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Abstract

A key issue in mobile robot applications involves
building a map of the environment to be used by the
robot for localization and path planning. In this paper
we propose a novel framework for robot map building
which is based on principal component regression, a
statistical method for extracting low-dimensional de-
pendencies between a set of input and target values. A
supervised set of robot positions (inputs) and associ-
ated high-dimensional sensor measurements (targets)
are assumed. A set of globally uncorrelated features of
the original sensor measurements are obtained by ap-
plying principal component analysis on the target set.
A parametrized model of the conditional density func-
tion of the sensor features given the robot positions is
built based on an unbiased estimation procedure that
fits interpolants for both the mean and the variance
of each feature independently. The simulation results
show that the average Bayesian localization error is an
increasing function of the principal component index.

Keywords: robot environment modeling, prin-
cipal component analysis, generalized linear regres-
sion, Bayesian inference, unbiased variance prediction,
robot localization.

1 Introduction

Useful mobile robots must be able to navigate from
their current state toward a desired state. Most often
the state of a mobile robot is expressed as a position in
the configuration space. However, relying only on the
odometry, the robot will not end up accurately at its
desired position. Sensors looking at the external world
will have to be used for position estimation. Because
sensor signals are noisy, a wide variety of probabilis-
tic methods have been developed to obtain a robust

estimate of the position of the robot given its sensory
inputs, often based on a (learned) relation between
position and sensor pattern [2, 9, 13, 12].

Instead of describing the state in the configuration
space it is also possible to describe the state in the
sensor space: the space spanned by the sensor values
or features derived from these [6]. In this case the
localization is more straightforward, but the desired
state must also be given in the sensor domain.

In both approaches a model has to be made of the
sensor data. This introduces a problem. Current sen-
sor technology provides high-dimensional data vectors
such as images or range profiles. For an accurate mod-
eling of these data we should need an extremely large
set of learning samples. It is therefore essential that
the dimensionality of the data is reduced adequately
before the modeling step. Feature extraction thereby
becomes more and more important in relation with
increasing sensor capabilities. An important question
now is how to determine the best set of features.

A very general approach to feature extraction is
the (non)linear projection of high-dimensional data
onto low dimensional subspaces. In a number of
robotic applications linear projections (principal com-
ponent analysis) have been proposed to preprocess im-
age data [8, 5] or range data [3]. In landmark based
navigation a set of landmarks (usually predefined by
the designer) can be regarded as nonlinear features.
The best set of features should generally minimize the

localization error.

In this paper we first introduce a parametrized
model of the conditional density function of a set of
linear sensor features and show how this model can
be used for localization. We then investigate how the
localization error depends on the selection of linear
features in the model.



2 Feature extraction with PCA

Principal component analysis (PCA) [4] is a sta-
tistical method for reducing the dimensionality of a
data set of correlated variables while retaining most
of the original variation of the data. In robotics the
method has been used for extracting linear features
from images [8] and range sensor data [3].

Assume a set of NV d-dimensional range sensor data
{z,}, forming the rows of an N x d matrix Z. The
measurements are collected at respective robot posi-
tions {x,}, while each dimension d of the data cor-
responds to the measured distance between the robot
and a nearby obstacle along the respective direction.!
To facilitate the computations we first normalize the
column means to zero by subtracting from each row
the mean of the sensor measurements. PCA projects
the data onto a lower (¢ < d)-dimensional space in
such a way that the new ¢ variables, called princi-
pal components or features, are globally uncorrelated,
while most of the variation of the original data set is
preserved.

The numerically most accurate way to do this is
by taking the singular value decomposition [10] Z =
UAVT of the sensor matrix Z, where Vis a d x ¢
orthogonal matrix with columns corresponding to the
q eigenvectors with largest eigenvalues of the covari-
ance matrix of Z. Then the rows of the N x ¢ ma-
trix Y = ZV are the projections of the original d-
dimensional points to the new g-dimensional feature
space, and this projection is optimal under the trace
and also the determinant of the projected covariance
matrix.

3 Principal component regression

Principal component regression [4, ch. 8] is an ex-
tension to the basic PCA framework that also involves
regression. One of the variants of the method involves
modeling the relationships between a set of indepen-
dent variables and an other set of projected variables
obtained with PCA from an original data set. In our
case, the independent or input variable is considered
the robot position vector x, while the target variables
are the projected features y?, with i = 1,...,¢q. Our
task is to define appropriate regression surfaces that
realize a mapping from the robot position to the pro-
jected feature space, and then solve those regression

IFor visualization purposes we assume throughout that the
dimension of the robot workspace is 2, i.e., we ignore the orien-
tation of the robot. It’s straightforward to extend our method
to 3-dimensional workspaces.

problems based on the supervised data {x,,y’}, for
i=1,...,gand n = 1,...,N (note that each robot
position corresponds to one sensor profile, and this
profile is projected by PCA to its ¢ features).

Assuming the dimension of the robot workspace is
2, we fit the interpolating 2-D surfaces to the feature
space by ordinary least squares [10]. This implies fit-
ting each feature separately. For a feature y we assume
a generalized linear mapping f formed by a set of K
fixed two-dimensional Gaussian basis functions ¢y (x)
with centers regularly distributed over the workspace
and spreads half the distance between neighboring
centers so that the functions overlap

K
709 = 3 ann(x) = a7 b(x), 1)
k=1
where a = [ay,...,ax]" are the parameters of the

mapping.

The above generalized linear mapping allows for
easy computation of the parameter vector a for each
feature as we show in the next section. Also, it does
not impose severe overhead because the dimension of
the robot workspace is small. Alternatively, nonlin-
ear mappings based on sigmoid basis functions (feed-
forward neural networks) can be used and trained with
nonlinear optimization [11].

4 Modeling the full conditional density

For each feature the above mapping f induces a
parametrized form of the average E[y|x] of a feature y
given a particular position of the robot x. However, a
much richer source of information is provided by mod-
eling the full conditional density p(y|x) of the feature
given the robot position x.

We model the density p(y|x) of each feature as
a univariate Gaussian centered on the parametrized
mean f(x) and having variance s(x) also depending
on x. Allowing the variance to be a function of the
inputs x allows the mapping to be more realistic than
assuming equal variances over the workspace, while it
also provides a compact, parametrized representation.
We can write the conditional density for a feature y

1 [y — f()]?
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where for the variance we choose a parametrization
similar to the means by using a set of M fixed basis

as

pylx) =



functions ¥, (x)

s%(x) = exp [Z bm¢m(x)] = explb’P(x)].  (3)

The exponent ensures that the variance is always pos-
itive.

From such a parametrized model for the densities of
the individual features we can approximate the joint
conditional density p(y|x) of the feature vector y given
a robot position x as the product of the marginal den-
sities

plylx) = [[ pwlx), (4)
Yy

where the product involves all features, i.e., all ¢ co-
ordinates of y. Although this approximation has been
adopted also by other researchers [2, 9, 12], it may lead
to loss of information since it ignores potential local
(i.e., input-dependent) correlations between features.
However, in the present context the approximation is
more realistic since PCA ensures global uncorrelat-
edness between features.? Having this density allows
us to globally localize the robot in real time by us-
ing some global localization procedure, e.g., Markov
localization [2].

5 Estimating the parameters

We describe here a method for estimating the pa-
rameters a and b in (1) and (3) needed to parametrize
the conditional density (2) of a feature y.

The likelihood of the training set D of robot posi-
tions x, and respective values y,,n = 1,..., N, of a
feature y, written as a function of the unknown pa-
rameter vectors a and b reads®

1
(2m)N/2 1T, s(xn)

exp {_% zﬂ: ['Uns_z(fx(:)ﬂ)] } : (5)

with f(x) and s(x) from (1) and (3), respectively.
In order to obtain an unbiased estimate of a and

N
p(Dla,b) = [] plynlxn) =

b we must apply an iterative two-level procedure [7].

28till the approximation can be considered crude. We have
recently implemented in our group the more general case of an
input-dependent covariance matrix that captures local correla-
tions between features.

3Note that the density p(xy,) is independent of the parame-
ters and thus dropped from the definition of the likelihood.

At the first level of inference we assume known vari-
ance parameters b and maximize (5) with respect to
a. Taking logarithms this is equivalent to minimizing
with respect to a the x? quantity

2
2 [Uﬂ - f(xn)]Z [yn - Zk akPr (Xn)]
b = _ - = -
Ylab) =) ST =) T
(6)
corresponding to a chi-square fitting problem. The
optimal parameter vector a is then [10]

n n

a=(F'F)'Fly, (7)

where y is the N X 1 vector with elements y, =
Yn/5(x,) and F is the N x K design matrix with ele-
ments F, p = ¢r(xn)/s(xn).

At the second level of inference we seek estimates
for the parameter vector b of the input-dependent
noise variance s2(x). To get an unbiased estimate of
b we have to maximize with respect to b the marginal
likelihood obtained by integrating the means out of
the joint likelihood (5) as

p(D]b) = / p(Dla, b) p(a) da, (8)

where p(a) is a problem-dependent, prior set on the pa-
rameters a, introducing some prior knowledge about
the distribution of the a values. For simplicity, we
assume here a Gaussian prior with a very large vari-
ance, showing no preference for any particular values
of a. To facilitate the above integration we expand the
x? function (6) in Taylor series around the maximum
likelihood estimate a from the first level of inference

(a.b) = x*(8.b) + S (a—4) A(a—4),  (9)
with A being the Hessian matrix of the x? function
with respect to a. Note that the first-order deriva-
tive term in the Taylor expansion vanishes since a by
construction minimizes x2(a,b). To compute A we
differentiate (6) twice with respect to parameters ay
and a; to get

A =2FTF (10)

which is also a function of s(x,) and thus of b. As-
suming in (8) a Gaussian prior p(a) with very large
variance and using (9), (6), and (5) the integral (8)

becomes Gaussian on the a parameters yielding (ig-
noring constants)

"R/ —aTo(x,)]?
p(D|b) lF_llzian)exp {éZW}
: )



Taking logarithms and maximizing the formula with
respect to the variances after some algebra we get

SZ(XTL) = [yn — éT‘b(Xn)]Z + ¢T(Xn)(FTF)7]¢(Xn)-

(12)
Finally we estimate b from the new s2(x,) by solving
a second least squares problem to get

b=H'H) 'Hs (13)
log s?(xn)]" and

=Y (Xn) (14)

where s = [log s?(x1), .. .,
H(n,m)

the N x M design matrix of the new least squares
problem.

6 Robot localization and PCA

The simplest way to regard the problem of robot
localization from sensor data is through a Bayesian
perspective: the robot’s belief about its position at
any moment, is encoded in a prior probability quan-
tity p(x). When the robot senses a new feature y
it computes first the likelihood of the measurement
p(y|x) from the parametrized form of the conditional
density (2) and then updates its belief according to
Bayes’ rule

p(y|x) p(x)

PIY) = Ty ) plo) dx

(15)

where the integral ensures that the new probability
quantity integrates to 1. Assuming locally uncorre-
lated features, the Gaussian assumption for p(y|x) al-
lows us to repeat this procedure for all features in y,
leading to updated estimates for the robot’s belief.

A measure of ‘goodness’ of a model for robot local-
ization has been recently proposed in [12] as the aver-
age Bayesian localization error when using the model.
Assuming the robot is at x* observing y*, the localiza-
tion error e(x*, y*) after applying the Bayes’ rule (15)
is computed as

e(x",y") = / L(x, x")p(xly")dx
_ /L(&X*)p(y*IX)p(X)dx (16)

where L(x,x*) a loss function between the true x* and
the estimated x position, e.g., a linear loss ||x — x*||.
To get an average localization error R we must average
the above quantity over all possible x* and y*. The

simplest way to do this is by using the empirical dis-
tribution of the training set giving rise to a Bayesian
expected loss [1]

N
1
R = By - [e(x* R S elxnyn). (A7)
n=1

Substituting from (16) and approximating p(x) from
the empirical distribution of the {x,} we get

Z >t L(%m, X0)p PWnfXm)

Zm 1 P(Yn|%Xm)

(18)

with complexity O(N?).

The smaller this quantity is, the better we expect
the robot to localize in real time, thus a model for
p(y|x) that gives small R should be considered more
appropriate for robot localization than one with large
R.

Having defined the Bayesian localization error
above in terms of the marginal conditional density

p(y|x) of each feature y, it is now interesting to in-

vestigate how a linear feature projection method like
PCA affects this quantity. The parameters of the con-
ditional density of each feature have already been esti-
mated by the method of Section 5, so it is straightfor-
ward to compute the localization error for each indi-
vidual feature by simply introducing the training data
into (18). In the next section we show this dependence
for a typical indoor configuration.

7 Experiments

A series of experiments were carried out using sim-
ulated range data from a robot system which was put
randomly in a room with obstacles shown in Fig. 1a.
Every datapoint consisted of 360 range measurements
over a field of 360 degrees. We obtained datapoints
by randomly positioning the robot at about 1000 lo-
cations in the room, normalized for the experiments
in the range [—1,1] (the orientation was kept fixed).
Note that for many real situations it will be difficult to
collect so many supervised learning points, but they
can be generated from a smaller set of real measure-
ments as in [3].

We first projected linearly all datapoints onto their
eigenspace with the method described in Section 2.
With the techniques described in Section 5 we mod-
eled the full conditional density of these projected
points given the position of the robot. As an example
we show in figure Fig. 1b the values of the projected
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b. Projected data and interpolants

Figure 1: (a) The room set-up. (b) The projected data on the 1st principal component when the robot moves
along the line in (a) together with the estimated mean and variance. (¢,d) The interpolating surfaces for the 1st

and 3rd principal components.

datapoints on the first principal component when the
robot moves on the line shown in Fig. 1a (horizontal
translation with vertical offset —0.6), together with
the obtained parametrization after applying our unbi-
ased estimation procedure in Section 5.

We observe that moving along obstacles, which
gives discontinuities in the original sensor measure-
ments, results in high noise estimates in the projected
space. With our model it is possible to parametrize
the noise variance as a function of inputs (dashed
line) around the mean (solid line). For visualization
purposes a set of measurements obtained nearby the
translation line are also shown in the figure. Note how
the noise variance estimate is affected when the robot
passes near the oval obstacle on the left.

In Fig. 1c and 1d we show the interpolating sur-
faces of the parametrized means for the first and the
third principal component. We can see that the first
principal component varies more with changes in po-
sition than the third principal component. This sug-
gests that the first component is a better feature for
localization than the third one.

To get a more formal justification of this, we com-
puted the interpolating surfaces for all 360 principal
components and then estimated from (18) the local-
ization error that each of them introduces. As shown

localization error

Figure 2: The Bayesian localization error as a function
of the principal component index.

in Fig. 2, the localization error is, in general, an in-
creasing function of the principal component index, a
property which says that PCA yields linear features
with decreasing localization performance.

8 Conclusions-related work

We presented a method for mobile robot envi-
ronment modeling that is based on principal com-
ponent regression, a statistical method for building
low-dimensional dependencies of input data and tar-
gets when the prediction of the projected data is of



interest. We proposed a model for the conditional
density of projected features given robot positions,
the parametrization of which allows the noise of the
data to be spatially varying, a realistic model for mo-
bile robot applications. We described a method that
ensures unbiased estimation of the input-dependent
noise variance.

An experimental result was also obtained by inves-
tigating the relationship between the linear feature ex-
traction method of principal component analysis and
the Bayesian localization error described in Section 6.
It turned out that the localization error is an increas-
ing function of the principal component index.

A parametrization of the conditional density p(y|x)
similar to ours was proposed in [9]. There, the condi-
tional density was defined as a mixture of local Gaus-
sian densities, whose means were linear functions of
the robot positions and the variances constant per
component. The assumption of linearity, although
weaker than our nonlinear parametrization, was justi-
fied by the use of a small set of raw proximity sensor
measurements which, for planar rooms, exhibit locally
linear behavior.

In [3] the method of PCA was used for extracting
a small number of linear features from range sensor
profiles, while instead of a continuous nonlinear map-
ping the authors proposed a discretization of both the
workspace and the sensor space and then using a tab-
ulated function for modeling their dependencies.

In [2, 13] a separate model for the conditional
density was assumed for each cell of the discretized
workspace, i.e., a single Gaussian and a mixture of
Gaussians, respectively. Finally, in [12] a local condi-
tional density was assumed that was computed by a
nearest neighbors approach.
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