subparts, defined as foll ows,
1N

ASSC = ﬁ JZsscj(matched — subpart — on — inspeded — part)

can be used as a fedure to determine if a subpart is
missng. The ASSC value is amost invariant for a part no
matter what its orientation is. Due to a missng subpart
(i.e. a missng tole), the value of Assc will change
considerably compared with the model’s ASC. Having
determined that there exists a missng subpart, the missng
subpart can easily beidentified through ss:jival ues.

Having matched the segments on both images, our next
objedive is to determine whether the segments are
properly shaped within some tolerance The invariants
computed out of first few harmonics siccesully aids in
roughinspedion of the shape of the segments.

3. Experiments

We have developed an inspedion system -BUVIS - based
on TMS320C31 where visua processng is based on our
approach. The system components are shown in Figure 6.
Visua processng is done on the Smarteye Vision System
which is designed around a high performance DSP chip
TMS320C31PQL. Computationally intensive parts of the
program are direaly programmed in Tl assmbly

language. The remaining parts are programmed in C and
then crosscompiled to TI assembly code. The ill umination
system consists of four lamps located so as to minimize
the shadowing effeds of ead lamp. An image of the ‘to-
be-inspeded’ part is taken and is sibjeced to further
inspedion to determine whether it has any deviations
fromits CAD specs.

( Power \
Smarteye|
System | ccp (Z\\\;QJ
N\
Camera '///

lz. N\

|M onitor I - \\é\‘
INlumination|

I Com puterl )

system
Figure 6. Inspedion system comporents.

Experiments were held on severa industrial parts. Let us
note that athough these images look like high-contrast
images due to the printing quality, in redity they are pretty
noisy. In these experiments, the center of the boundary of
the part is the reference point and the reference vedor is
direded to the center of a subpart (or hole) which is
known to exist on every part whether the part is defedive
or not. The ASSC vaue, explained in sedion 2.6, is
computed for different orientations of ead part’s model
and defedive samples of the part. Let us remark that the
difference in ASSC value between normal and defedive
parts can be used to determine athreshold for dedding
whether a given part is acceptable or not.

3.1 Experimentswith Part 1

Figure 7. PART1 (a) Model and reference vector; (b) Euclidean-
invariant graph of the model; (c) and (d) reference vector and Euclidean-
invariant graph for faulty sample where holes b and f are missng.

The part in Figure 7.a, out of which the mode is
constructed is rotated around itself, to measure the
variances of placanents of subparts on a part at different
orientations and the results are displayed in Figure 8.
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Figure 8. ASSC vs orientation graph for Model of Part1 .
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The model of the industrial part was constructed with a
randomly seleded orientation at 270 degrees. The part is
then rotated around itself and ASSC at every orientation is
computed as sown in Figure 8. The average similarity
measure varies between 0-4 pixels per subpart. Let us
remark that ASSC does not turn out to be zeo because
from the perspedive of the canera, the transformation of
the part is not completely Euclidean-invariant. Rather, as
our parts have etrusions and holes on them,
foreshortening effeds come into play and distort the image
very slightly — thus causing veriation of the ASSC. We can
use the upperbound value 4 as the maximal tolerance for
mismatching. The faulty sample shown in Figure 7.c is
compared with the model shown in Figure 7.a . ASSC
values for different orientations for the faulty part is
shown in Figure 9. The ASSC value varies between 5-8, -
al above the upper bound. Furthermore the variations (not
shown in the graph) are much larger. In addition to
deteding faulty parts, the system easily identifies the
faulty subparts.
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Figure 9. The ASSC vs orientation graph for an erroneous Part1.

It takes the system approximately 4.5 seconds to perform
the whole process and the inspedion duration does not
change significantly for varying orientations of the part.
The experiment is repeaed for parts with many different
types of faults. As expeded, as the number of faults of
type ‘misdng holes' increases, ASSC also increases.

3.2 Experimentswith Part 2

Figure 10. PART2 (a) Model and reference vector; (b) Euclidean-
invariant graph of the model; (c) and (d) reference vector and Euclidean-
invariant graph for faulty sample with hole b.

Similar experiments were held for the industrial part, Part2
- shown in Figure 10.a. The model of the industrial part
was constructed with a randomly seleded orientation at
300 degrees. The part is rotated around itself in order to
measure the variances of placements of subparts on a part
at different orientations and the results are displayed in
Figure 11. It is observed that ASSC varies between 0-6.
Let us remark that there is more variation as compared to
Part 1 due to the increased foreshortening effeds caused
by the uneven surface of Part 2. Again, we can use the

upperbound value 6 as the maxima tolerance for
mismatching.
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Figure 11. ASSC vs orientation graph for Model of Part2.

The faulty sample of Part2 shown in Figure 10.c, is
compared with the model shown in Figure 10.a . The
experiment is repeated for varying orientations of the
faulty sample. ASSC values for different orientations of
erroneous Part 2 object are shown in Figure 12. The ASSC
value varies between 10-15, -all above the upper bound.
Furthermore the variations (nhot shown in the graph) are
much larger. Again, additionally the system easily
identifies the faulty subparts of the part currently being
inspected. Experiments with faulty parts reveal that the
greater the number of faults, the greater ASSC value gets.
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Figure 12. The ASSC vs orientation graph for an erroneous Part 2.

It takes the system approximately 2.5 seconds to perform
the whole process and the performance duration does not
change significantly for varying orientations of the part.
Let us remark that using college students as inspectors, we
tried to compare human inspection times with our system.
The inspection time for first few partsis about 7-8 seconds
for this part, Part 2. Due to the learning ability of human,
the inspection duration reduces to 2 seconds after few
parts. However, after a certain period of time, due to
fatigue and tediousness of the task, the inspectors were
observed to have a loss of concentration and the
inspection time goes back to initial durations.

4. Summary

In this paper, BUVIS — an automated visual inspedion
system endowed with visual attention cgpability — is
presented. The alvantages of this g/stem are that it is fast
and robust while running on simple hardware. In this
system, the visual processng consists of a mntinuum of
pre-attentive and attentive stages, and generates an
attentional sequence which represents the visual data
spatio-temporally. This processng is occasionaly
followed by cognition, where atentional sequences are
grouped together, the grouped attentional sequences are
used as anchor paints for contour interpolation, shape
parameters of all subparts are extraded and compared with
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the library models for fault detection. We are currently
working on reducing inspection times even further. Also,
we are investigating the use of optimal control ideas in
bringing a mathematical formulation to the problem of
attentional sequence generation.
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