A Robotic CAD system using a Bayesian framework

Kamel Mekhnacha

Leibniz/IMAG
46, Avenue Felix Viallet
38031 Grenoble, France
Kamel.Mekhnacha@imag.fr

Abstract

We present in this paper a Bayesian CAD system
for robotic applications. We address the problem of the
propagation of geometric uncertainties and how esian
CAD system for robotic applications. We address the
problem of the propagation of geometric uncertainties
and how to take this propagation into account when
solving inverse problems. We describe the methodol-
ogy we use to represent and handle uncertainties us-
ing probability distributions on the system’s parame-
ters and sensor measurements. It may be seen as a
generalization of constraint-based approaches where we
express a constraint as a probability distribution in-
stead of a simple equality or inequality. Appropriate
numerical algorithms used to apply this methodology
are also described. Using an example, we show how
to apply our approach by providing simulation results
using our CAD system.

1 Introduction

The use of geometric models in robotics and CAD
systems necessarily requires a more or less realistic
modeling of the environment. However, the validity of
calculations with these models depends on their degree
of fidelity to the real environment and the capacity of
these systems to represent and take into account pos-
sible differences between the models and reality when
solving a given problem.

This paper presents a new methodology based on
Bayesian formalism to represent and handle geomet-
ric uncertainties in robotics and CAD systems. For
a given problem, the marginal distribution of the un-
known parameters is inferred using the probability cal-
culus. The original geometric problem is reduced to an
optimization problem over the marginal distribution
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to find a solution with maximum probability. In the
general case, this marginal probability may contain an
integral on a large dimension space. The resolution
method used to solve this integration/optimization
problem is based on an adaptive genetic algorithm.
The problem of integral estimation is approached us-
ing a stochastic Monte Carlo method. The accuracy
of this estimation is controlled by the optimization
process to reduce computation time.

A large category of robotic applications are in-
stances of inverse geometric problems in presence of
uncertainties, for which our method is well suited.
The proposed approach have been applied to numer-
ous robotic applications [9] such as kinematics inver-
sion for possibly redundant systems, robot and sensor
calibration, parts’ pose and shape calibration using
sensor measurements, as well as in robotic workcell de-
sign. Experimental results made on the implemented
CAD system have demonstrated the effectiveness and
the robustness of our approach. An example of this
experimentation is presented in this paper.

This paper is organized as follows. We first report
related work. In Sect. 3 we present our specifica-
tion methodology, and how to obtain an optimization
problem from an original geometric problem. In Sect.
4 we describe our numerical resolution method. We
present an example to illustrate our approach in Sect.
5 and give some conclusions and perspectives in Sect.
6.

2 Related work

The representation and handling of geometric un-
certainties is a central issue in the fields of robotics
and mechanical assembly. Since the work of Taylor
[14], in which geometric uncertainties were taken into
account in the manipulator planning process for the



first time, numerous approaches have been proposed
to model these uncertainties explicitly.

Methods modeling the environment using “cer-
tainty grids” [10] and those using uncertain models
of motion [1] have been extensively used, especially in
mobile robotics.

Gaussian models to represent geometric uncertain-
ties and to approximate their propagation have been
proposed in manipulators programming [12] as well as
in assembly [13]. Kalman filtering is a Bayesian recur-
rent implementation of these models. This technique
has been used widely in robotics and vision [15], and
particularly in data fusion [2]. Gaussian model-based
methods have the advantage of economy in the compu-
tation they require. However, they are only applicable
when a linearization of the model is possible, and are
unable to take into account inequality constraints.

Geometric constraint-based approaches [14, 11] us-
ing constraints solvers have been used in robotic task-
level programming systems. Most of these methods
do not represent uncertainties explicitly. They han-
dle uncertainties using a least-squares criterion when
the solved constraints systems are over-determined. In
the cases where uncertainties are explicitly taken into
account (as is the case in Taylor’s system), they are
described solely as inequality constraints on possible
variations.

3 Probabilistic geometric constraints
specification

In this section, we describe our methodology by giv-
ing some concepts and definitions necessary for proba-
bilistic geometric constraints specification. We further
show how to obtain an objective function to maximize
from the original geometric problem.

3.1 Probabilistic kinematic graph

A geometric problem is described as a “probabilis-
tic kinematic graph”, which we define as the directed
graph having a set of n frames S = {S1,---,S5,} as
vertices and a set of m edges A = {A;, 1, -, Airim |
where A;, ;, denotes an edge between the parent ver-
tex S;, and its child S;, and represents a probabilistic
constraint on the corresponding relative pose. We call
these edges “probabilistic kinematic links”. A given
edge may describe:

e a modeling constraint (a piece of knowledge) on
the relative pose between the parent frame and
the child one,

e a sensor measurement on the pose of a given
entity,

e or a constraint we wish to satisfy to solve the
problem (an objective value with a given preci-
sion, for example).

Each edge A;, j, is labeled by:

1. a probability distribution p(Q;,;.) where Q;, j,
is the relative pose vector (6-vector) Qi j, =
(tmtytzrzryrz)T. The first three parameters of
this 6-vector represent the translation, while the
remaining three represent the rotation.

2. possible equality /inequality
constraints (Ex(Qirj) = 0, Cr(Qirs) < 0).
These constraints represent possible geometric
relationships between the two geometric entities
attached to these two frames. Their shapes de-
pend on the type of the geometric relationship.
We implement several relationships between ge-
ometric entities in this work, such as points,
polygonal faces, edges, spheres and cylinders.
The details on equality/inequality constraints
induced by these relationships can be found in
[9].

3. a “status” 6-vector describing for each parame-
ter of @, j,, its role (nature) in the problem. A
status can take one of the 3 following values:

e Unknown (denoted by X) for parameters
representing the unknown variables of the
problem and whose values must be found
to solve the problem.

e Free (denoted by L) for parameters whose
values are only known with a probability
distribution.

e Fized (denoted by F) for parameters having
known fixed values that cannot be changed.

In the general case, the kinematic graph may con-
tain a set of cycles. The presence of a cycle represents
the existence of more than one path between two ver-
tices (frames) of the graph. To ensure the geometric
coherence of the model, the computation of the rel-
ative pose between these two frames using all paths
must give the same value. For each cycle containing k
edges, we must have:

T = T TR s o TSN+
Tht =Ty = T

= I, (1)



where T;; is the 4 x 4 homogeneous matrix correspond-
ing to the pose vector Q;, 4 is the 4 x 4 identity
matrix and s;; € {—1,1} is the direction in which the
edge A;; has been used.

We call these additional equality constraints the
“cycle-closing constraints”. They are global con-
straints involving, for each cycle, all parameters it
contains. The minimal number of cycles allowing cov-
erage of a connected graph having n vertices and m
edges is p =m —n+ 1 [5]. Consequently, we obtain p
cycle-closing constraints for a given problem.

3.2 Objective function

Given a probabilistic kinematic graph, we are in-
terested in constructing a marginal distribution over
the unknown parameters of the problem. Maximizing
this distribution will give a solution to the problem.

To do so, we define the following sets of proposi-
tions:

e A set of p propositions {K;}¥_; such as:
K; = “cycle ¢; is closed”.

o A set of m propositions {H}7-, such as:
Hy = “Cr(Qiyj) < 0 and Ey(Qiyj,.) = 0.

If we denote the unknown parameters of the prob-
lem by X, a solution to a problem is a value of X that
maximizes the distribution

PX|Hy - HoKy -+ K).

For each edge A;j, if we denote by L;; the set of
parameters having the L status, and by X;; the pa-
rameters having the X status, we can write, using the
probability calculus and the p cycle-closing constraints
(Eq. 1), the following general form:

PX|Ha - HipKy - - Kp) o p(X)I(X),

/dL

P(Liy g, )p(Ha| Xy 4, Liy g, )

p(Lim,fpjm,fp )p(Hm_p|Xim,7pj7n—pL7:m,fpjm,fp)
po, (F1(X, L))p(Hm—p+1|F1(X, L))

Po, (Fp(X, L))p(Hm|Fp(X, L)). (2)

For each cycle ¢;, i = 1---p, O; denotes a pose
vector pertaining to ¢; and F; is the function allowing

computation of the value of this pose vector using the
values of all other pose vectors pertaining to ¢; (using
Eq. 1). po, denotes the distribution over O;, while L
is the concatenation of L;,;,, -+, L

Tm—pIm—p*

4 Resolution method

We described in the previous section how to formu-
late an integration/optimization problem:

X* = max [p(X[Hy -+ HonCy - K]

In this section, we will present the practical numer-
ical methods we use to solve these two problems.

4.1 Numerical integration method

Domain subdivision-based methods (such as trape-
zoidal or Simpson methods) are often used for nu-
merical integration in low-dimensional spaces. How-
ever, these techniques are poorly adapted for high-
dimensional cases.

4.1.1 Monte Carlo methods for numerical
estimation

Monte Carlo methods (MC) are powerful stochas-
tic simulation techniques that may be applied to solve
optimization and numerical integration problems in
large dimensional spaces. Since their introduction in
the physics literature in the 1950s, Monte Carlo meth-
ods have been at the center of the recent Bayesian rev-
olution in applied statistics and related fields, includ-
ing econometrics [4] and biometrics. Their application
in other fields such as image synthesis [7] and mobile
robotics [3] is more recent.

Principles
The principle of using Monte Carlo methods for nu-
merical integration is to approximate the integral

I= / p(2)g(x) dz,

by estimating the expectation of the function g(z) un-
der the distribution p(z)

I = /p(x)g(x) d?z = (g(x)).
Suppose we are able to get a set of samples {z ()} N

(d-vectors) from the distribution p(x), we can use
these samples to get the estimator

A 1 ;
- — (@)
IfNZg(m ).



Clearly, if the vectors {x(i) N | are generated from

p(z), the vauriaunce2 of the estimator I = & >, g(z¥)

will decrease as % where o? is the variance of ¢:

o = / p(@)(g(z) - §)? diz,

and ¢ is the expectation of g.

This result is one of the important properties of
Monte Carlo methods:
“The accuracy of Monte Carlo estimates is in-
dependent of the dimensionality of the integra-
tion space”.
4.1.2 Using MC methods for our applica-

tion

Using an MC method to estimate the integral (2)

requires the following steps.

1. Sample a set of N points { LV} | from the prior
distribution p(L) such that the sampled points
respect local equality /inequality constraints (i.e.
{H;}"1" have the value true).

2. Estimate the integral I(X) wusing the set
{LOIN | of points as follows.

I[(X)=

1
Ni

] =

1
Fy(X, LO)p(Hum—pr1 | FL(X, LD))

—~

po,

po, (Fp(Xv L(i)))p(Hmle(Xa L(i)))

Points sampling

The set of N points used to estimate the integral may
be sampled in various ways. Since parameters per-
taining to different kinematic links are independent,
we can decompose the “state vector” L to m —p com-
ponents {L;, j, },—;" and apply a local sampling algo-
rithm [4]. Updating the state vector L

S AR A0 )

kJk’ im—pJm—p
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only requires updating one component Lj;, ;.

7+ (L(t) ®
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N iterations of this procedure give us the set
{LMYN | which will be used to estimate the integral.
To update a component L;, j, (a set of parameters per-
taining to the same pose vector (;, j, ), we must take
into account possible dependencies between these pa-
rameters. Consequently, we have to face the following
two problems.

bl

Figure 1: The candidate point is rejected because it
does not respect the Face-On-Face constraint.

e Candidate point sampling
A candidate L, ;, is drawn from the distribution
p(Li, ). If we do not have a direct sampling
method from this distribution at our disposal,
an indirect sampling method must be used. In
this work, we chose to use a Metropolis sampling
algorithm [4].

e Candidate validity checking
Suppose we have a geometric relationship be-
tween two geometric entities £; and E;. A geo-
metrical calculus depending on the type of this
relationship allows checking of the constraint
Cr(Qiy ) < 0. If this constraint is respected
(i-e. p(Hk|Xiyj, Liyjy,) = 1), the candidate Lf, ;.

is accepted, otherwise it is rejected. Figure 1

shows a Face-On-Face relationship example.

4.2 Optimization method

For our application, we chose a genetic-based al-
gorithm. Since their introduction by Holland [6] in
the 1970s, these stochastic techniques have been used
for numerous global optimization problems, thanks to
their ease of implementation and their independence
of application fields [8]. However, practical problems
related to the nature of our objective function have to
be faced. We propose two major improvements to the
genetic algorithm (abbreviated GA) we use.

In the following, we will use G(X) to denote the
objective function p(X|H1 - Hmk1 - - Kp).

4.2.1 Narrowness of the objective func-

tion - constraints relaxation

In our applications, the objective function G(X)
may have a narrow support (the region where the value
is not null) for very constrained problems. The ini-
tialization of the population with random individuals
from the search space may give null values of the func-
tion G(X) for most individuals. This will make the
evolution of the algorithm very slow and its behavior
will be similar to random exploration.

To deal with this problem, a concept inspired from
classical simulated annealing algorithms consists of in-
troducing a notion of “temperature”. The principle is



to first widen the support of the function by changing
the original function to obtain non-null values even for
configurations that are not permitted. To do so, we
introduce an additional parameter we call T (for tem-
perature) for the objective function G(X). Our goal
is to obtain another function GT(X) that is smoother
and has wider support, with

lim G"(X) = G(X).
Jim G7(X) = G(X)

To widen the support of G(X), all elementary terms
(distributions) of this later are widened, namely:

e distributions po, (F;(X, L)), where i =1---p.

e inequality constraints p(Hm—p+;|Fj(X, L)),

where j =1---p.
For example:

e for a Gaussian distribution:

1 _1GE-w?
I = e
1 _(e=w?
fT(x) = ;e 2 lo(1+1))2
2no(1+1T)
e for an inequality constraint over the interval
[a, b]:
1 ifa<z<b
f) = { 0 else
1 ifa<xz<b
T ENCET SR
) = e =T ifr<a
_(e=b)?
e ®-a)T  otherwise

In the general case, inequality constraints may be
more complex. Figure 2 shows the case of a Point-On-
Face inequality constraint for a square face.

4.2.2 Accuracy of the estimates - multi-
precision computing

The second problem we must face is that only an
approximation G(X) of G(X) is available, of unknown
accuracy. Using a large number of points to obtain suf-
ficient accuracy may be very expensive in computation
time, which makes the use of a large number of points
in the whole optimization process inappropriate.

Since the accuracy of the estimate G(X) of the ob-
jective function depends on the number N of points
used for the estimation, we introduce N as an ad-
ditional parameter to define a new function Gy (X).
Suppose we initialize and run for some cycles a genetic
algorithm with Gy, (X) as evaluation function. The
population of this GA is a good initialization for an-
other GA having G, (X) as evaluation function with
Ny > Nj.

4.2.3 General optimization algorithm

In the following, we label the evaluation function
(the objective function) by the temperature T" and the
number N of points used for estimation. It will be
denoted by G%(X). Our optimization algorithm may
be described by the following 3 phases.

1. Initialization and initial temperature determina-
tion.

2. Reduction of temperature to recreate the origi-
nal objective function.

3. Augmentation of the number of points to in-
crease the accuracy of the estimates.

Initialization: The population of the GA is initial-
ized at random from the search space. To minimize
computing time in this initialization phase, we use a
small number Ny of points to estimate integrals. We
propose the following algorithm as an automatic ini-
tialization procedure for the initial temperature Tp,
able to adapt to the complexity of the problem.

INITIALIZATION(GA)
BEGIN
FOR each population[i] € GA’s population DO
REPEAT
population[i] = random(S)
value[i] = G%O (population][i])
if (value[i] == 0.0)
T =T+ AT
UNTIL ( value[i]> 0.0)
FEND
Re-evaluate(population)
END
where AT is a small increment value.

Temperature reduction: To get the original ob-
jective function (T" = 0.0), a possible scheduling pro-
cedure consists of multiplying the temperature, after
running the GA for a given number of cycles ncy, by a
factor @ (0 < o < 1). In this work, the value of « has
been experimentally fixed to 0.8. We can summarize
the proposed algorithm as follows.
TEMP_REDUCTION(GA)

BEGIN

WHILE (T > T.) DO
FOR i=1 TO nc; DO

Run(GA)
FEND
T=T%*a«
WEND
T = 0.0

Re-evaluate(population)
END
where T, is a small threshold value.

Augmenting the number of points: At the end
of the temperature reduction phase, the population
may contain several possible solutions for the problem.



Figure 2: The distribution corresponding to inequality constraints induced by a Point-On-Face relationship for
a square face at different values of temperature. The left figure shows the original constraints (7' = 0), while the
middle and the right ones show these constraints relaxed at (T' = 50) and (7" = 100) respectively.

To decide between these solutions, we must increase
the accuracy of the estimates. Ome approach is to
multiply N, after running the GA for a given number
of cycles ncq, by a factor 8 (8 > 1) so that the variance
of the estimate is divided by f:

VG,T(G%*N(X)) = %VGT(G(J)V(X)).

We can describe this phase by the following algo-
rithm.

N_POINTS_AUGMENTATION(GA)
BEGIN
WHILE (N < Npqz) DO
FOR i=1 TO ncy DO

Run(GA)
FEND
N=N*g

WEND
END
where Nypqqo is the number of points that allows convergence of the
estimates G[Z)\,(X) for all individuals of the population.

5 Example

In this section, we describe how to use our CAD
system for concrete problems. We present in detail a
kinematics inversion problem under geometric uncer-
tainties.

5.1 Problem description

Using two Staubli Rx90 robot arms with 6 revo-
lute joints, we are interested in placing two prismatic
parts one against the other. The only constraint is
that a face of the first part will be in a Face-On-Face
relationship with a face of the second.

The two arms are modeled as a set of parts attached
to each other using probabilistic kinematic links. We
assume that the more significant uncertainties are on
zero positions. The two parts are also attached to
arms’ end effectors using probabilistic kinematic links.
The added constraint we wish to satisfy to solve the
problem is represented by a link between the two faces

Figure 3: Kinematics inversion example using two

Staubli Rx90 arms.

Figure 4: The corresponding kinematic graph.

to place in Face-On-Face relationship. We use for in
this link 3 Gaussians on the 3 constrained parameters
t., r» and ry with zeros as mean values and 0.5mm,
0.01rad and 0.01rad respectively as standard devia-
tions. Figure 3 shows the two arms, while Fig. 4 gives
the corresponding kinematic graph.

We suppose in this example that zero positions un-
certainties of the arm on the right of Fig. 3 (Arml) are
5 times more important than the ones of the arm on
the left (Arm2) (for each joint, we suppose a Gaussian
distribution on the zero position with 0.01rad as stan-
dard deviation for Arm1 and with 0.05rad for Arm?2).
Our aim is to comment qualitatively on the solution
obtained and to show the importance of taking un-



Figure 5: The solution obtained by the system.

Integration space dimension 50
Optimization space dimension 12
Number of cycles 1
Number of frames 28
Number of inequality constraints 16
Computation time (seconds) 13

Table 1: Some parameters summarizing the problem
complexity and the system performances for this kine-
matics inversion problem.

certainties propagation into account when choosing a
solution.

5.2 Results

Figure 5 shows the solution obtained by the sys-
tem. This solution gives a maximal precision for the
required Face-On-Face relationship because:

1. Arml (the less accurate) is coiled to minimize
the propagation of the uncertainties on its zero
positions.

2. Rotation axes are perpendicular to the common
normal of the two faces.

Table 1 summarizes the problem complexity and
the system performances for this problem using a Pow-
erPC G3/400 machine, while Table 2 gives the state of
the cycle we wish to close (the required Face-On-Face
relationship) after the resolution of the problem.

5.3 Discussion

This example shows how the proposed method
takes geometric uncertainties into account in a gen-
eral and homogeneous way. No assumptions have been
made, either on the uncertainties models (shapes of
the used distributions), nor on the linearity of the
model or the possibility of it being linearized. It also
shows how possible redundancy of the system relating

to the required task is used to find the most accurate
solution.

6 Conclusion and Future Research

We have presented a generic approach for geometric
problems specification and resolution using a Bayesian
framework. We have shown how a given problem is
first represented as a kinematic graph, and then for-
mulated as an integration/optimization problem. For
generality, no assumptions have been made on the
shapes of the distributions or on amplitudes of un-
certainties.

Experimental results made on our system have
demonstrated the effectiveness, the robustness and the
homogeneity of representation of our approach. How-
ever, additional studies are required to improve both
the integration and the optimization algorithms. For
the integration problem, numerical integration can be
avoided when the integrand is a product of general-
ized normals (Dirac’s delta functions and Gaussians)
and when the model is linear or can be linearized (er-
rors are small enough). The optimization algorithm
may also be improved by using a local derivative-based
method after the convergence of our genetic algorithm.
Future work will aim at allowing the use of high-level
sensors such as vision-based ones. We are also consid-
ering extending our system so that it can include non-
geometrical parameters (inertial parameters for exam-
ple) in problem specification.
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