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Abstract

This paper presents an algorithm which extends the
probabilistic roadmap (PRM) framework to handle ma-
nipulation planning. This is done by using a two level
approach, a PRM of PRMs. The first level builds
o manipulation graph, whose nodes represent stable
placements of the manipulated objects while the edges
represent transfer and transit actions. The actual mo-
tion planning for the transfer and transit paths is done
by PRM planners at the second level. The approach
is made possible by the introduction of a new kind of
roadmap, called the fuzzy roadmap. The fuzzy roadmap
contains edges which are not verified by a local planner
during construction. Instead, each edge is assigned a
number which represents the probability that it is fea-
sible. Later, if the edge is part of a solution path,
the edge is checked for collisions. The overall effect is
that our roadmaps evolve iteratively until they contain
a solution. The use of fuzzy roadmaps in both levels
of our manipulation planner offers many advantages.
At the first level, a fuzzy roadmap represents the ma-
nipulation graph and addresses the problem of having
probabilistically complete planners at the second level.
At the second level, fuzzy roadmaps drastically reduce
the number of collision checks. The paper contains
experimental results demonstrating the feasibility and
efficiency of our scheme.

1 Introduction

Problem Definition
ning problem deals with path planning for robots ma-
nipulating movable objects among static obstacles. The
goal is to bring the movable objects from a given start
configuration to a given goal configuration. The ob-
jects are only able to move when they are grasped by
a robot. Objects which a are not grasped must be at
a stable position e.g., resting against the obstacles or
other stable objects. For a more detailed description
of the manipulation planning problem see [3].

The solution to the manipulation planning problem

The general manipulation plan-
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has the form of a manipulation path which is a se-
quence of transit and transfer paths. A transfer path
is a subpath of the global plan where the object is
grasped and moved by the robot. A transit path is a
subpath where the object is left in a stable position
while the robot changes grasp. Regrasping operations
are planned automatically by a manipulation planner.

Importance Manipulation planning has resisted
efficient solutions so far. This is not surprising given
the complexity of the simple path planning problem
[12] and the additional difficulties imposed by the plan-
ning of grasping and regrasping operations. In indus-
trial studies manipulation is frequently ignored. For
example, in assembly maintainability studies, objects
are assumed capable of moving by themselves; it is
computationally infeasible to consider both the ob-
jects and the tools/arms needed to manipulate them
with the current state-of-the-art manipulation plan-
ning. Without doubt a reliable manipulation planner
will permit further testing of setups and products and
the development of realistic simulations for industrial
settings. Novel application domains such as surgical
simulations and animation will also benefit from a ma-
nipulation planner [11].

Related Work Different algorithms solving vari-
ations of the general manipulation planning problem
have been proposed in the literature. The solution
of Koga and Latombe [10, 11] is to first plan a path
for the object, and then find a sequence of connected
transfer and transit paths, that make the object trace
this path. Another method proposed by Ferbach and
Barraquand [7] is based on variational dynamic pro-
gramming. The authors first plan a manipulation path
in the unconstrained composite configuration space
of the robots and objects. Then they iteratively en-
force the manipulation constraints by making small
perturbations to the path to minimize a gradually
more and more strict penalty function, until the fi-
nal path is collision free and meets the manipulation



constraints. Ahuactzin, Gupta and Mazer [2] have
proposed a method for manipulation planning which
is an extension of the Adriadne’s Clew Algorithm [5]
based on genetic algorithms. Alami, Laumond and
Simeon[3] presented a clear and general description of
the manipulation planning problem. They gave solu-
tions for both the case of discrete placements of the
object and the case of an infinite set of grasps. In the
case of discrete placements of the object, the build-
ing of the manipulation graph effectively decomposes
the problem into a set of point-to-point path planning
problems.

Overview of Our Approach In order to describe
our work we first give a quick overview of PRM [9, 14].
PRM builds a roadmap of nodes in the configura-
tion space (C-space) of the robot. To construct the
roadmap, a number of random configurations are se-
lected in the free C-space and are used as nodes. Close
nodes are tested for connection with local planners.
Each time a local planner succeeds, the correspond-
ing edge is inserted in the roadmap. This random
exploration of the C-space is often accompanied by a
heuristic that adds extra nodes in “difficult” regions
of the C-space, to improve the performance in cases
where the solution path goes through narrow passages
[4, 8, 14]. Individual planning queries are solved by
adding the start and goal configuration as nodes in
the roadmap and then using graph search to find a
path connecting these nodes.

The application of the PRM framework to manipu-
lation planning was possible because of the introduc-
tion of fuzzy roadmaps. Fuzzy roadmaps provide a
simple way to deal with the problems associated with
using probabilistic point-to-point path planners as lo-
cal planners, and also provide efficient point-to-point
planners.

The Fuzzy PRM introduced in Section 2 of this pa-
per, builds a fuzzy roadmap whose edges are annotated
by a probability. This probability is an estimate of the
chance that the edge is actually feasible i.e. collision
free. The planner drastically reduced the number of
collision checks by minimizing the number of checks
which are usually wasted while verifying edges that
are not part of the final solution path. !

In Section 3 we show how to use the Fuzzy PRM
to develop a manipulation planner. Qur manipulation
planner is itself a Fuzzy PRM planner which uses fuzzy
point-to-point PRM planners as “local planners”.

In Section 4 we present our experimental results.

INote that the Fuzzy PRM bears a strong resemblance to
Lazy PRM developed simultaneously and independently by
Bohlin and Kavraki [6].

We conclude with a discussion in Section 5.

2 Fuzzy PRM

In atraditional roadmap an edge between two nodes
represents the fact that a particular local planner was
able to connect the two nodes by a feasible path. The
absence of an edge means that the connection failed
or was never even tried (because the nodes were too
far apart). We could say that if there exist an edge
between two nodes, then the edge found by the local
planner is feasible with probability 1, and if no edge
exist then the probability is 0. The idea behind fuzzy
roadmaps is to annotate all edges of the roadmap with
such a probability, called the edge probability. Instead
of restricting the probability to {0,1} we let it take
any value in [0, 1]; hence the name “fuzzy” roadmap.

The edge probability is an estimate of the chance
that a path will later be found by a local planner. In
this context we are free to use a kind of local planner,
which do not necessarily guarantee the feasibility of a
given path, but which is able to make a fast estimate
of the probability of its existence.

Just like the general PRM, the Fuzzy PRM has a
learning phase and a query phase, but in the Fuzzy
PRM we start by entering the query phase, and only if
the roadmap (initially consisting of only the start and
goal node) do not contain a possible solution path,
then we jump to the learning phase to improve the
roadmap. Figure 1 shows a flow chart outlining the
algorithm. In the Fuzzy PRM we do not run the lo-
cal planner to verify edges added during the learning
phase. Instead of verifying the edges, we assign them
an initial edge probability. Then later in the query
phase, if an edge is part of a possible solution path,
we apply the local planner to upgrade its probability.

The query phase The query phase is split into
three steps: an update, a search, and an upgrade step.

In the update step we add nodes representing the
start and goal configuration (if they are not already
there) and connect these to the roadmap.

In the search step we find the most probable path
from start to goal through the roadmap. The prob-
ability of a path 7 is defined as the product of the
probabilities of the edges e1,ea, .., e, along the path:
p(7) = [Tz pleq).

We find this path by setting the edge weights to
w(e) = —log(p(e)) and then by using Dijkstra’s algo-
rithm to find the path with the minimum sum of edge
weights. If no path exist we return failure, else we
proceed with the upgrade step.

The upgrade step handles the actual verification
of the path. First we insert all edges into a priority
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Figure 1: Flow chart with an overview of fuzzy PRM.

queue with their edge probability as their keys. Then
we repeat the following loop until either all edges reach
probability 1 or until the local planner discovers a col-
lision along the path: Extract the edge with the low-
est probability from the queue, make the local plan-
ner perform additional collision checks along the path,
and assign the edge a new probability depending on
the new collision check resolution. If the local planner
discovers a collision, we delete the corresponding edge
from the roadmap and return to the search step, else
we reinsert the edge into the priority queue and con-
tinue the upgrade loop. If the probability of all the
edges along the path is upgraded to 1 then the query
is solved and we return the path.

When we need to upgrade a path we call the fol-
lowing local planner:

LOCAL PLANNER(Gsources Gtarget, Level)

T qtarget — Qsource
steps « 2level—l
1+ 0

while i < steps
qt <~ Gsource + m + ergi
if qt ¢ C free
return false
1+1+1
return true
The local planner performs collision checks on the
straight line between the source and target configura-
tion of the path e.i. the linear interpolation between

Gsource a0d Giarger. The first time we need to upgrade
a path we call the local planner with level = 1, and
the local planner performs a single collision check at
the middle of the path, thereby dividing the path into
two unchecked sections. Next time we need to up-
grade the path we increase level by one and call the
local planner again. The result is that we halve the
distance between successive collision checks along the
line each time we upgrade the edge.

We have chosen to make the simplifying assumption
that the number of times a given C-space path passes
the boundary of the C-obstacle only depends on the
length of the path. We make this assumption even
though it is not true for most structured environments,
because it allows us to choose a simple probability
model, relating the length of the path to the number
of obstacle boundary penetrations, namely the Poisson
distribution: P{N(l) = n} = e ()‘l) , where [ is
the length of the path, N(I) is a stochastlc variable
representing the number of times the path crosses the
C-obstacle boundary, and Al is the mean value of N(I).

If a path of length [ has been successfully checked at
level level by the local planner outlined above, then it
has been divided into 2/¢¥¢! subsections, each of length
Zlm, By using the Poisson probab111ty model and the
knowledge that N must be even (because the config-
uration in each end of the path is collision free) we
can deduce the following expression for the probabil-
ity that a path is feasible [13]:

_olevel !

— (1. level) = [cosh()\zleve, )] D grewer > €ps

p(€) = p(l, level) { : T e
1)

where eps is the smallest distance, with which we
want to perform collision checks along paths. Note

that it is possible to chose eps very small, since it is
unlikely that the dense resolution will be reached for
any path except the solution path.

A can be estimated experimentally using the fact
that E[N(1)] = Al. By changing the A parameter it is
possible to control the planners preference toward fast
planning vs. short solution paths, but this feature is
beyond the scope of this paper.

Learning phase A construction step inserts N ran-
domly chosen collision free robot configurations as nodes
into the fuzzy roadmap. It then connects each of the V
new nodes to its M closest neighbors with edges. Each
of these edges represents a path between two nodes.
Unlike in the general PRM we do not run a local plan-
ner to verify the edge, instead we assign it an initial
probability given by equation (1) with level = 0.

An expansion step (similar in nature to [9]) chooses
K nodes and performs a random walk starting from
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Figure 2: A manipulation graph. Solid lines represent
transit paths and dotted lines represent transfer paths.

each of these nodes. Each of the K nodes are chosen
randomly with a probability p(v) equal to:

p(v) = kills(v)

" 2« total_kills’ 2

where kills(v) is the number of edges starting at
node v that were first added to the roadmap and later

deleted during the query phase. total_kills is the to-
tal number of deleted edges. In case total _kills is 0 we
skip the expansion step.

3 Fuzzy PRM for Manipulation

Our approach to manipulation planning is a two
level method. In the first level we have a fuzzy roadmap
which plays the role of a manipulation graph [3]. The
purpose of the manipulation graph is to decompose the
manipulation planning problem into multiple point-
to-point path planning problems, which are solved by
fuzzy point-to-point PRM planners at the second level.

Each node in the manipulation graph represents a
landmark consisting of a triple containing a transfor-
mation matrix Typ;, a grasp number ngpqqp, and a
robot configuration vector gyqp. Tobj specifies a sta-
ble placement of the manipulated object, where the
object can be left ungrasped by the robot. ngresp is
the number of a grasp relation of the object. A grasp
relation specifies a legal position and orientation of
the tool with respect to the placement of the object,
at which the tool is able to grasp object. gop is a
configuration vector for the robot, for which the robot
tool is able to grasp the object placed at Top; using
the grasp specified by grasp relation nypqsp. The ma-
nipulation graph edges represents transit and trans-
fer actions. Landmarks whose grasp relations are the
same are connected by a transfer edge. Landmarks
whose object positions are the same are connected by
a transit edge.

Figure 2 shows a small manipulation graph. Note
that two of the landmarks are connected by both a
transfer and a transit edge. This is because the two

landmarks share both the same object transformation
and the same grasp number.

If we had complete path planners at the second level
(as in [3]), we would be able to verify the existence of
each of the transit and transfer paths in the manipu-
lation graph during creation. We could the solve the
manipulation planning problem by adding additional
landmarks representing the start and goal configura-
tions of the system, and search the manipulation graph
for a path connecting the start and goal landmarks.
Finally we could concatenate the individual transfer
and transit edges along the path into the solution ma-
nipulation path.

A difficult problem is that we use only probabilis-
tically complete planners at the second level. Prob-
abilistically complete planners are unable to decide
whether a given query is unsolvable: they will never
terminate if queried for an unsolvable path. To use the
above algorithm we need to decide on some maximal
search time, such that if the second level planner uses
more than this amount of time then we decide that
the query is unsolvable. But a side-effect could be
that difficult edges which are necessary in the solution
path are wrongfully deleted from the roadmap.

We have chosen a different approach and we use a
fuzzy roadmap to represent the manipulation graph.
We let the edge probability of a given edge e depend on
how much time the corresponding second level planner
has spent searching for the path represented by e:

time(e)

ple) =1—- ———— 3)

total time’
where time(e) is the time spent by the second level
PRM searching for the path represented by e, and
total_time is the total time spent by all second level
planners.

The manipulation planner is again divided into a
learning phase and a query phase, which are designed
by analogy to the corresponding phases of Section 2,
except that the manipulation graph is build during the
an initial run of the learning phase.

The learning phase In the current version of the
planner the user or the client software has to supply
both Topj, Ngrasp and grep for each of the landmarks in
the manipulation graph. It is possible to reduce this
requirement to just Top; by automatically calculating
Grob and Ngrqsp using inverse kinematics or a kinematic
roadmap [1]. Choosing the stable object positions is
a hard problem in itself. We currently rely solely on
the user to add sufficient stable positions to make the
problem solvable.

The landmarks of our roadmap are added one by
one, and each landmark is connected to the other



landmarks in the roadmap. If two landmarks have
the same object configuration they are connected by
a transit edge. If they have the same grasp relation
they are connected by a transfer edge. Else, no edge
is added. As in the Fuzzy PRM we do not verify the
feasibility of the edges when they are created, instead
all new edges are assigned an edge probability of 0.999
(since 1.0 means that the path has been found).

In case of a large number of landmarks it might
be necessary to only connect each landmark to its M
closest neighbors, chosen by some distance metric.

The query phase We start the query phase by
updating the manipulation graph with the start and
goal configuration of the system. If the object is un-
grasped in either the start or goal configuration the
corresponding landmark will have an undefined grasp
number. In this case the node will only be connected
to other nodes with the same object transformation
by transit paths.

The local planners used during the upgrade step to
find feasible transit or transfer paths for the individ-
ual edges along a manipulation path, are different in-
stances of the fuzzy point-to-point PRM planner; One
instance for each possible grasp of the object. These
planners are used to plan the transfer paths. To up-
grade a transfer edge with a particular grasp, we use
the Fuzzy PRM associated with this grasp.

We could have included an instance of the fuzzy
point-to-point PRM planner for each stable placement
of the object, and then use these planners to plan the
transit paths. Since the number of stable configura-
tion is usually large (larger then the number of dif-
ferent grasps), and since it is usually much easier to
plan a transit path than to plan a transfer path, we
have chosen a different solution. We use a single fuzzy
point-to-point PRM to solve all transit paths. We do
this by associating a list of probabilities, one for each
stable object position, with the edges, instead of just
one probability. We choose the right entry in the list
depending on the stable object placement associated
with the transit path we are considering.

Edges which are assigned probability 0 for a given
object placement are just hidden when we make a
query for that placement. These edges are however
kept in the roadmap until they are assigned probabil-
ity 0 for all possible object placements. The probabil-
ity of the edges in the manipulation graph is given by
equation (3). From that equation it can be seen that
an edge will never be assigned probability 0. Therefore
we never delete edges from the manipulation graph.
Suppose that the user or the client software has added
sufficient nodes during the learning step such that

there exist a path(s) from start to goal and at least
one of these paths is actually feasible. Then our algo-
rithm once in query phase, it will stay there until the
manipulation problem is solved.

4 Experimental Results

The algorithm was implemented in C++ on a 400MHz
Pentium II running Windows NT. Our program used
163 seconds on the average (10 subsequent runs) to
solve the manipulation problem problem shown on
Figure 3. This problem involves an L-shaped object
and we initially had 7 stable placements of the object.
The manipulation graph contained a total of 14 land-
marks. A was estimated to 0.22. The goal is to bring
the object from the position shown at snapshot (a),
where the object is behind the right obstacle, to the
final position shown at snapshot (i), where the object
is between the two obstacles on the left. Because of
the large size and the strange shape of the object, the
robot has to put the object down and regrasp it to
complete the task.

5 Discussion

We have successfully designed and implemented an
algorithm capable of handling manipulation planning
for a system consisting of a single redundant robot arm
manipulating a single movable object with a finite set
of stable placements. This was done by extending the
PRM framework with an edge probability annotated
roadmap, called a fuzzy roadmap.

Future improvements During the development of
the current approach, we have discussed the possibil-
ity of moving the transfer paths from the second level
PRMs to the first level manipulation graph. This will
remove the time lost when querying the second level
PRM for transfer paths that do not exist. Further-
more, in case we want to generate the stable object
configurations automatically, it will be possible to de-
duce information from the manipulation graph about
where in the workspace it would be advantageous to
generate these configurations. This idea is under in-
vestigation.
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Figure 3: An example of a solution path for the manipulation planning problem used in our experiments.
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