
ts,
t-
-
n

as
t
vi-
not
-
u-
be
ic.

lly
g

e
all

s
o-
ial
ng
e
ar
ys-
n-

ac-
om
g
on
re
For

vel
e,
e
re

es
n
e

The Need for Autonomy and Real-Time in Mobile Robotics:
A Case Study of XO/2 and Pygmalion
Roberto Brega†, Nicola Tomatis‡, Kai O. Arras‡

†Institute of Robotics ‡Autonomous Systems Lab
Swiss Federal Institute of Technology Zurich (ETHZ) Swiss Federal Institute of Technology Lausanne (EPFL)

CH–8092 Zürich CH–1015 Lausanne

Proceedings of the 2000 IEEE/RSJ
International Conference on
Intelligent Robots and Systems

Abstract
Starting from a user point of view the paper discusses the
requirements of a development environment (operating
system and programming language) for mechatronic sys-
tems, especially mobile robots. We argue that user require-
ments from research, education, ergonomics and
applications impose a certain functionality on the embed-
ded operating system and programming language, and that
a deadline-driven real-time operating system helps to fulfil
these requirements. A case study of the operating system
XO/2, its programming language Oberon-2 and the mobile
robot Pygmalion is presented. XO/2 explicitly addresses is-
sues like scalabilty, safety and abstraction, previously
found to be relevant for many user scenarios.

1. Introduction
In the mobile robotics community we can observe two ap-
proaches to the subjects of self-contained autonomy and
real-time. On the one hand, vehicles are used as ‘sensors
with wheels’ where information processing is done either
off-board or even off-board and off-line. This procedure
offers advantages for the researcher; he can focus on a pre-
cise topic without taking into account further complexity
due to integration. On the other hand, robots are used as ful-
ly embedded systems which provide all means to acquire,
process and act on-line and on-board. These systems exhib-
it a degree of self-contained autonomy which is compatible
with application requirements but can suffer from high
complexity. The choice of hardware, but particularly the
choice of the embedded operating system and program-
ming language is crucial when deciding to face this further
application-relevant complexity. In this paper we argue
that, when the researcher, the student and the end-user need
or wish a certain functionality, flexibility or safety of the
robot, properties like real-time capability coupled with a
strong typed programming language can help to fulfil these
needs. We present a case study of the XO/2 operating sys-
tem which runs on the mobile robot Pygmalion as an exam-
ple where exigent user requirements could get translated
into a system that facilitates application to a real-world ro-
bot.

1.1 Do we need self-contained systems?
Although an unspoken question among many roboticis
we estimate that the majority of mobile robot research pla
forms in use today could not operate in a fully self-con
tained mode since their algorithms rely at least partially o
wireless connections to off-board infrastructure. Where
this limitation might not be relevant for research, it will no
be acceptable for many applications where operating en
ronment size, economical aspects and safety issues do
allow off-board computing. Autonomy with respect to per
ception, energy and processing for fully self-contained a
tonomous decision-making is not an option but should
addressed in its full complexity already as a research top

1.2 Do we need real-time in mobile robotics?
When on-board computation is required we are typica
confronted with limited computing power. Hence, meetin
timing constraints becomes a problem which ispresent but
only hiddenwhen using off-board hardware of extensiv
processing power. In the commonly used approach, a sm
microcontroller of limited computational power handle
the real-time aspects of vehicle control. Some simple pr
gram, hooked to a processor-interrupt, implements a triv
control loop that drives the robot’s actuators, exchangi
limited information with a foreign computer through som
serial wire. This can be viewed as a flexible and modul
architecture approach, but, in most cases, it results in a s
tem where the low-level controllers are treated as an u
touchable black-box.
Progress in mobile robotics requires the researchers to
cess and improve all modules that compose the robot, fr
low-level real-time components to high-level reasonin
systems. The performance of a mobile robot depends up
the interaction of components at all levels, and therefo
these modules cannot be treated as independent units.
instance, if a researcher focuses exclusively on high le
changes in an effort to improve mobile robot performanc
he may be hindered by low-level behaviour that could b
changed with ease if the robot’s real-time components we
equally accessible. We argue that real-time capabiliti
with deadline-driven scheduling and a tighter integratio
between low-level and application modules are a welcom

brega@ifr.mavt.ethz.ch {nicola.tomatis, kai-oliver.arras}@epfl.ch
0-7803-6348-5/00/$10.00 ©2000 IEEE.

-
-
d
-

.
-

to

-
es

f
s-

it

d
d

.
-

e
-

n

feature in mobile robots, allowing a safer composition and
a transparent information exchange between each layer of
the application software. Yet, real-time and composition
capabilities are not the only pleasing qualities that a system
could provide. The next section will highlight present-day
problems and their requirements that roboticists face dur-
ing their work with their systems.

2. Requirements From a User Point-of-View
Be the user a researcher, a student or an application engi-
neer, they have specific requirements to the functionality of
their robot. Without anticipating a choice, criteria from
state-of-the-art research, education, ergonomics and appli-
cations are outlined. They represent what the users encoun-
ter in their work and what they may expect today from a
modern development environment for embedded systems.

2.1 Requirements from research
This type of requirements stems from a need for flexibility
and as few functional constraints as possible.
• System scalability. Multiprocessor-, multisensor- and

multiaxis-extensions must be supported by the operat-
ing system in a coherent way. Adding degrees of free-
dom for mobile manipulation, adding a sensor or an
extra computing unit has in the first place to be possible
and then it must not results in a patchwork of compo-
nent-specific development environments for the pro-
grammer.

• Dynamic programming. Simultaneous localization and
map building or sophisticated data association tech-
niques with multiple hypothesis-management ask, by
the nature of the problem, for dynamic data structures.
Map objects as well as hypotheses get inserted, fused or
deleted. The explicit disposal of memory would impose
artificial constraints onto these problems.

• Target-to-target communication. Multi-robot research
requires means for unsupervised exchange of data be-
tween robots—preferably under use of standards.

• Multi-modal user interfaces. Interfaces of this type
make use of multiple communication modalities like
speech, motion, gestures, propioceptive- or visual-
feedback. This asks for a system design with enough
generalisation capabilities, in order to support addition-
al serial lines, display units, haptic interfaces, A/D I/O
signals etc.

2.2 Requirements from education and ergonomics
Mobile robotics is a multi disciplinary research domain that
takes place mainly in the academic world. Robots are not
programmed by highly specialised engineers and system
integrators alone, but by researchers from various domains
and students. This class of requirements originates from
recognising this fact.
• Ease of usefor academic environments. Students from

different disciplines should be able to learn it in a short
time. An easy to learn programming language and op
erating system favours an integration into courses, ex
ercises or student competitions. The system shoul
exhibit inherent mechanisms that protect the inexperi
enced user from himself (‘student-proof’).

• Man-machine interfacing. The system must provide
means for on-the-fly visualization of various on-board
data e.g. for debugging or task supervision purposes
Possibly under use of wide-spread standards like Inter
net Engineering Task Force (IETF) backed protocols.

• Code coherence. In a complex mechatronic system,
like a non-holonomic mobile robot with multiple sen-
sors, processors and axis, the developer shall be able
consistently work in the same programming environ-
ment from time-critical low-level control to non–time-
critical high-level algorithm design.

• Fast edit-compile-run cycles. A fast and safe mecha-
nism to unload, edit, (cross-)compile, and dynamically
link a piece of code dramatically improves the testing
effectiveness of the developer.

2.3 Requirements from applications
Provided that no functional limitations hinder the develop
ment of the robot anymore, safety and economic issu
mark this class of requirements.
• Safety. With the ever increasing presence of computers

controlling critical systems—critical to missions, the
environment, human lives, or the society—the safety o
such systems is a prime concern. In some cases it is po
sible to statically enforce safety by using construction
methods that simply exclude bad cases. In other cases
may be necessary to enforce safety dynamically: If
something bad is about to happen, this gets detected an
proper steps are taken. The attention to safety shoul
span all aspects of the software constellation, from
high-level behaviours to system-software primitives.

• Real-time capabilities. In most applications the shape
and the kinematics of the robot is imposed by the task
For certain shapes and kinematic configurations, algo
rithms for obstacle avoidance, motion planning, trajec-
tory execution and position control partially degenerate
to trivial cases (e.g. for circular robots and/or holonom-
ic kinematics). But in general, these algorithms require
much computing power, the installation of user real-
time tasks for position or trajectory control and, since
they are safety-critical, means for their supervision. An
operating system must support the researcher and th
application engineer in the development and implemen
tation of such algorithms.

• Vehicle dynamicsand speed. Rarely an optimization
criterion for research, operation speed can become a
economic factor. Temporal imprecisions in the naviga-
tion algorithms which remain hidden at low speed be-

re
b-
by
ral
su-
ful
by
per-

-
s-
to

m-
u-
, a
.
ated

th-
n,

ial-
e

tem
as-
he

ro-
on
in-
ty

er.
. It
to

g-
ype
re-
ist-
re
es
ll-
n
rs

ce,
ing
come apparent. The system must provide means for
management of high resolution timestamps and their
assignment to sensory inputs for on-the-fly implemen-
tations of these algorithms. For highly dynamic axis
control, the scheduling timeslice must be sufficiently
short.

• Long-term reliability, ease of maintenance. The life-cy-
cle of a mobile robot usually spans over many years.
The development of such a machine can take many
months, during them application developer need to
poke with the hardware and software specification.
During the actual machine operation, maintenance of
hardware and software must be guaranteed: The system
should not be tied to a particular configuration of the
hardware, and changes in the electronics or in the appli-
cation should be as painless as possible.

2.4 Can a careful choice of the operating system
help in meeting these requirements?

The requirements outlined above present a lot of design
challenges: abstraction layers with well-defined interfaces,
concurrence between tasks sharing different timing charac-
teristics, blackbox-like components, dynamic behaviour,
reliability, safety, and economic aspects, scalability.
It is useful to remember that the main purpose of an oper-
ating system can be summarised as that of managing sys-
tem-wide resources through abstractions, while presenting
well-defined interfaces to the applications. Unfortunately,
most operating systems and frameworks do a poor job in
supporting safety or general robot-programming patterns.
The management of time as a system resource, the safe
composition of software modules, the type-safety, the man-
agement of dynamic memory, all add up to a great part of
the task of writing software for a mechatronic product.
There is no real reason not to have the required features em-
bedded in the operating system. In fact, deadline-driven
scheduling has already been widely recognised as a safer
alternative to interrupts-driven systems [2]. Software com-
position is advertised everywhere: Why it cannot be imple-
mented with the correct amount of security, like strongly
checked interfaces or safe unloading. Dynamic memory
management techniques, pioneered by lisp and smalltalk
systems, could find their way in a embedded operating sys-
tem, thus setting the applications free from dangling point-
ers and memory leaks—common problems that are far too
frequent, awkward to track and to debug.
The difficult task of designing a software architecture for
complex mechatronic systems, should not be further mixed
up by these common, low-level problems. System-wide
mechanisms need to be present, in order to lighten this al-
ready mighty effort. Mechatronic software-design strives
for safety. Safety-driven operating systems are the most
practical building-blocks for reaching this goal.

3. The XO/2 Real-Time System and Frame-
work

XO/2 is an object-oriented, hard-real time system softwa
and framework, designed for safety, extensibility and a
straction [3]. It takes care of many common issues faced
programmers of mechatronic products, by hiding gene
design patterns inside internal mechanisms or by encap
lating them into easy-to-understand abstractions. Care
handling of the safety aspects has been the criterion
which the system has been crafted. These mechanisms,
vasive yet efficient, allow the system to maintain adeus ex-
machina knowledgeabout the running applications, thus
providing higher confidence to the application program
mer. The latter, relieved from many computer-science a
pects, can better focus his attention to the actual problem
be solved.

3.1 Safety
The system sets higher standards for safety through a co
bination of programming paradigms and modern comp
ter-science solutions. In order to understand this claim
somewhat more technical definition of safety is required
Safety, as used in the common speech, can be separ
into the more technical terms ofsafety, progress, andsecu-
rity [4]. These terms can be summarised as follows: no
ing bad happens, the right things do (eventually) happe
and things happen under proper authorisation (or potent
ly bad things happen under proper supervision). All thre
interact to make a system safe in a broader sense. A sys
that deploys static and dynamic enforcement of those
pects, can be said to provide a higher degree of safety. T
static safety can be gained with a careful choice of the p
gramming language, wherever dynamic safety must rely
run-time mechanisms checking that the programming
variants hold. Clearly, whenever possible, static safe
should be preferred over dynamic safety.

3.2 The role of programming languages in safe
systems

System components are the tools of a software engine
The more safer the tools, the more reliable is the system
is therefore natural to expect programming languages
help improve system safety. It is well-known that langua
es, or more precisely proper language paradigms and t
systems, can do a lot in helping programmers to better
alise their solutions. Strangely enough, despite the ex
ence of better alternatives, a lot of safety-critical softwa
gets implemented by means of programming languag
that do a poor job at ensuring static or dynamic safety. Se
ing tools that try to fix the problem renders the situatio
even more ludicrous. Tools are used for uncovering erro
that should not have been made possible in the first pla
as for array indexes out of range, dangling pointers, cast

d-
ow-
an
al-
ly

a
ow
ro-
a-

ss
re

m,
r-
ic
es
in

ons
to
s-
e
e
If
uld

ing
on-
m-

s
ge
ge
ith
d
ata
ec-

-

ith
is
-
he
ry.
-
-

ra-
e

les
errors, and memory leaks.
The commonly used argument against using languages that
are type-safe, is the inefficiency of the produced code. This
misconception can be easily refuted. In the case of static
safety, all restrictions are computed by the compiler (at
compile-time), therefore there is no overhead in the code to
be executed. When static safety cannot be enforced, dy-
namic checks are needed. The added safety, brought by the
validation of the programming invariant at run-time, more
than compensate the penalty paid in the execution time. In
fact, there is no acceptable trade-off for letting a type-vio-
lation be passed.
The programming language chosen for XO/2 is Oberon-2
[5]. Oberon is a successor of Pascal and Modula, featuring
strong-typing, compatibility by name and not by structure,
object-orientation, and modularisation. Since the same
characteristics are shared by the Java programming lan-
guage, an ongoing effort aims at supporting the language,
by natively compiling bytecodes at linking-time, in the na-
tive system environment.

3.3 Handling untyped operations
In the section above, it is stated that it is not always possible
to ensure (type) safety statically, i.e. at compile-time. Not-
withstanding the run-time checks needed for object-orient-
ed polymorphic operations, this also holds for each
potentially untyped action. Examples in this direction
range from NIL-pointer dereferencing, stack overflows,
and dangling references to unloaded modules.
Most of the aforementioned errors can be trapped by run-
time checks emitted by the compiler. Anyway, the over-
head in the execution time cannot be tolerated. Imagine
checking each stack-push against the valid stack-ranges:
You wouldn't invoke an activation frame anymore! A more
aggressive technique, avoiding in-program checks, is by
means of memory protection. This scheme, usually found
on Unix derivatives, cheats the running programs (also
called processes) by allocating to them different, disjunct
virtual address spaces.
The major drawback of this scheme resides in the overhead
that has to be paid for the reloading of the page-table and
the memory management unit registers during context-
switching. For a real-time system, as with XO/2, which
fires the task scheduler with a time-slice quantum of 100
microseconds, this cannot be tolerated. Supported by the
fact that noexplicitly programmeduntyped operation are
allowed by the Oberon-2 language, we have favoured a
more lightweight memory management scheme that helps
in catching the possible untyped, unsafe operations emitted
by the compiler, without imposing restrictions on what can
be shared between programs, nor bringing an unacceptable
overhead during context-switching.
The chosen scheme, makes pervasive use of the underlying
memory management unit of the PowerPC architecture, by

creating a single virtual address space, where virtual a
dress ranges are allocated to the running processes. Foll
ing this method, NIL dereferencing can be mapped to
invalid virtual page. In the same fashion, stacks can be
located with guard pages between them, thus active
guarding against stack overflows. Additionally, within
virtual address range, the stack can be allowed to gr
whenever the running task needs it, without asking the p
grammer to explicitly demand a bigger stack at task cre
tion. Module unloading is handled similarly: When
modules are removed from the system, their virtual addre
range is invalidated, thus preventing dangling procedu
variables to execute upon non-trusted code or data.

3.4 Automatic reclamation of dynamic memory
In a highly dynamic, object-oriented, composable syste
the central knowledge of all references that exist for a pa
ticular object becomes hard to maintain as the dynam
loading of extensions augments. Even worse, it becom
impossible for a programmer to keep track of references
a safe way when the language doesn't impose restricti
on the passing and copying of references. This brings us
the sheer conclusion that in a dynamically extensible sy
tem, explicit deallocation of objects is not feasible. Th
failure of realising this introduces a new class of run-tim
problems, like dangling references and memory leaks:
the object is disposed to soon, some stale references co
access the object while the same memory block is be
referenced by someone else; on the contrary, late or n
existent disposal induces memory leaks, i.e. unused me
ory doesn't get reclaimed.
The only safe possibility for object reclamation is by mean
of a system-wide mechanism performing automatic stora
reclamation: a so-called garbage collector [6]. A garba
collector decides upon the liveness of heap objects w
their reachability, starting from a working set of global an
local references. After complete traversal of the heap d
structures, objects that haven't been visited by the coll
tor's marking get disposed.
XO/2 deploys a very robust, incremental, real-time com
patible mark-and-sweepgarbage collector with object-fi-
nalisation that combines good collection performance w
no memory requirements at execution time. The latter
more important when the collector is kicked by a low
memory condition, i.e. it can complete the traversal and t
collection of the heap-space without demanding memo
Moreover, the proposed solution works very well in a pre
emptive scheduling environment, without blocking nor de
laying tasks performing accesses to heap-objects.

3.5 Modularisation and separation of concerns
One of the most important design principle is the sepa
tion of concerns. This principle requires a system to b
structured into subsystems, also called modules. Modu

s
ar-
the
ait-
lso
led
ny
no
-
d to
he
in

li-
,

nd
e.
of

ll-
n

nd
d
of

ent
or
n
ion
o-
Fa-
s

-
ch
es
-
and
rity
ng
should expose an interface by exporting functions and pro-
cedures to the clients. The functionality of a module is ac-
cessed only by means of its interface; the interface can be
generalized enough to hide most of the implementation de-
tails, thus establishing and guaranteeing invariants for its
states and procedures. Disjoint, orthogonal modules imple-
menting this design principle can be exchanged without in-
validating clients, therefore leading to a dynamic
composition of the system.
An important precondition for the realisation of this design
principle is the presence of safe dynamic loading and un-
loading of compilation units. XO/2 provides the required
safety by checking at compile time and at linking-loading
time the formal interfaces against the actual ones. Only in-
terface-compatible modules may be loaded in the system,
without threatening the safety of the dynamic composition.
A different, non trivial task resides in the dynamic unload-
ing of modules, i.e. when a module can be safely removed
from the system. By means of reference counting, lexical
scopes and virtual memory ranges, XO/2 can guarantee
that a needed module will not be unloaded and that stale
references will be trapped before execution.
The presence of safe dynamic loading and unloading in
XO/2, along with very short edit-compile-run cycles, has
been one of its most appreciated features. In fact, during the
development of a complex application, different program-
mers can safely test new code modules without threatening
the stability of the system and applications. It is not uncom-
mon that an XO/2 machine will run, uninterrupted, for sev-
eral days, during them application programmers actively
program and test part of a software constellation.

3.6 Process scheduling
The principal responsibility of a real-time operating system
can be summarized as that of producing correct results
while meeting predefined deadlines in doing so. Therefore,
the computational correctness of the system depends on
both the logical correctness of the results it produces, and
the timing correctness, i.e. the ability to meet the deadlines
of its computation [7].
A real-time application can be modelled as a set of cooper-
ating tasks. These tasks can be classified according to their
timing requirements, as hard–real-time, and non–real-time.
A hard–real-time task is a task whose timely execution is
labelled as critical to the operation of the whole system.
Consequently, it is assumed that the missing of the deadline
can result in a system failure. Non–real-time tasks are those
tasks that exhibit no real-time requirements (e.g. system
maintenance tasks running in the background).
XO/2’s real-time process manager implements a static,
earliest-deadline-firstscheduling algorithm withadmis-
sion testing. With this algorithm, the pool of real-time tasks
is statically sorted according to the their deadlines. The first
one, i.e. the one with the shortest deadline, will be set for

execution. This task will remain in the foreground, until it
normal execution cycle is completed, or when a task ch
acterized by a shorter deadline has been activated by
occurrence of some event, such as the expiration of a w
ing period or user intervention. The process manager is a
responsible for dispatching non–real-time tasks, also cal
threads. Since their computations can be delivered a
time, threads are brought to the foreground only when
other real-time task is pending, waiting for being dis
patched. The non–real-time scheduler chooses the threa
be scheduled according to its priority. Threads carrying t
same priority are taken in the foreground in a round-rob
fashion.Anti-starvationmechanisms andpriority inherit-
ance guarantee fairness and progress.

3.7 Other OS functionality
Our system provides a wide range of non-core functiona
ty, like multiple-filesystem support, streams-based I/O
TCP/IP networking software, internet standard servers a
clients, object-oriented databases of periphery hardwar
The robust, threaded TCP/IP stack allows a wide array
network protocols to be implemented. A standard, fu
blown release of XO/2 comes with a Telnet server, a
FTP server, an HTTP server, TFTP, SNTP, SMTP, a
POP3 clients. Applications looking for computer-base
man-machine interaction are usually realised as a set
web-pages. A client agent, like a web browser, can pres
on-robot information without need of post-processing,
call CGI-commands that are actually normal applicatio
entry-points, exposed as commands. Object linearisat
through XML allows browsers, java-applets or custom s
lutions to access remote objects on the HTTP transport.
cilities like the in-system creation of GIF and JPG image
are used for streaming visual information to the client.

4. Pygmalion’s Software Implementation
Pygmalion is a mobile robot recently built at the Autono
mous Systems Lab, EPFL for application-near resear
purposes (figure 1). It makes extensive use of the faciliti
provided by XO/2. Every critical, periodic task is imple
mented as a hard real-time task. The operating system
programming language guarantee both safety and secu
of the executed code, while ensuring progress and timi
correctness through the deadline driven scheduler.

Figure 1: The autonomous robot
Pygmalion. Its controller consists of
a VME standard backplane with a
Motorola PowerPC 604 micropro-
cessor, clocked at 300 Mhz. Among
its array of peripheral devices, the
most important are the wheel
encoders, a 360° laser range finder
and a grey-level CCD camera.

fe-
-
ff-
tai-
at
ed.
s
nd,
of
ing
re-
-

n

r-

ct-

a

When unexpected events occur, the operating system is re-
sponsible for supervising a proper counter-measure.

The task constellation running on Pygmalion is depicted in
figure 2. The bumper driver and the speed controller which
calls also odometry run at 1 KHz, the position controller is
scheduled with a frequency of 50 Hz. The laser scanner
takes 360 ms for a complete mirror revolution and compen-
sates on-the-fly the distortion imposed by the vehicle
movement during acquisition for each arriving range read-
ing (this explains arrow A). Obstacle avoidance and local-
ization are vital functions and are also installed as RT task
with an appropriate worst case period. The multi sensor lo-
calization cycle is trivially limited by the slow period of the
laser scanner. Temporal coherence of acquisition and local-
ization result, which are in the past, is guaranteed by means
of timestamps provided by odometry, the vision and the la-
ser driver. Forward simulation of the odometry model yield
finally the actually valid position update. The navigation
module, implemented as a non–real-time task, is used for
global planning and mission control. This implementation
has been extensively used for multisensor on-the-fly local-
ization with vehicle speeds up to 0.8 m/s [1].
Pygmalion’s web interface is shown in figure 3. It resides
in the XO/2 web server and accesses the underlying appli-
cation software components through CGI-calls. This seam-
less integration is used for visualizing on-line raw-data
retrieved with both sensors, their extracted features and ro-
bots pose information by on-the-fly generation of GIF and
JPG images. The interface allows also the robot to be guid-
ed, access the bi-lingual speech processor and execute a li-
brary of robot gestures for human-machine interaction.
Simultaneous localization and map building is also current-
ly investigated. In this case, only new objects have to be ex-
plicitly allocated, the rest of the dynamic handling is left to
the operating system; the garbage collector ensures that the
unused memory will get automatically reclaimed.

5. Conclusions
The need for self-contained autonomy, real-time, and sa
ty in mobile robots cannot be quantified. Although solu
tions exist that circumvent these issues by means of o
board infrastructures, custom hardware that has been
lored to the task, and artificial environments, we argue th
in many applications these restrictions cannot be accept
Meanwhile, the increasing complexity of mobile robot
sets higher requirements to the application software a
indirectly, to the operating system. Safe composition
software modules, type-safety, deadline-driven schedul
and automatic memory reclamation mechanisms can
lieve the application programmer from many time-consum
ing implementation issues, while raising the safety-bar.

References
[1] K.O. Arras, N. Tomatis. Improving Robustness and Precisio

in Mobile Robot Localization by Using Laser Range Finding
and Monocular Vision.Proc. of the 3rd European Workshop
on Advanced Mobile Robots (Eurobot 99), Zurich, 1999.

[2] M. Joseph (edited by). Real-time Systems: Specification, Ve
ification and Analysis.Prentice Hall International Series in
Computer Science, 1996, Prentice Hall.

[3] R. Brega. A real-time operating system designed for predi
ability and run-time safety. InProc. of The Fourth Int. Conf.
on Motion and Vibration Control (MOVIC), Zurich, 1998.

[4] C. Szyperski and J. Gough. The role of programming lan-
guages in the life-cycle of safe systems.Second Int. Conf. on
Saftey Through Quality (STQ'95), Kennedy Space Center,
Cape Canaveral, Florida, USA, October 1995.

[5] H. Mössenböck and N. Wirth. The programming language
Oberon-2.Structured Programming, 12(4), 1991.

[6] Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. Submitted to ACM Computing Surveys.

[7] F. Panzieri, R. Davoli. Real Time Systems: A Tutorial.Tech-
nical Report UBLCS-93-22, October 1993, Univ. of Bologna,
Italy.

Figure 2: The tasks constellation deployed on Pygmalion.
Rectangles indicate hard real-time tasks, arrows stand for
information flow. The former are the only means to guar-
antee calculation time for vital functions under the typical
conditions of unpredictable processor load.

Position Control Navigation

SpeedCtrl/Odom Laser Driver

Vision Driver

Bumpers Driver

Blinkers Driver

Kalman Filter

Obs. Avoidance

A

Figure 3: On-robot information as accessed through
web client. The interface can control the vehicle, too.

	1.1 Do we need self-contained systems?
	1.2 Do we need real-time in mobile robotics?
	2.1 Requirements from research
	2.2 Requirements from education and ergonomics
	2.3 Requirements from applications
	2.4 Can a careful choice of the operating system help in meeting these requirements?
	3.1 Safety
	3.2 The role of programming languages in safe systems
	3.3 Handling untyped operations
	3.4 Automatic reclamation of dynamic memory
	3.5 Modularisation and separation of concerns
	3.6 Process scheduling
	3.7 Other OS functionality
	Figure 1: The autonomous robot Pygmalion. Its controller consists of a VME standard backplane wit...
	Figure 2: The tasks constellation deployed on Pygmalion. Rectangles indicate hard real-time tasks...
	Figure 3: On-robot information as accessed through a web client. The interface can control the ve...

	The Need for Autonomy and Real-Time in Mobile Robotics: A Case Study of XO/2 and Pygmalion
	Roberto Brega†, Nicola Tomatis‡, Kai O. Arras‡

