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The contributions of the paper and its potential applications

This paper proposes a robot architecture that enables us to progressively
develop robots (especially, vision-guided mobile robots). For realizing
intelligent robots works in an open environment by using various sensors,
this kind of robot architectures is strongly needed.



Abstract

This paper proposes a robot architecture that
enables us to progressively develop a robot. The
architecture consisting of situated modules has
merits of both the traditional function-based and
behavior-based architectures in addition to the
merit in the development. We have developed a
robot based on the architecture. By reporting the
development process, this paper discusses
advantages of the proposed architecture.

1. Introduction

Intelligent robot research started in SRI [Nilson, 1984]
has proposed various robot architectures to date. This
paper also discusses a robot architecture. The originality
of our architecture comparing with previously proposed
ones is to focus on the development process of robot
systems. This paper proposes a robot architecture that
enables us to progressively develop a robot. One of the
typical architectures for intelligent robots is a function-
based architecture. The architecture consists of function
modules that observe by sensors, represent environments
based on sensor information, analyze the representation
by using knowledge databases, plan actions and execute
planned actions. The function modules are connected in a
line and the information processed by each module is sent
to the next module. Thus, sensing and action are coupled
through various intermediate representations.

This loose coupling causes problems [Brooks, 1991].
For example, a robot often needs to reactively execute
actions against to the sensor input. However, it is difficult
for the function-based architecture to perform such
reactive behaviors. On the other hand, Brooks [Brooks,
1986] has been proposed a behavior-based architecture
called subsumption architecture that realizes close
coupling to the real world. The unique concept of the
subsumption architecture consisting of reactive modules
is not to utilize any explicit internal representations, but to
refer the real world as its own model.

Both of the traditional function-based and behavior-
based architectures have merits and demerits. The

behavior-based architecture is superior in reactivity to the
function-based architecture and the traditional function-
based architecture is needed for realizing deliberative
behaviors based on environment representations. These
architecture should be integrated and several researchers
have already proposed the integrated architectures so far
[Arkin, 1993; Inaba, 1997; Kuniyoshi, 1997]. However,
they still remain an important problem of development
methodology. This paper also proposes such a hybrid
architecture, however the difference with previous works
is to propose a coherent architecture which enable us to
progressively develop the robot system. The
characteristics of our architecture is as follows:

z The architecture enables us to progressively develop
a robot system.

z The architecture enables the robot to adapt to the
tasks and environments by controlling the execution
order of the situated modules, which are basic
components of the architecture.

z In the architecture, representations based on senory
information represent relations between situated
modules.

The frame work as a programming language is rather
similar to PRS (procedural reasoning system) proposed by
Georgeff [Georgeff, 1987] and Ishida’s control method
[Ishida, 1995] for production systems. The idea discussed
in this paper basically follows their ideas of procedural
control of reactive modules. However, the differences are
to deal with problems of robot control and to emphasize
the importance of the progressive development of the
robot system. Therefore, we limit the control targets to
condition-action pairs called situated modules. And
further the condition-action pairs are not data-driven
production rules, they are rather written by a general
procedural programming language C.

Based on the architecture, we have developed a robot,
which moves in an indoor environment by using visual
information. The advantage of the proposed architecture
is discussed based on the performance of the developed
robot and its development process.
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2. Robot architectures

2.1. Function-based and behavior-based archi-
tectures

The key concept of the behavior-based architecture is
that “A robot consists of behavior modules and the feed
back control scheme for the behaviors closely couples the
robot and the real world each other.” With the traditional
function-based architecture, the robot cannot maintain the
close coupling with the environment, therefore the robot
often loses the relation to the environment and needs to
carefully observe again the environment to find the
relation. We believe the architecture based on behavior
modules is more suitable to robots that behave in dynamic
environments.

However, the behavior-based architecture has a
demerit that it is difficult to handle deliberative behaviors.
In order to compensate this demerit, several approaches
integrating both of the function-based and behavior-based
architectures have been proposed so far. One method is to
integrate the reactive modules and deliberative modules
based on a common representation. Arkin and his
colleagues [Arkin, 1993] used potential fields to represent
both reactive and deliberative behaviors. The behaviors
represented with potential fields are easily combined and
it can determine robot actions by a vector computation.
However, a problem of this approach is that a unique
representation to be able to represent any kinds of robot
behaviors dose not exist. Another approach is to prepare
special modules that can handle environment
representations in the behavior-based architecture. This
approach is more popular and several researchers are
proposing [Inaba, 1997; Kuniyoshi, 1997]. In this paper,
we call this hybrid architecture as behavior-based hybrid
architecture and follow the basic idea to construct a robot
system based on behavior modules.

As shown in Figure 1, the hybrid architecture can be
realized by adding new modules that can deal with
internal representation in stead of the sensors and
actuators. Based on this architecture, the robot behaves by
accessing to both of the external and internal worlds.

2.2. Development methodology
The behavior-based hybrid architecture has both abilities
of the reactive and deliberative behaviors. However, how
is the architecture should be evaluated from the viewing

point of system development? We consider there is few
reports on how to develop robots in previous robotics.
Basically, developers are developing robots based on their
experience, however practical design methodologies are
needed for efficiently developing more sophisticated
robots. This is our major motivation of this paper.

Our purpose is not to develop robots that works in
limited environments, such as factories, but to develop
intelligent robots that can perform various tasks in open
and complex environments. In such environments, it is
difficult to acquire sufficient information for designing
the robots before developing them.

The behavior-based architecture consists of behavior
modules and a network connecting them. Especially, it is
interesting that the system consisting of only reactive
behavior modules generates complex behaviors of the
robot [Brooks, 1991]. However, the development of the
system is not easy. First of all, it is difficult for developers
to decompose complex robot tasks into simple reactive
behaviors. Of course, it is possible to find proper reactive
behaviors for simple robot tasks, such as moving
backward when the tactile sensor is activated and moving
along a wall using ultra-sonic sensors. For the simple
tasks, such as the obstacle avoidance, the reactive
behaviors are closely related to the environment structure.
Therefore, the developer can prepare the reactive
behaviors without any conflicts. However, if we expect
more complex behaviors to the robot, the conflicts easily
occur. For example, suppose to add a reactive module for
avoiding red objects to the robot moving along walls. In
this case, if the wall is red, the robot may iterate to avoid
the wall and to go toward the wall; and it will be held up.
Further, the design policy of the subsumption architecture
is to prepare modules that can be executed in parallel.
Unfortunately, it is more difficult to find such reactive
modules.

2.3. Internal representation
Another problem of the behavior-based hybrid

architecture is its internal representation. Only behavior
modules connect the internal world with the external
world. Therefore, the internal representation should
represent structure among behaviors according to the
tasks and environments and it is natural to consider that
the network structure of behavior modules is a
representation.

In the function-based and behavior-based hybrid
architectures, it is not coherent that the modules deal with
environment representations given by developers. The
utilization of the geometrical maps given by developers’
intuitions prevents the robot from autonomously obtaining
and updating the representation. The representation

Figure 1: Behavior-based hybrid architecture



should be obtained through the execution of the behavior
modules by the robot itself.

Let us consider the behavior-based architecture again.
In the behavior-based architecture, the behavior modules
can be prepared in the case where all modules have close
relations to the unique representation that the developer
can easily understand as discussed already. In other
words, the developer needs to carefully consider how the
robot tasks are related to the environment and then
represents relations between the robot and environment in
the network of behavior modules. We consider this
indirect representation method is tough for developers and
more explicit methods are needed (In contrast, Mataric
[Mataric, 1990] has proposed a method to represent the
environment by using records of activated behaviors
under an assumption that the robot has proper behaviors).

2.4. Requirements for the architecture
We consider an architecture that satisfies the following
requirements is needed.

1. The developer progressively implements behavior
modules and the system sequentially executes them.

2. The system consists of behavior modules, each of
which deals with a particular task in a limited local
environment; and the module is programmed based
on intuitions and experiences of the developer.

3. The system automatically adjusts the execution order
of the modules according to situations of the robot in
order to compensate the incomplete module
implementation by the developer.

4. The system represents relations between the modules
and robot tasks on the module network.

5. The developer can add, remove and update the
modules while the robot is working.

It is basically difficult to find modules that can be
executed in parallel, and a robot usually executes a single
task at a time since the modules cannot share the single
robot body. It is natural and easy for developers to
consider that the modules are sequentially executed.

The second requirement also guaranties easy
programming for developers. However, this causes
problems. The modules may not cover all situations to
which the robot encounters. They may be redundantly
implemented and perform similar functions to others.

The third requirement solves the problem of the
incomplete module implementation. By controlling the
execution order, the robot automatically adapts to the
tasks and environments. For allowing the automatic
adaptation, the developer needs to prepare a sufficient
number of modules.

Complex tasks or environments may need many
modules. In such a case, the system needs to memorize

relations between modules for efficiently maintaining
them. The environment representations in the fourth
requirement maintain the relations.

Although we do not deal with in this paper, the last
requirement is important. When the robot has many
modules, the verification in a real environment takes a
long time. In such a case, this requirement enables us to
develop in an online manner. In a real and open
environment, we cannot predict all situations a priori,
however we should not stop the robot performing a task.
The function of online development is strongly required
for developing systems working in a real world.

2.5. A new architecture
Taking the requirements into account, we propose a

new architecture as shown in Figure 2. The difference
with the architecture shown in Figure 1 is as follows.

We categorize modules into the reactive modules and
situated modules. Obviously, a robot needs primitive
reactive modules to avoid dangerous situations, such as a
module to go backward when colliding with an obstacle.
A robot needs to execute the primitive reactive modules
with the first priority. However, more sophisticated or
high-level situated modules are programmed according to
tasks and environments. This is also a natural
understanding of human behaviors. We, human, have a
low-level reactive behavior putting back one’s hands by
reflex when touching a heated object. However, for other
higher-level behaviors, we sequentially execute them
while continuously changing its attention [Ballard, 1991].

The situated modules are under control of the module
control. The module control controls the execution order
of the situated modules, find executable modules and
evaluate modules for providing information to the
developer.

The major difference with the previous architectures
is in the role of the internal representation and the task
planning, in addition to the module control. In the
behavior-based architecture, especially the subsumption
architecture that executes reactive modules in parallel, it
is difficult to perform task planning. On the other hand,
our architecture sequentially executing situated modules
performs task planning by controlling the execution order
of the modules. Almost all of the previous approaches
perform the planning on environmental representations,
however it is often difficult to prepare proper

Figure 2: Architecture based on situated modules



representations that maintain the coherent relations
between the robot actions and sensor information and
multiple representations, whose utilization is rather
complicated, may be needed. The planning on the
network of the situated modules is much simpler and it
can represent any kinds of robot tasks.

Finally, the internal representations memorizing the
relations between situated modules are not used for the
planning but for recovering relations between the robot
and the environments. The robot refers the internal
representations on a purpose to find executable situated
modules.

3. Architecture based on situated modules

3.1. System configuration
We have implemented a robot system based on the new
architecture as shown in Figure 3. The system consists of
the situated modules and several components for
maintaining the situated modules.

The developer accesses to the module updator and
adds new situated modules through the human interface.
And further, the developer accesses to the planner and
gives plans to the robot. The module executor sequentially
executes the situated modules by referring to the task
plans and the connection table. In the case where the
tactile sensor is activated while executing the situated
modules, the obstacle avoidance is activated and the robot
reactively avoids obstacles. The module evaluator
evaluates the situated modules according to the execution
of the obstacle avoidance module. When the module

executor loses executable modules, the module searcher
searches executable modules in the network of the
situated modules. If they are not found, the module
executor accesses to the map searcher, and the map
searcher searches executable modules in the visual map.
The following sub-sections explain several features of this
system.

3.2. Situated module
For easy development of the modules, we define a module
as:

A program which performs a particular robot
behavior in a particular local environment.

It is tough for developers to take consistency between
all modules into account. However, it is possible for
developers to consider which sensor can be used and how
the robot can move in the local environment in order to
achieve the subtask. This situated module consists of pre-
conditions and actions as shown in Figure 4. The
developer progressively develops modules in order to
achieve the pre-determined robot tasks. For example, the
modules shown in Figure 5 can achieve a task that the
robot gets out of the room and goes toward the fire
hydrant. Of course, the combination of modules is not
unique. The incompleteness of the modules is
compensated by adding new modules, evaluating the
modules and deleting the unnecessary modules.

3.3. Addition, evaluation and deletion of modules
Basically, the developer prepares a redundant number of

Figure 3: System configuration

Figure 4: Situated modules Figure 5: An example of a situated module sequence



modules in order to cover various situations as follows.
First of all, the developer implements several modules
needed for basic robot behaviors, then add modules for
achieving a task. When the robot cannot perform the task,
the developer knows that the module currently executed
has a problem and adds new modules that compensate the
problem.

Here, we do not delete the module implemented
before as shown in Figure 4. The new module M3 is
connected in parallel to the previously implemented
module M2 and these are selected by the module control
based on the evaluation values W1and W2.

3.4. A function as a system that never halt
As discussed already, one of the problems of this
development method is that the robot often encounters a
situation where it loses executable modules if it does not
have a sufficient number of modules. In order to avoid
this problem, the system has two functions of error
recovery. One is the module searcher. The module
searcher navigates the robot randomly and tries to find a
situation where one of the modules can be executed. The
obstacle avoidance takes the same role. When the robot
collides with an obstacle, the obstacle avoidance
navigates the robot in a different direction to the obstacle.
These functions of error recovery guaranty the robot not
to completely halt.

3.5. Evaluation of situated modules
As the developer increases the number of situated
modules, the system often has multiple executable
modules. The system needs to select the best module for
the situation. For the module selection, the module
evaluator evaluates modules according to results of task
execution. In the following cases, the system finds that
the task has failed.

(a) There is no executable module.
(b) The obstacle avoidance is activated.

In these cases, the system updates evaluation value
N,...,i,Mi 0=  assigned to N  situated modules executed

so far by the following equation:

iiiii wMM,ww −== −1γ

That is, the evaluation values are reduced iw  with a

damping coefficientγ . On the other hand, when the task

is accomplished, the evaluation values of related modules
are increased a constant value.

The module control refers to the evaluation value and
selects one of the executable situated modules. Further,
the developer also refers to the evaluation values in order
to update situated modules. Modules that have a small

evaluation value will be deleted. Thus, the module
evaluation compensates the incomplete implementation of
the situated modules by the developer.

3.6. Task planning
Besides the evaluator, the planner controls the execution
order of situated modules. In this architecture, a task plan
is represented as a sequence of situated modules. The
planner plans a path from the current module to the
destination module on the module network.

Here, each module has different evaluation values for
different robot tasks. Suppose there are three points A, B
and C; and the robot can move among all points except a
path between B and C. In this case, if the robot updates
the evaluation values without distinguishing the tasks, it
enforces the evaluation value of the modules navigating
from A to B and selects an impossible path A-B-C to
move from A to C. In order to avoid this problem, the
evaluation value should be assigned for each task.

As increasing the number of tasks, the number of
evaluation value increases. Therefore, the evaluation
values for each task should be integrated after sufficient
evaluation. This is one of our feature works.

3.7. Visual map as an internal representation
As discussed in the previous section, the network
structure itself is the internal representation of the robot in
our architecture. However, it is difficult for the
progressive implement of the modules to represent the
complex structure; it is rather one-dimensional
representation. The system needs to build more complex
structure that reflects complex relations between the robot
and environment.

In our current implementation, the system analyzes
the structure based on sensor information. Especially, the
robot performs navigation tasks. Therefore, the
omnidirectional vision sensor attached to the robot
provides sufficient visual information to find relations
between modules. The visual map in the architecture is
the representation that represents relations between

Figure 6: Visual map and situated modules



situated modules (see Figure 6). Utilization of more
general representations is remained as one of our feature
works.

The visual map is updated when one of the situated
modules is executed. The visual map builder acquires
omnidirectional images and memorizes them with
pointers to the situated modules. If similar
omnidirectional images exist, the situated modules are
regarded as they have close relations. For estimating
similarity among omnidirectional images, Fourier
transform is applied. Fourier transform decomposes the
omnidirectional images into two components: phase
components representing the robot orientation against the
environment and magnitude components representing
visual uniqueness of the location. The spatial relations are
found by comparing the magnitude components [Ishiguro,
1996].

4. A robot and its development process

4.1. Hardware configuration
We have developed a robot [Ishiguro, 1997].
Characteristics of the hardware supporting the
architecture are as follows:

(a) The robot has various sensors and a suitable body
to the environment where people exist.

(b) The robot has sufficient computing resources for
processing the sensory information.

(c) The robot can work sufficiently long.
(d) The operator can update the robot system though a

wireless communication link.

The robot has mainly four types of external sensors: a
stereo vision system of which camera parameters, such as
zooming and gazing, can be controlled by a computer, an
omnidirectional vision sensor [Ishiguro, 1998], four ultra-

sonic sensors and sixteen tactile sensors. The size of the
robot 60 cm in diameter; and it has a special mechanism
to stabilize the pose against the rough ground surface and
to direct itself in arbitrary directions. The robot can work
while 4 hours and communicate with the operator through
a wireless Ethernet connection with a bandwidth of 2
Mbps. As an on-board computing resource, the robot has
a PC (Pentium 150MHz). The operating system is
VxWorks. Figure 7 shows the developed robot.

4.2. Development process
Based on the architecture, we have implemented a system
that navigates the robot in the indoor environment shown
in Figure 8. The task of the robot is to move among point
A, B and C shown in the figure. Figure 9 shows increase
of the number of implemented situated modules and
Figures 10, 11, 12 show implemented situated modules at
times b, d and f, respectively. In the figures, the squares
represent situated modules and the arrows show the
execution order. The development process mainly
consists of the following three steps.

[Step 1] Progressive implementation of situated
modules for a single task

In the beginning, we have implemented modules for a
single task to navigating the robot from the computer
room (331 in Figure 8) to point B through point A. For
this task, we have implemented 11 situated modules

Figure 7: Developed robot
Figure 8: Indoor environment

Figure 9: The number of implemented modules
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shown in Figure 10. At this moment, the situated modules
were arranged in a line and the module control executed
each module in order.

[Step 2] Module evaluation with multiple simple tasks

The second step in the development is to implement
simple robot tasks with which the robot can keep
working. We have implemented two tasks: moving from
A to B and moving from B to A. The number of modules
was 16. While iterating the tasks, the robot evaluated each
module. Based on the evaluation, we have implemented
another two modules that compensate drawbacks of pre-

implemented modules. The robot has selected modules
according to changes of lighting conditions. Figure 11
shows 18 modules implemented by this time.

[Step 3] Task planning and utilization of the visual
map

In this step, we have implemented more complex robot
tasks. Six tasks to navigate the robot between A, B and C
have been implemented and the robot performed planning
based on the evaluation values.  When we have
implemented 24 modules, the robot tended to be short of
stability. The robot often lost executable modules, moved
randomly and referred to the visual map.

Although we could verify the effectiveness of the
error recovery functions, we have implemented another
four modules in order to stabilize the robot behaviors.
Figure 12 shows all modules finally implemented in our
experimentation.

4.3. Performance of the robot
The whole task of the robot is to randomly select a
destination point among A, B and C; and move toward it.
Figure 8 shows an example of the robot path. With 28

Figure 10: Implemented modules in Step 1

Figure 11: Implemented modules in Step 2

Figure 12: Implemented modules in Step 3



situated modules finally implemented, we have estimated
performance of the robot.

The robot arrived at the destinations 33 times while
one hour. The robot executed the module searcher and
map searcher in order to find executable modules while 7
min., and it executed situated modules while 53 min.
Generally, it is difficult to navigate a robot with vision
sensors in a dark and less-textured environment as shown
in Figure 8. However, we could develop the robot
working in the environment by using vision sensors. We
consider this shows robustness of our architecture.

Table 1 shows the mean time for moving among A, B
and C and the shortest time. The shortest time is a time
that the robot takes when it moves along the shortest path
with a constant normal speed. Of course, to get the
shortest time does not mean that the robot has the best
modules. However, it is still one of the performance
measures. As shown in Table 1, the mean time is close to
the shortest time except the paths between B and C. As
the paths between B and C, the robot selected the paths B-
A-C and C-B-A by referring to the evaluation value, since
there is no stable visual feature between B and C.

5. Conclusion

Although the implemented robot behaviors are simple as a
robot that works in a real environment, the experimental
results has convinced us of the possibility of the proposed
architecture. We believe it is possible to develop robot
systems in a progressive manner based on the proposed
architecture. Our next step is to implement situated
modules for communicating with people and working in
an outdoor environment.

We need more deep considerations, but the proposed
architecture is general and covers several important
concepts previously proposed. For example, the context
[Chatila, 1991] can be represented as a sequence of
situated modules as shown in Figure 6:9LVXDO PDS DQG

VLWXDWHG PRGXOHV

.
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Starting point Destination Mean time Shortest time
A B 55 sec. 45 sec.
A C 73 55
B A 62 45
B C 137 64
C A 90 55
C B 150 70

Table 1: The mean time to move among A, B and C


