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Abstract
This paper presents a system of absolute localization

based on the cooperation of a stereoscopic
omnidirectional vision system and a dead-reckoning
system. To do it we use an original perception system
which allows our omnidirectional vision sensor SYCLOP
to move along a rail. The first part of our study will deal
with the problem of building the sensorial model with the
help of the two stereoscopic omnidirectional images. To
solve this problem we propose an approach based on the
fusion of several criteria which will be made according to
Dempster-Shafer rules. As for the second part, it will be
devoted to exploiting this sensorial model to localize the
robot thanks to matching the sensorial primitives with the
environment map. We use the dead-reckoning prediction
to decrease the combinatory aspect of the matching
algorithm. We analyze the performance of our global
absolute localization system on several robot’s elementary
moves, in an indoor environment.

I.Introduction

The localization problem is very important for the
navigation paradigm. Then, localizing the robot in its
evolution environment constitutes a prerequisite step to
any decision making [4].

Two kinds of localization method can be distinguished
: the absolute localization methods and the relative
localization methods. Localization methods which can
satisfy the constraints imposed by the navigation, are
generally based on locating artificial beacons. This kind of
system is generally employed for industrial applications as
for example the navigation system developed by Durrant-
Whyte [6] for an Autonomous Guided Vehicle which
transports containers. These methods are fast and reliable,
but unfortunately they lack flexibility and modularity
because it is necessary to fit out the robot's evolution
environment.

Another category of method consists in referencing
directly on characteristic elements of the robot’s evolution
environment. Indeed, these solutions offer a great
modularity and allow the robot to localize itself in
accordance to the landmarks. This kind of localiz ation is
generally founded on a matching stage between a sensorial
model and a theoretic map of the environment. The

perception systems used in that case are often the vision
systems and the range finding ones. Thus, Gonzalez in [7]
determines the absolute position of its robot by using the
line segments as sensorial primitives. These are obtained
thanks to a rotating laser rangefinder. In [4], Leonard
develops a method of dynamic localization based on the
location of “geometric beacons”, which are detected by a
belt of ultrasonic sensors. These geometric beacons are
determined thanks to regions of constant depth (RCD).
Atiya [2], use a CCD camera to detect vertical lines of the
environment as natural beacons. Similarly Yagi uses an
omnidirectional vision system to develop navigation and
environment map building methods [3]. We can notice that
the robustness of this kind of localization methods is
mainly linked to the matching stage. The more precise and
rich information the sensorial model will give, the more
robust the matching stage will be. That is why we have
worked on an original method of sensorial model building
based on the use of a stereoscopic omnidirectional
perception system. In order to reduce the high
combinatory aspect of the matching stage and to increase
the robustness of this stage, we use a position estimation
given by an odometer.

The first part of this paper presents the principle of our
stereoscopic omnidirectional perception system. The
second part will deal with our sensorial model building
method using the multicriteria fusion, made according to
Dempster-Shafer rules. Our absolute localization method
will be presented in the last part. In the conclusion we will
analyze the experimental results reached with our mobile
robot SARAH.

II. The stereoscopic omnidirectional sensor

The stereoscopic omnidirectional sensor put on our
mobile robot SARAH is based on the rigid translation of
the omnidirectional vision system SYCLOP used in our
laboratory [5]. The SYCLOP system is similar to the
COPIS one used by YAGI [3] and is composed of a conic
mirror and a CCD camera (Figure 1). It allows us to detect
all the vertical landmarks of the environment thanks to a
dimensional projection.

The rigid translation has been made thanks to two
horizontal rails which allow a precise straight move in the
horizontal SYCLOP sensor plan. Thus the system insures



the acquisition of two omnidirectional images of the
environment within 40 centimeters of one another. The
distance between these two shots has been determined
experimentally by making a compromise between
congestion and precision in the sensorial primitive
determination.

d

Figure 1 : Principle of the
stereoscopic omnidirectional sensor

Figure 2 : determination of the
sensorial primitives

If for each point we know the two radial straight lines
generated on each cone (Figure 2), we can calculate the
position of the vertical landmarks (edges, corners,

Three treatments are necessary to get these points :
• the radial segment of the two images
• the matching of the sector thus found
• the calculation of the coordinates of the points found

III.Sensorial primitive treatments

We want to treat the radial straight lines corresponding
to the vertical landmarks. The lines being all radial and
generally distributed homogeneously on 360 degrees, we
take into consideration five concentric grey level circles
whose average is then made. We obtain thus one grey
level curve for each image (Figure 3).
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Figure 3 : Grey level curve for one image

Figure 4 : Global segmentation algorithm
It is then necessary to treat this signal of grey level to

extract the great variation which corresponds to sector
changes. We propose a segmentation method based on the
fusion of two complementary treatments (Figure 4). The
fusion is made thanks to the combination rules of the
Dempster-Shafer theory [8].

III.1 - Gradient segmentation method

We apply a gradient vector on the grey level curve. To
limit the noise importance we have decided to use a vector
of dimension 7 : [-2 -2 -1 0 1 2 2]. The problem of this
classical approach is that a change of sector generates a
multitude of radial straight lines. That’s why we have
developed a post-treatment to filter the gradient curve : on
the curves we look for the local maximum and minimum
and set all the other points at zero. During the
thresholding, this treatment allows to take into
consideration only the characteristic points in the sector
building. In spite of a better detection of the radial straight
lines, we can note the apparition of quite a big number of
noisy straight lines. So, it seems necessary to plan another
complementary treatment.

III.2 - Duda-Hart segmentation method

The Duda-Hart algorithm [9] is mainly used as a
segmentation method on a set of points as in rangefinding
data for example [1]. It consists in grouping recursively
sets of lined up points in connection with distance criterion
point-segment. The algorithm is stopped when there are no
points left to check the distance condition. By applying
this method to our grey level curves, we take into
consideration the grey level continuity criterion (Figure 5).
This criterion is complementary to the first one, based on
the breaking between the grey level ranges.
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Figure 5 : Duda-Hart algorithm applied to a grey level curve

We must note a few points concerning this criterion :
• there isn’t an important number of radial straight lines

for a separation between two sectors.
• When a breaking point (radial straight line) is detected

by this algorithm, its existence must be validated with
the gradient criterion. On the contrary, if this
algorithm has detected no straight line, there is a very
great probability that none exists.

• The lighting conditions have little influence on the
number of detected lines, contrary to the gradient
(threshold problem).

The next step consists in merging these two
complementary methods.

III.3 - Segmentation data fusion

The fusion of the previous methods consists in solving two
problems :



• Finding an automatic threshold method for the two
treatments.

• Merging the two types of information.
Using the Dempster-Shafer rules [8] will allow us to

solve these two problems. Then we consider the f1 function
corresponding to the absolute value of the gradient and the
f2 function corresponding to the Duda-Hart algorithm. For
each point of the grey level curves, the f2 function will be
defined as equal to zero for the lined up points and equal
to the distance breakpoint-segment which has created the
division of a set of points into two segments.

We then try to calculate a minimum value under which
no radial line can exist and a maximum value above which
a straight line can exist. The further the value of a point
moves from the average of all the points, the more
probable it is to be a sector separation according to
Dempster-Shafer. As the standard deviation represents the
average deviation in relation to the average, we have
decided to center the two curves of the value
“Average+standard deviation” and to work on the
following interval : [Average; Average + ( 2× standard deviation ) ]

Then we reduce this interval to [0;1] so that all the
points from the two curves could be represented in this
“ambiguity window”. We have given the value 0 to all the
points situated below this interval and the value 1 for all
the points above. Our frame of discernment is thus
composed of two elements : “YES” and “NO”
corresponding to those assertions :

- “yes, a radial straight line exists”
- “no, a radial straight line doesn’t exist”

So, we can write the following 4 Basic Probability
Assignment (B.P.A.) :

m1(YES) = f1 M2(YES) = f2 (1)
m1(NO) = 1-f1 m2(NO) = 1-f2

We can then perform the combination calculation
thanks to the Dempster-Shafer rules [8] which now allows
to calculate the conflict coefficient between our two
elements of the frame of discernment :

k = m1(YES).m2(NO)+ m1(NO).m2(YES) (2)
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Figure 7 : Segmentation obtained
with the fusion

If k<1 the conflict is not complete and the combination
of belief functions (figure 6) for each β element of the
frame of discernment is given by (Figure 6):
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To determine the existence of radial straight lines
(Figure 7), we take all the points whose B.P.A. for the YES
is superior to the NO.

IV. Sector matching algorithm

The matching stage consists in matching the different
grey level sectors detected in the two images with a
maximum of robustness. Here again we use Dempster-
Shafer for the fusion of the different criteria (Figure 8).

Because the two cones of the perception system are far
from one another, the vertical landmarks cannot appear
identically on the two images. Indeed some sectors can
appear on one image but not on the other because of
occultation problems or because of the difference of the
two segmentations. Thus the sectors will not follow one
another in the same order on the two images. It is thus
necessary to find more significant matching criteria than
the order of apparition. To solve this problem we have
selected 4 comparison criteria for each sector :
• The inclination of the approximate straight lines of the

set of sector points.
• The average of the grey level sector.
• The standard deviation of the grey level sectors.
• The geometrical criterion of the sector.
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Sector matching 
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Average  Standard 
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Figure 8 : Global matching sector algorithm

IV.1 - Matching criteria determination

The first matching criterion is calculated from the grey
level curves. It consists in approximating the set of points
corresponding to each sector thanks to a least square line.
We have noted that the orientation of this line segment
(Duda-Hart segmentation of the Figure 5) varied little
between the two images for a given sector : this constitutes
experimentally a good matching criterion.

The second chosen criterion is the average of the sector
taken on the grey level curve.

The third one is the standard deviation of each sector
also taken on this curve. It is complementary to the second
one as it represents the dispersion around the average.

The last criterion is the geometrical one. We consider
the plan containing the base of the two cones A and B with
a radius R , separated by the distance d. We suppose this
plan to be parallel to the one on which the robot moves.
We consider that the robot’s center of reference is situated
on the center of the cone A and that the two cones are
lined on the axis Ox (Figure 10).

Two cases can be contemplated : the considered
landmark is detected in the same circle quarter on the two
images but with two different angles, or in adjacent



symmetrical circle quarters (Figure 10). Indeed a vertical
landmark seen of the right by the left sensor is obligatorily
seen on the right by the right sensor. Moreover the angle
made each side of the sector on the left cone must be
superior to the angle of each side corresponding to this
sector on the right cone (Figure 10).

IV.2 - Matching criteria fusion

Our fusion method used the Dempster-Shafer's rules.
The matching of the sector of an image with another sector
must be managed with a positive and negative answer.
That's why our discernment frame is made of two elements
“YES” for “yes the two sectors must be matched” and
“NO” for “no the two sectors must not be matched”. By
considering four sensors corresponding to the four
matching criteria, we can establish the B.P.A. of each
sensor for the two elements of the frame of discernment.
To know if the γ sector of an image must be matched with
the sector λ of the other image (Figure 10), we must set up
the matching function between the output of our sensors
and the B.P.A. of each element in the frame of
discernment (Figure 9).
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Figure 9 : Matching functions for the sector matching stage
The first three functions correspond to the difference of

the first three sensors between the γ and the λ sector. The
last function is given by the geometrical criterion :
• If the γ sector can be geometrically matched to the λ

sector, the B.P.A. for “YES” is equal to 0.5,
• otherwise the discernment frame is equal to 0.

We can then calculate the B.P.A. and the k  conflict
coefficient between the two elements of the frame of
discernment. If k<1 then the conflict is not complete and
the combinion of belief functions for each β of the frame
of discernment is given by :

( ) ( ) ( ) ( ) ( )
k

mmmm
mmmm

−
=⊗⊗⊗

1
... 4321

4321

βββββ (4)

IV.3 - Global matching algorithm

We know that the geometrical criterion reduces the
research of the sectors which can be matched, but also that
a sector can be matched only once. That’s why the global
matching algorithm is composed of three treatments
(Figure 10) :

• First, we calculate the matching of the sectors which
have the highest geometric criterion : those of the A-I
zone. They must then be matched with the sectors of
the B-I zone.

• Secondly, we try to match those of the B-II zone with
the sectors of the A-II zone.

• Lastly, the sectors of the A-II zone must be matched
with the remaining ones of the B-I zone.
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Figure 10 : Geometric constrainsts for the sector matching
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Figure 11 : Segmentation and final sector matching for the two images
corresponding to a stereoscopic acquisition

In order not to commit matching errors, we keep a
solution only if it is unique, otherwise no decision is taken.
In that case the algorithm continues with the other sectors.
What we call the unique solution is here the maximum
solution superior to the probability 0.5 and distant from
another point of at least 0.1. For each matching, we repeat
this stage. Indeed a matching can allow to remove
previous matching ambiguities.

V. Landmark position determination

Once the sectors have been matched, we have only to
calculate the points of the segments we represent. To do it,
we know the orientation angle of straight lines defining a
sector and the distance separating the two cones. The
coordinates of all the points in sensor references are
calculated with :
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VI. Localization algorithm

We get a sensorial model where two types of sensorial
primitives can be considered : the points which
characterize vertical landmarks, or the segments
characterizing a horizontal landmark.

We have two possibilities to localize the robot :
• Matching the points of the sensorial model with the



points listed in the theoretical environment map,
• Matching the segments of the sensorial model with

the theoretical map segments
Theoretically each couple of matched sectors

represents a horizontal landmark. We can see that in some
cases it is not checked. For example, the vacuum (door
opening, corridor ...) is characterized by a segment. We
can thus say that if we consider segments as sensorial data,
more horizontal landmarks will appear. We can add
another case where a couple of sector represents a set of
horizontal landmarks. Finally for certain angular
configurations an important error can appear on a segment
orientation coefficient. The accumulation of all these
errors can in some cases create a sensorial model which
can’t be exploited from the segment point of view for the
matching algorithm.

That’s why we have decided to consider more robust
geometric primitives than the segments, namely the points.

The most robust convergence criterion that we have
kept for the matching algorithm is based on the Cartesian
distance between each sensorial model point and the
nearest one of the environment map.

By superposing the sensorial model experimentally got
with the environment map we can notice a relatively
important precision in the determination of the points
coordinates (Figure 13). So, we use this superposition
directly to localize the robot from the translation and the
rotation obtained with the matching algorithm. The
principle of our localization method is finally as follows :
• we consider 2 points of the sensorial model
• we look for 2 points of the theoretical model

corresponding to the 2 chosen points in connection with
the Cartesian distance.

• we calculate the distance separating the sensorial model
remaining points from the nearest theoretically model
points. This constitutes our final selection criterion.

The first stage of this algorithm is strongly
combinatorial. The number of possible couples of points is
equal to n(n-1)/2 for n points of the sensorial model.

The first amelioration to reduce this complexity
consists in using only the two points from the matching of
an identical sector, which permits to reduce the number of
possible couples to n.

To find the theoretical model couple which best
corresponds to the sensorial model, we must calculate the
distance which separates these points. We then compare
the two distances (sensorial and theoretical) for all the
couples of points of the theoretical model. Once a solution
has been found, we calculate the rotating angle which must
be applied to the set of remaining points.

About this comparison stage we can note that smaller
the number of tested segments matching combinations is,
the more robust the matching stage is. Moreover in order
to reduce the complexity of this stage, the reduction of
tested couples of points combination is necessary. For this,

we use the position estimation and its associated
incertitude domain given by dead-reckoning. We obtain
the position and the incertitude domain with the classical
equations linked to the dead-reckoning [10] [5]. In our
matching problem, we determine a domain of possible
absolute position from the incertitude ellipse which we
assimilate as a circle. The radius of these circles are
calculated with the length of the major axis of the
incertitude ellipse. Then the second amelioration of the
initial matching algorithm consists in ejecting the
combinations of sensorial points couples and theoretical
points which generate a position out of the domain of
possible positions. This couples selection stage permits to
avoid computing the (n-2) points association after the
couple of points matching.

Lastly we have to calculate, for each remaining
sensorial model point, the minimal distance which
separates it from a point of the theoretical model. The
cumulated distance (sensorial point-theoretical point)
allows to choose the best position. Our selection criterion
of the final solution is then the minimum cumulated
distance error.

VII.Experimental results

To test the robustness of our localization algorithm, we
have executed it on several sensorial acquisitions made in
an indoor environment (Figure 12). The acquisitions are
made when the robot has stopped, with our stereoscopic
omnidirectional sensor shown on Figure 12.

Figure 12 : Our stereoscopic omnidirectional sensor and the
experimental environment
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Theoretical model

Sensorial model
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Figure 13 : Results obtained with our localization method on two
stereoscopic acquisitions



Figure 13 and Figure 14 presents the results of our
localization method showing the final matching of the
environment map with the stereoscopic sensorial model.
On Figure 14 we can note that the dead reckoning position
estimation is resetted for each acquisition with the absolute
position estimation.
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Figure 14 : Cooperation between the omnidirectional stereoscopic
sensor and the dead-reckoning system.
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configuration estimation of the robot

In several acquisitions, we have quantify on Figure 15
the number of eliminated combinations with the dead-
reckoning in connection with the number with none use of
odometry. We can note on the one hand that the
preciseness of the localization method is great (error curve
on Figure 16) and on the other hand that the error criterion
for distance is highly discriminating since our method has
given a correct matching for the totality of realized
acquisitions. Moreover the reduction of the tested
combinations with the dead-reckoning allows to obtain a
robust absolute position estimation with an acceptable
computation time.

VIII.Conclusion

We have developed a localization system based on a
cooperation of a stereoscopic omnidirectional perception
system and a dead-reckoning system. We have had to
solve the main problem residing in the building of a robust
sensorial model from two exteroceptive conical sensors.
The optimization of the robustness is reached thanks to the
information fusion from complementary and elementary
treatments. We have used the fusion method from the
Dempster-Shafer theory. It has allowed us to take into

account the notion of weighting for each elementary
treatment. We have tested our building method on several
acquisitions in an indoor environment, which has allowed
us to put into light the interest of our approach : whatever
the type of environment, we reached an important
precision on the sensorial considered primitives. We could
thus develop a robust absolute localization algorithm by
matching the stereoscopic sensorial model with the
environment map. We have integrated to the matching
stage a coherence position test linked to the dead-
reckoning estimation. This method allows to determine the
robot’s configuration with an important precision (a mean
accuracy of 10 cm for the position) and mostly with an
important robustness. The important number of significant
data of the stereoscopic sensorial model got on an
acquisition allows us to contemplate interesting prospects
in connection with the environment incremental
modelization in the case of an evolution in unknown
environment.
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