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estimate of the position of the robot given its sensoryinputs, often based on a (learned) relation betweenposition and sensor pattern [2, 9, 13, 12].Instead of describing the state in the con�gurationspace it is also possible to describe the state in thesensor space: the space spanned by the sensor valuesor features derived from these [6]. In this case thelocalization is more straightforward, but the desiredstate must also be given in the sensor domain.In both approaches a model has to be made of thesensor data. This introduces a problem. Current sen-sor technology provides high-dimensional data vectorssuch as images or range pro�les. For an accurate mod-eling of these data we should need an extremely largeset of learning samples. It is therefore essential thatthe dimensionality of the data is reduced adequatelybefore the modeling step. Feature extraction therebybecomes more and more important in relation withincreasing sensor capabilities. An important questionnow is how to determine the best set of features.A very general approach to feature extraction isthe (non)linear projection of high-dimensional dataonto low dimensional subspaces. In a number ofrobotic applications linear projections (principal com-ponent analysis) have been proposed to preprocess im-age data [8, 5] or range data [3]. In landmark basednavigation a set of landmarks (usually prede�ned bythe designer) can be regarded as nonlinear features.The best set of features should generally minimize thelocalization error.In this paper we �rst introduce a parametrizedmodel of the conditional density function of a set oflinear sensor features and show how this model canbe used for localization. We then investigate how thelocalization error depends on the selection of linearfeatures in the model.



2 Feature extraction with PCAPrincipal component analysis (PCA) [4] is a sta-tistical method for reducing the dimensionality of adata set of correlated variables while retaining mostof the original variation of the data. In robotics themethod has been used for extracting linear featuresfrom images [8] and range sensor data [3].Assume a set of N d-dimensional range sensor datafzng, forming the rows of an N � d matrix Z. Themeasurements are collected at respective robot posi-tions fxng, while each dimension d of the data cor-responds to the measured distance between the robotand a nearby obstacle along the respective direction.1To facilitate the computations we �rst normalize thecolumn means to zero by subtracting from each rowthe mean of the sensor measurements. PCA projectsthe data onto a lower (q < d)-dimensional space insuch a way that the new q variables, called princi-pal components or features, are globally uncorrelated,while most of the variation of the original data set ispreserved.The numerically most accurate way to do this isby taking the singular value decomposition [10] Z =U�VT of the sensor matrix Z, where V is a d � qorthogonal matrix with columns corresponding to theq eigenvectors with largest eigenvalues of the covari-ance matrix of Z. Then the rows of the N � q ma-trix Y = ZV are the projections of the original d-dimensional points to the new q-dimensional featurespace, and this projection is optimal under the traceand also the determinant of the projected covariancematrix.3 Principal component regressionPrincipal component regression [4, ch. 8] is an ex-tension to the basic PCA framework that also involvesregression. One of the variants of the method involvesmodeling the relationships between a set of indepen-dent variables and an other set of projected variablesobtained with PCA from an original data set. In ourcase, the independent or input variable is consideredthe robot position vector x, while the target variablesare the projected features yi, with i = 1; : : : ; q. Ourtask is to de�ne appropriate regression surfaces thatrealize a mapping from the robot position to the pro-jected feature space, and then solve those regression1For visualization purposes we assume throughout that thedimension of the robot workspace is 2, i.e., we ignore the orien-tation of the robot. It's straightforward to extend our methodto 3-dimensional workspaces.

problems based on the supervised data fxn; ying, fori = 1; : : : ; q and n = 1; : : : ; N (note that each robotposition corresponds to one sensor pro�le, and thispro�le is projected by PCA to its q features).Assuming the dimension of the robot workspace is2, we �t the interpolating 2-D surfaces to the featurespace by ordinary least squares [10]. This implies �t-ting each feature separately. For a feature y we assumea generalized linear mapping f formed by a set of K�xed two-dimensional Gaussian basis functions �k(x)with centers regularly distributed over the workspaceand spreads half the distance between neighboringcenters so that the functions overlapf(x) = KXk=1 ak�k(x) = aT�(x); (1)where a = [a1; : : : ; aK ]T are the parameters of themapping.The above generalized linear mapping allows foreasy computation of the parameter vector a for eachfeature as we show in the next section. Also, it doesnot impose severe overhead because the dimension ofthe robot workspace is small. Alternatively, nonlin-ear mappings based on sigmoid basis functions (feed-forward neural networks) can be used and trained withnonlinear optimization [11].4 Modeling the full conditional densityFor each feature the above mapping f induces aparametrized form of the average E[yjx] of a feature ygiven a particular position of the robot x. However, amuch richer source of information is provided by mod-eling the full conditional density p(yjx) of the featuregiven the robot position x.We model the density p(yjx) of each feature asa univariate Gaussian centered on the parametrizedmean f(x) and having variance s(x) also dependingon x. Allowing the variance to be a function of theinputs x allows the mapping to be more realistic thanassuming equal variances over the workspace, while italso provides a compact, parametrized representation.We can write the conditional density for a feature yas p(yjx) = 1s(x)p2� exp��[y � f(x)]22s2(x) � ; (2)where for the variance we choose a parametrizationsimilar to the means by using a set of M �xed basis



functions  m(x)s2(x) = exp" MXm=1 bm m(x)# = exp[bT (x)]: (3)The exponent ensures that the variance is always pos-itive.From such a parametrized model for the densities ofthe individual features we can approximate the jointconditional density p(yjx) of the feature vector y givena robot position x as the product of the marginal den-sities p(yjx) =Y8y p(yjx); (4)where the product involves all features, i.e., all q co-ordinates of y. Although this approximation has beenadopted also by other researchers [2, 9, 12], it may leadto loss of information since it ignores potential local(i.e., input-dependent) correlations between features.However, in the present context the approximation ismore realistic since PCA ensures global uncorrelat-edness between features.2 Having this density allowsus to globally localize the robot in real time by us-ing some global localization procedure, e.g., Markovlocalization [2].5 Estimating the parametersWe describe here a method for estimating the pa-rameters a and b in (1) and (3) needed to parametrizethe conditional density (2) of a feature y.The likelihood of the training set D of robot posi-tions xn and respective values yn; n = 1; : : : ; N , of afeature y, written as a function of the unknown pa-rameter vectors a and b reads3p(Dja;b) = NYn=1 p(ynjxn) = 1(2�)N=2Qn s(xn)exp(�12Xn [yn � f(xn)]2s2(xn) ) ; (5)with f(x) and s(x) from (1) and (3), respectively.In order to obtain an unbiased estimate of a andb we must apply an iterative two-level procedure [7].2Still the approximation can be considered crude. We haverecently implemented in our group the more general case of aninput-dependent covariance matrix that captures local correla-tions between features.3Note that the density p(xn) is independent of the parame-ters and thus dropped from the de�nition of the likelihood.

At the �rst level of inference we assume known vari-ance parameters b and maximize (5) with respect toa. Taking logarithms this is equivalent to minimizingwith respect to a the �2 quantity�2(a;b) =Xn [yn � f(xn)]2s2(xn) =Xn [yn �Pk ak�k(xn)]2s2(xn) ;(6)corresponding to a chi-square �tting problem. Theoptimal parameter vector â is then [10]â = (FTF)�1FTy; (7)where y is the N � 1 vector with elements yn =yn=s(xn) and F is the N �K design matrix with ele-ments Fn;k = �k(xn)=s(xn).At the second level of inference we seek estimatesfor the parameter vector b of the input-dependentnoise variance s2(x). To get an unbiased estimate ofb we have to maximize with respect to b the marginallikelihood obtained by integrating the means out ofthe joint likelihood (5) asp(Djb) = Z p(Dja;b) p(a) da; (8)where p(a) is a problem-dependent prior set on the pa-rameters a, introducing some prior knowledge aboutthe distribution of the a values. For simplicity, weassume here a Gaussian prior with a very large vari-ance, showing no preference for any particular valuesof a. To facilitate the above integration we expand the�2 function (6) in Taylor series around the maximumlikelihood estimate â from the �rst level of inference�2(a;b) = �2(â;b) + 12(a� â)TA(a � â); (9)with A being the Hessian matrix of the �2 functionwith respect to a. Note that the �rst-order deriva-tive term in the Taylor expansion vanishes since â byconstruction minimizes �2(a;b). To compute A wedi�erentiate (6) twice with respect to parameters akand al to get A = 2FTF (10)which is also a function of s(xn) and thus of b. As-suming in (8) a Gaussian prior p(a) with very largevariance and using (9), (6), and (5) the integral (8)becomes Gaussian on the a parameters yielding (ig-noring constants)p(Djb) / jFTFj�1=2Qn s(xn) exp(�12Xn [yn � âT�(xn)]2s2(xn) ) :(11)



Taking logarithms and maximizing the formula withrespect to the variances after some algebra we gets2(xn) = [yn � âT�(xn)]2 + �T (xn)(FTF)�1�(xn):(12)Finally we estimate b̂ from the new s2(xn) by solvinga second least squares problem to getb̂ = (HTH)�1HT s (13)where s = [log s2(x1); : : : ; log s2(xN )]T andH(n;m) =  m(xn) (14)the N � M design matrix of the new least squaresproblem.6 Robot localization and PCAThe simplest way to regard the problem of robotlocalization from sensor data is through a Bayesianperspective: the robot's belief about its position atany moment is encoded in a prior probability quan-tity p(x). When the robot senses a new feature yit computes �rst the likelihood of the measurementp(yjx) from the parametrized form of the conditionaldensity (2) and then updates its belief according toBayes' rule p(xjy) = p(yjx) p(x)R p(yjx) p(x) dx ; (15)where the integral ensures that the new probabilityquantity integrates to 1. Assuming locally uncorre-lated features, the Gaussian assumption for p(yjx) al-lows us to repeat this procedure for all features in y,leading to updated estimates for the robot's belief.A measure of `goodness' of a model for robot local-ization has been recently proposed in [12] as the aver-age Bayesian localization error when using the model.Assuming the robot is at x� observing y�, the localiza-tion error e(x�; y�) after applying the Bayes' rule (15)is computed ase(x�; y�) = ZxL(x;x�)p(xjy�)dx= ZxL(x;x�)p(y�jx)p(x)p(y�) dx (16)where L(x;x�) a loss function between the true x� andthe estimated x position, e.g., a linear loss jjx � x�jj.To get an average localization errorR we must averagethe above quantity over all possible x� and y�. The

simplest way to do this is by using the empirical dis-tribution of the training set giving rise to a Bayesianexpected loss [1]R = Ex�;y� [e(x�; y�)] � 1N NXn=1 e(xn; yn): (17)Substituting from (16) and approximating p(x) fromthe empirical distribution of the fxng we getR = 1N NXn=1PNm=1 L(xm;xn)p(ynjxm)PNm=1 p(ynjxm) ; (18)with complexity O(N2).The smaller this quantity is, the better we expectthe robot to localize in real time, thus a model forp(yjx) that gives small R should be considered moreappropriate for robot localization than one with largeR.Having de�ned the Bayesian localization errorabove in terms of the marginal conditional densityp(yjx) of each feature y, it is now interesting to in-vestigate how a linear feature projection method likePCA a�ects this quantity. The parameters of the con-ditional density of each feature have already been esti-mated by the method of Section 5, so it is straightfor-ward to compute the localization error for each indi-vidual feature by simply introducing the training datainto (18). In the next section we show this dependencefor a typical indoor con�guration.7 ExperimentsA series of experiments were carried out using sim-ulated range data from a robot system which was putrandomly in a room with obstacles shown in Fig. 1a.Every datapoint consisted of 360 range measurementsover a �eld of 360 degrees. We obtained datapointsby randomly positioning the robot at about 1000 lo-cations in the room, normalized for the experimentsin the range [�1; 1] (the orientation was kept �xed).Note that for many real situations it will be di�cult tocollect so many supervised learning points, but theycan be generated from a smaller set of real measure-ments as in [3].We �rst projected linearly all datapoints onto theireigenspace with the method described in Section 2.With the techniques described in Section 5 we mod-eled the full conditional density of these projectedpoints given the position of the robot. As an examplewe show in �gure Fig. 1b the values of the projected
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c. 1st pc d. 3rd pcFigure 1: (a) The room set-up. (b) The projected data on the 1st principal component when the robot movesalong the line in (a) together with the estimated mean and variance. (c,d) The interpolating surfaces for the 1stand 3rd principal components.datapoints on the �rst principal component when therobot moves on the line shown in Fig. 1a (horizontaltranslation with vertical o�set �0:6), together withthe obtained parametrization after applying our unbi-ased estimation procedure in Section 5.We observe that moving along obstacles, whichgives discontinuities in the original sensor measure-ments, results in high noise estimates in the projectedspace. With our model it is possible to parametrizethe noise variance as a function of inputs (dashedline) around the mean (solid line). For visualizationpurposes a set of measurements obtained nearby thetranslation line are also shown in the �gure. Note howthe noise variance estimate is a�ected when the robotpasses near the oval obstacle on the left.In Fig. 1c and 1d we show the interpolating sur-faces of the parametrized means for the �rst and thethird principal component. We can see that the �rstprincipal component varies more with changes in po-sition than the third principal component. This sug-gests that the �rst component is a better feature forlocalization than the third one.To get a more formal justi�cation of this, we com-puted the interpolating surfaces for all 360 principalcomponents and then estimated from (18) the local-ization error that each of them introduces. As shown
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Figure 2: The Bayesian localization error as a functionof the principal component index.in Fig. 2, the localization error is, in general, an in-creasing function of the principal component index, aproperty which says that PCA yields linear featureswith decreasing localization performance.8 Conclusions-related workWe presented a method for mobile robot envi-ronment modeling that is based on principal com-ponent regression, a statistical method for buildinglow-dimensional dependencies of input data and tar-gets when the prediction of the projected data is of



interest. We proposed a model for the conditionaldensity of projected features given robot positions,the parametrization of which allows the noise of thedata to be spatially varying, a realistic model for mo-bile robot applications. We described a method thatensures unbiased estimation of the input-dependentnoise variance.An experimental result was also obtained by inves-tigating the relationship between the linear feature ex-traction method of principal component analysis andthe Bayesian localization error described in Section 6.It turned out that the localization error is an increas-ing function of the principal component index.A parametrization of the conditional density p(yjx)similar to ours was proposed in [9]. There, the condi-tional density was de�ned as a mixture of local Gaus-sian densities, whose means were linear functions ofthe robot positions and the variances constant percomponent. The assumption of linearity, althoughweaker than our nonlinear parametrization, was justi-�ed by the use of a small set of raw proximity sensormeasurements which, for planar rooms, exhibit locallylinear behavior.In [3] the method of PCA was used for extractinga small number of linear features from range sensorpro�les, while instead of a continuous nonlinear map-ping the authors proposed a discretization of both theworkspace and the sensor space and then using a tab-ulated function for modeling their dependencies.In [2, 13] a separate model for the conditionaldensity was assumed for each cell of the discretizedworkspace, i.e., a single Gaussian and a mixture ofGaussians, respectively. Finally, in [12] a local condi-tional density was assumed that was computed by anearest neighbors approach.References[1] J. O. Berger. Statistical decision theory andBayesian analysis. Springer-Verlag, New York,2nd edition, 1985.[2] W. Burgard, D. Fox, D. Hennig, and T. Schmidt.Estimating the absolute position of a mobilerobot using position probability grids. In Proc.13th Nat. Conf. on Arti�cial Intelligence, pages896{901, Portland, Oregon, 1996.[3] J. L. Crowley, F. Wallner, and B. Schiele. Positionestimation using principal components of rangedata. In Proc. IEEE Int. Conf. on Robotics andAutomation, Leuven, Belgium, May 1998.
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