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Abstract

This paper presents an approach to vision-based
mobile robot localization. In an attempt to capital-
ize on the benefits of both image and landmark-based
methods, we describe a method that combines their
strengths. Images are encoded as a set of visual fea-
tures called landmarks. Potential landmarks are de-
tected using an attention mechanism implemented as
a measure of uniqueness. They are then selected and
represented by an appearance-based encoding. Local-
ization is performed using a landmark tracking and
interpolation method which obtains an estimate accu-
rate to a fraction of the environment sampling density.
Experimental results are shown to confirm the feasibil-
ity and accuracy of the method.

1 Introduction

In this paper we address the problem of encoding
the visual characteristics of an environment to permit
accurate positioning. We assume that we know what
general area the robot is in, but we have no a priori es-
timate of its precise position. Traditional approaches
to this problem involve the detection of manually in-
serted landmarks, followed by a position estimation
step based on triangulation. In our work, the primary
objective is to avoid the requirement for artificial land-
marks, or domain-specific features. As such, our prob-
lem is related to object recognition, where we wish to
learn visual characteristics of interest.

The problem of landmark-based position recogni-
tion was first formalized by Sugihara as a computa-
tional geometry problem [1]. Since then, the problem
was further explored by Avis and Imai [2], Sutherland
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and Thompson [3], and Boley, Steinmetz and Suther-
land [4], among others. These authors have all pur-
sued the problem under two assumptions: first that
the world is planar (although their methods can be
extended to three-space), and second that the prob-
lem of detecting (and sometimes distinguishing) land-
marks in the environment has been solved. Several
authors have also considered positioning using non-
visual landmarks [5, 6, 7]. In practice, position esti-
mates from visual sensors are typically combined with
those from odometry using methods such as Kalman
filtering [8, 9].

The problem of detecting landmarks has been ap-
proached in a variety of ways. Many vision-based
robot localization methods rely on landmarks which
are either artificially added to the environment [10],
or based on strong assumptions with respect to the
environment [11, 12]. For example, Krotkov [11] re-
lies on the assumption that the environment is struc-
tured in such a way that vertical lines can be easily
extracted as landmarks. This assumption is problem-
atic in two ways. First, it places a restriction on the
kinds of environments that can be explored, and sec-
ond, it places a restriction on the pose of the camera.
Basri and Rivlin [13] have also exploited the geomet-
ric behavior of landmarks in selected model images
to provide navigation information. Exploiting an as-
sumption of global invertibility of the imaging func-
tion, Nayar has shown that subspace methods can pro-
vide accurate positional feedback in sufficiently con-
strained environments [14]. A key assumption in that
work is that each possible viewing position gives rise
to a unique image. In similar work, Thrun derives a
probabilistic approach to obtain a pose estimate us-
ing a neural net [15]. In the works of both Nayar and
Thrun, however, all significant variations in the set of
possible images, including those due to lighting vari-
ations, must be explicitly sampled and encoded. In
other work, it has been shown that localization can



be achieved despite unanticipated illumination vari-
ations [16]. That method can also deal with non-
invertibility of the imaging transform, a problem that
is typical in unconstrained environments.

Our approach uses image landmarks to perform po-
sition estimation, but learns these landmarks from a
preliminary traversal of the environment (i.e. an off-
line mapping phase). Preliminary landmark selection
is based on a local distinctiveness criterion: this is
later validated by verifying the appearance of the can-
didate landmarks. In this aspect our approach is also
related to feature-based image representation used,
for example, for image registration by Zoghlami and
Faugeras [17]. In that work, a corner detector was
used to define landmarks for the construction of an
image mosaic. We are interested in images selected
from a much wider range of imaging geometries.

Our approach to landmark selection is inspired by
models of human visual attention where visual sac-
cades are drawn to regions of high edge density [18].
We select extrema of the density of the edge distri-
bution in each image as landmark candidates and ex-
tract a subwindow about each one. We then perform
principal components analysis on these subwindows to
produce low-dimensional descriptions of the appear-
ance of each of the observed landmarks. In an off-
line learning phase, the subspace encodings are em-
ployed to build tracked landmarks, which correspond
to sets of landmark candidates that are tracked over
configuration-space.

The online localization method exploits variation
in the appearance-based encoding and other measures
of the observed landmarks as a function of camera
position. When the camera is in an unknown position,
candidate landmarks are extracted from the image,
matched to tracked landmarks in the database, and
an estimate is obtained for each matched landmark
based on a linear interpolation of landmark feature
vectors. A final position estimate is obtained through
a selective merging of individual estimates.

Section 2 briefly discusses the motivation for our
representation of what constitutes a landmark. Sec-
tion 3 presents details of our approach. Section 4
presents experimental results and section 5 discusses
their implications.

2 Visual Cues for Positioning

Luminance edges appear to encode much of the rel-
evant geometric content in images, yet edge operators
suffer from instability due to sensor noise or varia-
tions in lighting conditions. Ideally one might wish

Figure 1: Detected Candidate Landmarks in an Im-
age.

to connect edge elements from an image to obtain ex-
tended geometric edges. In practice, however, existing
methods for this task are either costly, domain spe-
cific, or exhibit other limitations [19, 20, 21]. Given
these limitations, if we smooth the output of an edge
operator over a small neighborhood then we can con-
sitently determine the neighborhood of the edge. To
this end, we propose the use of edge element density
over the neighborhood of a pixel in order to detect
regions of interest without the cost of geometric inter-
pretation. The extrema in edge density over the image
appear to be stable under variations in camera posi-
tion, and hence will make good candidates for image
domain landmarks. Therefore we will define a candi-
date landmark as a local extremum of a measure of
image feature content.

Figure 1 presents an example of the output of the
landmark detector. The candidate landmarks, de-
picted as boxes, have been detected as local extrema
in edgel density, as measured over a circular window
of radius 10 pixels. Only those candidates which are
maximal over their neighbourhood, and which exceed
a user-defined threshold density are shown.

3 Method

Thus far, we have discussed a method for detect-
ing possible landmarks in the environment. It should
be noted at the outset that our method intentionally
makes no restrictions on how landmark position in
an image is related to position in the world. Land-
marks might arise out of three-dimensional arrange-
ments of arbitrary complexity. In addition, no restric-
tions are placed on camera pose itself. If the robot
is moving over hilly terrain, landmarks will move in
an irregular fashion, yet their position and appear-
ance will still hold significant information for position-



ing. The key to our approach is the assumption that
locally, the appearance and position of a good land-
mark can be predicted by a simple parametric func-
tion. Given that we cannot treat landmarks as pro-
jections of three-dimensional points, we are unable to
invoke the standard motion estimation and triangu-
lation methods [1, 2, 4, 11]. Recall also that we are
interested in localization even in the absense of an a
priori pose estimate, obviating the possibility of using
Kalman filtering or optical flow techniques [8, 9].

Localization is a two-step process consisting of an
off-line preprocessing stage and an on-line estimation
stage. The off-line stage consists of building a repre-
sentation of the environment in the form of a database,
which is later used for positioning. The on-line stage
uses the database to match currently observed land-
marks to previously stored landmarks. Each of these
matches are then used to compute individual position
estimates, which are combined in a robust fashion to
obtain a position estimate. The following subsections
explain the details of each stage.

3.1 Building the Landmark Database

In order to describe the environment, images must
be obtained from representative viewpoints. In prac-
tice, we select viewpoints that cover the pose space in
a uniform grid. In ongoing work, we are considering
methods to automatically select a minimal set of such
viewing positions [22]. In the work described in this
paper, viewpoints are selected such that the camera is
facing in a consistent orientation, although this con-
straint can be relaxed using a technique described by
Dudek and Zhang [16]. Once these images have been
acquired, they are used to automatically compute a
suitable set of landmarks for subsequent positioning.

In order to collect repeated observations of the same
landmark from different viewpoints, we track observed
landmarks over the database by incrementally grow-
ing tracked landmarks. The tracked landmarks are
initially defined by the sets of single landmark can-
didates observed in a selected bootstrap image from
the configuration-space (typically the centroid of the
covered configuration-space). These landmark candi-
dates then become templates for matching. Matching
is based on a minimization of the Euclidean distance
between the principal components encodings of the
template and of the candidate landmark. Principal
components analysis (PCA), sometimes referred to as
eigenfaces, operates by constructing a linear subspace
which maximizes the distance between the classes to
be discriminated. PCA has enjoyed considerable suc-
cess in the domains of face and object recognition, and

is favoured over correlation and other methods for its
desirable computational and numeric properties, par-
ticularly the maximization of the signal-to-noise ratio
of the training set. [23, 14, 24, 25].

Given an intial set of templates, the candidate land-
marks in each image are considered for inclusion in one
of the sets. Consideration for inclusion in a tracked
landmark is based on the following methodology:

1. For each candidate landmark li in the image, and

(a) for each tracked landmark tj in the database,

i. perform a local search on the image
in the neighbourhood of li for a better
match to tj , according to minimal Eu-
clidean distance in the subspace.1 If a
better match l′ is found, it replaces li as
a candidate for tj .

(b) Select the tracked landmark tj for which the
best match to li was found in 1a.

2. If li is the best match to tj over all other land-
marks in the image and li matches tj within a
reasonable threshold, add it to tj , otherwise, cre-
ate a new set with li as the template.

The goal of this method is to grow tracked land-
marks over pose space so that a candidate landmark
can be matched to the correct target over a large
portion of space. Figure 2 shows a typical tracked
landmark. Each thumbnail image corresponds to the
landmark as detected in the image taken at the corre-
sponding grid position in camera space. Clearly, any
changes in landmark appearance over this region are
subtle.

3.2 On-line Localization

On-line localization is performed by matching can-
didate landmarks to tracked sets, and exploiting a
transformation of each landmark into a subspace de-
fined by its corresponding tracked set. This section
will discuss the matching and estimation procedure.

When a position estimate is required, an image is
obtained and landmark candidates are extracted. The
extracted landmarks must then be matched to the
tracked landmarks in the database. Matching is ac-
complished using the same procedure outlined above
in Section 3.1. That is, each landmark l undergoes a
local adjustment to find a best match to each tracked

1This search is employed in order to counter the effects of
any instabilities in the underlying landmark detector.



Figure 2: A typical tracked landmark. Each thumb-
nail corresponds to the landmark as detected in the
image taken at the corresponding grid position in cam-
era space. Grid positions where the image does not
appear correspond to camera positions where the ei-
ther the landmark simply wasn’t detected, the land-
mark differed significantly from the template, or an-
other nearby landmark dominated the local search for
a better match.

set, and the set whose template is unambiguously clos-
est to the encoding of l is selected as the match.

Once landmark matching is accomplished, we ex-
ploit an assumption of linear variation in the land-
mark characteristics in order to interpolate a posi-
tion estimate for each match2. For the remainder of
this section, let us assume that we have observed a
single landmark l in the world and it has been cor-
rectly matched to tracked landmark T . Let us define
a feature-vector f of a landmark as the initial prin-
cipal components encoding of the landmark k, which
was the same subspace encoding used for matching,
concatenated with two vector quantities: the image
position p of the landmark, and the camera position
c from which the landmark was observed:

f = k p c (1)

Given fi for each landmark li in the tracked land-
mark T , we construct a matrix F as the composite ma-
trix of all fi, arranged in columnwise fashion, and then
take the singular values decomposition of F to obtain
UF , representing the set of decreasing eigenvectors of
the feature vectors of T , arranged in columnwise fash-

2We can measure a priori how well this assumption applies
to a particular tracked landmark by cross-validating the local-
ization method on each candidate in the tracked landmark.

ion. Note that in this case, we have encoded camera
position along with appearance. Now consider the fea-
ture vector fl defined by l, the observed landmark for
which we have no pose information. For the moment,
let us assume that the c portion of fl is initialised to
the mean camera position of the landmarks contained
in T 3. If we project fl into the subspace defined by
UF to obtain

g = UT
F fl (2)

and then reconstruct fl from g to obtain the feature
vector

f̂l = Ug (3)

then our observation is that the resulting reconstruc-
tion f̂l is augmented by a camera pose estimate that
accurately interpolates between the nearest eigenvec-
tors in UF. This assumes that the camera pose does
not play a significant role in the subspace defined by
UF - We aid this assumption by scaling down the value
of c when we construct f . In practice, the initial value
of the camera pose will play a role in the resulting
estimate, and so we substitute the new estimate back
into fl and iterate, reconstructing f̂l until the estimate
reaches a steady state. Note that f̂l corresponds to
the least-squares approximation of f in the subspace
defined by the feature vectors of the tracked landmark
T .

Given a set of position estimates from the set of
observed landmarks in an image, a final position esti-
mate is obtained by first detecting and removing out-
liers using a median filter, and then finding the mean
of the remaining estimates. Section 4 will demonstrate
the effectiveness of the method based on experimental
results.

4 Experimental Data and Discussion

Figure 3: The test environment.

3In practice, this initial value may be an a priori estimate.
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Figure 4: Position estimates and corresponding
ground truth for one hundred random samples. Each
’x’ marks an estimate as obtained from a single land-
mark set. The corresponding ’+’ marks the actual
position from which the image was taken. Grid cross-
ings mark the locations of the training images.

In experimental trials, the landmarks selected and
tracked by our procedure seem very effective for lo-
calization. In this paper, we present results from data
acquired by using a camera mounted on a gantry robot
for which ground truth positioning can be measured
at an accuracy to one tenth of one millimetre. The
camera is directed towards a simple constructed scene
(Figure 3), which is positioned about 1m from the
camera and training images are collected in a 30cm
by 30cm grid at 2cm intervals.4 In addition, one hun-
dred test images are collected, taken from random po-
sitions.

Figure 4 is a plot of the mean position estimates
(after median filtering) for all of the test images. Each
’+’ represents the actual position of a test image while
the corresponding ’x’ marks the position estimate. In
this particular case, the average deviation from the
correct position is measured to be 3.8mm., less than
20% of the grid sampling density.

In a second experiment, we sample the environ-
ment depicted in Figure 1 over a 1.2m by 3.0m
configuration-space at 20 cm intervals, using a camera
mounted on a mobile robot. In this particular exper-
iment, the ground truth is estimated only by rough
dead reckoning (accurate to about 5cm), and at times

4In this experiment, motion in the x coordinate corresponds
to a sideways translation of the robot, while motion in the y
coordinate corresponds to front-to-back motion.

the robot is not perfectly aligned with the grid axes.
In spite of these difficulties, the localization method
demonstrates accuracy to 6.8cm in ten trials, suggest-
ing that the method scales reasonably well in indoor
environments.

5 Conclusion

In this paper we have described a new technique for
position estimation using visual data. Rather than at-
tempting to construct and use a generic landmark, we
have developed a generic landmark generation frame-
work. By using learned landmarks, we believe the
technique can be used in a much broader range of en-
vironments than standard localization methods. Our
current work involves experimentally validating this
claim. The approach we have taken here is based
on learning domain-specific landmarks using a sub-
space projection method based on principal compo-
nents analysis. Position estimation involves selecting
potential landmarks in an image using a model of vi-
sual attention which is based on maxima of the edgel
density distribution.

During the online position estimation phase, land-
marks are matched to known tracked landmarks based
on a subspace encoding. Finally, local variations in the
appearance of the landmarks themselves allow a po-
sition estimate to be computed. Our implementation
computes a position estimate for each landmark that
is matched to a tracked set by employing a “fill-in-the-
blanks” least squares interpolation.

Experimental testing has demonstrated the validity
of our approach. The technique produces an unam-
biguous position estimate using real data. The use of
discrete landmarks generated by an encoding of the
landmark sub-images makes our method potentially
robust against isolated changes in the environment. In
addition, it allows for the post-processing of selected
landmarks to apply additional criteria.

Finally, the fact that the landmark representations
are learned suggests that the technique can be applied
to a wide range of different environmments, as illus-
trated by figures 1, and 3.
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