
Expertness Measuring in Cooperative Learning

Majid Nili Ahmadabadi * Masoud Asadpur * Seyyed H. Khodaabakhsh* Eiji Nakano**

*Robotics Laboratory, Faculty of Engineering, University of Tehran
*School of Intelligent Systems, Institute for studies on Theoretical Physics and Mathematics

**Advanced Robotics Lab., GSIS, Tohoku University, Japan
E-mail: nily@sofe.ece.ut.ac.ir, majid,nakano@robotics.is.tohoku.ac.jp

Abstract

Cooperative Learning in a multi-agent system can improve the
learning quality and learning speed. The improvement can be
gained if each agent detects the expert agents and use their
knowledge properly. In this paper, a new cooperative learning
method, called Weighted Strategy Sharing (WSS) is introduced.
Also some criteria are introduced to measure the expertness of
agents. In WSS, based on the amount of its teammate
expertness, each agent assigns a weight to their knowledge.
These weights are used in sharing knowledge among agents in
our system. WSS and the expertness criteria are tested on two
simulated Hunter-Prey problem and Object Pushing systems.

1 Introduction

Learning is an essential part of Intelligent Behavior; if a
creature has no learning capability, it can not adapt itself to the
environment changes. All creatures do not need to learn all
things individually and search to find solution of problems
independently. Agents can communicate knowledge and
information with each other and take advices or training
commands from other agents, experts or even non-expertness.
This is a kind of cooperation we call it cooperative learning and
define it as follows:

Any method used by the learner agents through cooperation
with their teammates to improve the learning velocity or quality,
is a way of Cooperative Learning.

It is noteworthy that, cooperative learning needs
communication. But communication could be implicit and
nonverbal.

Until now, cooperative learning has not been investigated
deeply. In almost all of multi-agent learning papers, cooperation
of agents in learning is not complete or cooperation is uni-
directional between a trainer agent and a learner. Because of
having more knowledge acquisition resources, cooperation in
learning in multi-agent systems may result in a higher efficiency
compared to individual learning. Researchers have shown
improvement in learning when agents cooperate to learn
[Tan,1993].

Cooperative Learning is observed in human and some animal
societies. News broadcasting, information distributing,
publishing books, magazines and newspapers, imitation,
consulting, training, rewarding, punishing, advising and so on,
are some methods of cooperative learning in human groups.

Also, ants and bees are excellent samples of showing
cooperative learning in finding shortest path to food spots or
home [Dorigo&Gambardella,1997]. Also in Immune System of
human and other creatures, cooperative learning exists
wonderfully: after finding unknown virus and learning defense

scheme for it, other parts of immune system learn these scheme
rapidly; while they have not take part in killing offensive virus.

One of main problems in learning from others is to specify
the appropriate model agent to learn from it. The model is an
agent that other agents use its knowledge for their learning. In
researches done on cooperative learning, the best results were
obtained in learning from experts [Tan,1993]; But, it seems that
non-expert agents also have some knowledge useful for others.
Also, in majority of problems, no expert agents exist in the
system as no solution is provided beforehand. Therefore learning
from less-expert or non-expert agents becomes important in most
learning problems.

When learning from other agents, the learner should specify
amount of their expertness and assigns an importance weight to
their knowledge. Choosing appropriate weights is one of the
main problems in cooperative learning. To our knowledge,
nobody has studied different solutions for this problem and
compared them with each other. So, we intend to find the best
weight assigning method and devise a proper way to use other
agent’s experiences by the learner. In this study, we introduce
Weighted Strategy-Sharing method for cooperative learning.
Also some measures to evaluate agent expertness are introduced
and are applied to our system.

Related researches are reviewed in the coming section. Then,
our cooperative learning strategy, called Weighted Strategy-
Sharing is introduced. In the fourth section individual learning
is explained and some expertness measures are devised. In the
last sections, our methods are tested on the Hunter-Prey and
Object Pushing problems.

2 Related Researches

Samuel [Samuel,1963] used the Competitive Learning
algorithm to train a Checker game player. In his method,
cooperator agent has the role of enemy or evaluator and tries to
find weak strategies of the learner. In the Ant Colony System
[Dorigo&Gambardella,1997], some ants learn to solve the
Travelling Salesman Problem by non-verbal communication
through the pheromones on the edges of a graph.

Imitation [Kuniyoshi et al.,1994] is one of cooperative
learning methods. In imitation, the learners watch the actions of
a teacher, learn them and repeat the actions in similar situations.
This method does not affect the performance of the teacher
[Bakker&Kuniyoshi,1996]. For example in [Kuniyoshi et
al.,1994], a robot perceives a human doing a simple assembly
task and learns to reproduce it again in different environments.
Hayes and Demiris [Hayes&Demiris,1994] have built a robotic
system in which a learner robot imitates a trainer which moves in
a maze. The robot learns to escape from the maze later.

Proceedings of the 2000 IEEE/RSJ
International Conference on
Intelligent Robots and Systems

0-7803-6348-5/00/$10.00 ©2000 IEEE.

Yamaguchi and others [Yamaguchi et al.,1997] have
developed a robotic imitation system to train ball-pusher robots.
In this system, agents learn individually based on Reinforcement
Learning, but they have the ability to imitate each other too. In
their paper, three methods of imitation are used: Simple
Mimetism, Conditional Mimetism, and Adaptive Mimetism.
In Simple Mimetism all agents imitate each other when they are
neighbors, considering an imitation rate. In this method, Inter-
Mimetism Problem is occurred when two neighbors wait to
imitate each other and do nothing. This problem is solved by
Conditional Mimetism in which only low performance agent
(performance is measured based on sum of rewards and
punishments received in n previous actions) imitates the other
one. Adaptive Mimetism is similar to Conditional Mimetism, but
imitation rate is adjusted based on the difference between
performances of two neighbor robots.

Cooperation in learning also can be done when agents share
their sensory data and play the role of a scout for each other
[Tan,1993]. Episode Sharing can be used to communicate the
(state, action, reward) triples between Reinforcement Learners
[Tan,1993]. Tan showed that sharing episodes with an expert
agent could improve the group learning significantly. In
Collective Memory method, the learners put the learnt strategy
or experienced episodes on a shared memory
[Garland&Alterman,1996] or have a unique memory and update
it cooperatively[Tan,1993].

A Cooperative Ensemble Learning System [Liu&Yao,1998]
has been developed as a new method in neural network
ensembles. In this study linear combination of outputs of
concurrent learning neural networks are used as a feedback to
add a new penalty term to error function of each network.

Provost and Hennessy [Provost&Hennessy,1996] developed
a Cooperative Distributed Learning System which is used when
the training set is huge. First, the training set is divided into k
smaller training subsets and k Rule-Learning agents learn local
rules from these subsets. Then, the rules are transmitted to other
agents for evaluation; if the rule satisfies the evaluation criterion,
it is accepted as a global rule.

Maclin and Shavlik[Maclin&Shavlik,1996] have used
Advice Taking scheme to help a Connectionist Reinforcement
Learner. The Learner accepts advices in the form of a simple
computer program, compiles it, represents the advice in a neural
network form, and adds it to its current network.

In most of the reviewed researches, cooperation is uni-
directional between a pre-specified trainer and a pre-specified
learner agent. In real world, Cooperative Learning is two-
directional and all of agents learn something from each other
(even from non-expert) agents. In Strategy Sharing Method
[Tan,1993], agents of a multi-agent system learns from all of
agents. The agents learn individually by Q-Learning version of
Reinforcement Learning. At special times, agents gather the Q-
Tables of other agents and take the average of tables as their new
strategy. This system uses knowledge of all of agents but the
agents do not have the ability to find good teachers. Also, this
system has high communication cost because all of agents must
transmit all cells of their tables. Moreover, it seems that the
simple averaging of tables is non-optimal when agents have
different skills and experiences. Additionally, the Q-table of
agents become equal after each cooperation step which decreases

the adaptability of agents to the environment changes
[Yamaguchi et al., 1997]. To overcome the described
difficulties, we have developed a new strategy sharing method
based on expertness detection where agents assign weights to
tables of other agents.

3 Weighted Strategy-Sharing Method

In Weighted Strategy-Sharing Method (Algorithm 1) it is
assumed that a group of n homogeneous agents is learning in
distinct environments, so their actions do not change the
learning environment of others (and do not make the Hidden
State Problem [Friedrich et al.,1996]). The agents are learning in
two modes: Individual Learning Mode and Cooperative
Learning Mode (lines 4 and 15 of Algorithm 1). At first, all of
gents are in Individual Learning Mode. Agent i executes ti
learning trials, based on the One-Step Q-Learning version of
Reinforcement learning (different tis causes different
experiences). Each learning trial starts from a random state and
ends when the agents reach the goal. After a specified number of
individual trials (which is called Cooperation Time) all agents
stop Individual Learning and switch to Cooperative Learning
Mode.

In Cooperative Learning Mode, each agent assigns weights
to other agents with respect to their expertness. Then, it takes
weighted average of Q-table of agents and uses the resulted table
as new Q-table for itself.

Multiplication (*) and Summation (+) operators must be
specified based on knowledge representation method. For
example, in One-Step Q-Learning method, * operator is scalar
matrix multiplication operator and + operator is matrix
summation, etc. Expertness measures are introduced in the next
section.

3-1 Individual Learning based on Reinforcement
Learning

In this paper, One-Step Q-Learning is used for Individual
Learning Mode. Reinforcement learning is one of the simplest
and mostly used learning method that has many similarities to
human experiences. In this method, the agent perceives
something about the state of its environment and, based on a
predefined criterion, chooses an action that it thinks is
appropriate. The action changes the world’s state and the agent
receives a scalar "reward" or "reinforcement" indicating the
goodness of the new state for the agent. After receiving reward
or punishment, it updates the learnt strategy based on learning
rate and other parameters.

In One-Step Q-Learning algorithm [Watkins,1989] external
world is modeled as a Markov decision process with discrete
time finite states. Next to each action, the agent receives a scalar
"reward" or "reinforcement".

The state-action value table, Q, which estimates long-term
discounted reward for each state/action pair, determines the
learned policy of agent. Given a current state and available
action “ai”, a Q-learning agent selects each action "a" with a
probability(P) given by the Boltzmann distribution (line 7 of
algorithm 1):

P ai x
e

Q x ai

e
Q x ak

k actions

(|)

(,)/

(,)/=

∈
∑

τ

τ

where τ is the temperature parameter that adjusts the
randomness of decision. The agent then executes the action (line
8), receives an immediate reward r(line 9), moves to the next
state y (line 10) and updates Q(x,a) by this formula(line 12):

Q x a Q x a r V y(,) () (,) (())← − + +1 β β γ
Where β is the learning rate and γ ()0 1≤ ≤γ is a discount
parameter and V(x) is given by(line 11):

V y b act ions Q y b() m a x (,)= ∈
As the agent searches the state space, Q is improved gradually.

3-2 Expertness Criteria

In Weighted Strategy-Sharing Method, weights of each
agent’s knowledge must be specified so that the group learning
efficiency is maximized. The Expertness measuring criterion can

significantly affect the learning efficiency. This can be observed
in human society, in which we evaluate one's knowledge with
respect to its expertness. Therefore, each agent must predict that
which agent has best efficiency at the end of learning period and
assign more weight to its knowledge; meaning how much it can
rely on other agent's knowledge.

Different mechanisms for choosing expert agent are used.
Most of the researches have pre-specified expert agent(s). For
example, in Tan[Tan,1993], expert agent is predefined and is not
changed during group learning. This expert agent, which is
trained or programmed previously, does not learn and helps
others in learning only.

In strategy sharing method [Tan,1993], expertness of agents
are assumed to be equal. Nicolas Meuleau [Meuleau, 1991] have
used the judgment of user for specifying expert agent. This
method requires continuous supervision of human.

In [Alpaydin,1998] different but fixed expertness is assumed
for each agent. Difference in expertness can be due to initial
knowledge, different experiences, different learning algorithm,
or different training sets. But it must be noted that, difference in
expertness may change in the learning process and cannot be
assumed constant.

Yamaguchi et al [Yamaguchi et al,1997] have specified the
experts agent by means of their successes and failures during
current n moves and considered the expertness criterion as
algebraic sum of reinforcement signals received in that time
interval. This means that more successes and fewer failures have
considered as more expertness. We think that this method can be
non-optimal in some situations.
For example, we know that an agent which has faced many
failures has some useful knowledge to be learnt from it: It is
possible that this agent does not know the ways of reaching the
goal, but it knows the ways not leading to the goal and can avoid
these failure situations in future. Also, the expertness of an agent
at the beginning of learning process –that is not faced many
failures- is less than other agents learnted a long time and
naturally has confronted with more failures.

Considering discussed subjects, we have introduced six
methods for comparing expertness of agents in this paper. These
methods are:
1-Normal(Nrm): Algebraic sum of reinforcement signals.
2-Absolute(Abs):Sum of absolute of reinforcement signals.
3-Positive(P): Sum of positive reinforcement signals.
4-Negative(N): Sum of absolute value of negative reinforcement
signals.
5-Average Move(AM): Reverse of the number of moves each
agent does to reach the goal.
6-Gradient(G):Increased amount of received signals since last
cooperation time.

3-3 Weight Assigning Mechanism

To decrease the communication required to exchange Q-
tables, the learner can use only the Q-tables of more expert
agents. Learner i assigns the weights based on expertness
difference between itself and other expert agents regarding the
following formula:

Algorithm 1-Weighted Strategy Sharing Algorithm for
each agent Ai

(1) Initialize
(2) while not EndOfLearning do
(3) begin

(4)If InIndividualLearningMode then
(5)begin { Individual Learning}

(6) xi :=FindCurrentState()
(7) ai := SelectAction()
(8) DoAction(ai)
(9) ri := GetReward()
(10)yi := GoToNextState()
(11)V yi Maxb actionsQ yi b(): (,)= ∈

(12)
Qi

new
xi ai i Qi

old
xi ai

i ri i V yi

(,): () (,)

(())

= −

+ +

1 β

β γ

(13)ei := UpdateExpertness(ri)
(14)end
(15)else {Cooperative Learning}
(16)begin

(17) for j:= 1 to n do
(18)ej := GetExpertness(Aj)

(19) Qi
new := 0

(20) for j:= 1 to n do
(21) begin
 (22) Wij := ComputeWeights(i,j,e1...en)

(23) Q
j
old := GetQ(Aj)

(24) Qi
new

Qi
new

Wij Qj
old

: *= +

(25) end
(26) end

(27) end

Wij

i if i j

i

e j ei

ek eik

n if e j ei

otherwise

=

− =

−

−
=
∑

>











1

1
0

α

α

()

where 0 1≤ ≤αi is Impressibility Factor and shows that how

much each agent relies on other’s knowledge. Partial weights of
others knowledge are zero if they are less expert than agent i. If
the agent j is more expert than agent i, then its weight is relative
to amount of expertness difference between agent j and agent i
divided by sum of other expert’s differences. Substitution of this
formula in weighted averaging formula (line 24 of Algorithm 1)
results the following:

Qi
new

i Qi
old

i
e j ei

ek eik

n Qj
old

j Exprt i
← − +

−

−
=
∑∈

∑() * * (
()

*)
()

1

1

α α

Exprt(i)={ j | ej > ei }
The formula shows that previous knowledge of each agent has
(1 − αi) effect on its new knowledge and knowledge of others is

used by weight αi .

3-4 Special Cells Communication

Two mechanisms called Positive Only (PO) and Negative
Only (NO) are introduced to eliminate the communication of
some cells. In Positive Only, agents send only positive-value
cells of their Q-tables to others and, the expertness of agents are
measured by Positive criterion. In Negative Only, agents
communicate only negative-value cells of their Q-tables to
others and the expertness are measured by Negative criterion.

4 Simulation on Hunter-Prey Problem

"Hunter and Prey" problem [Tan,1993] is one of the classical
problems to study the learning process and is a suitable testbed
for comparing different learning methods. In this paper, all
experiments consist of 3 hunters, which search independently a
10×10 environment to capture a prey agent. Hunters can move
with speed between 0 and 1 and prey can move with speed
between 0 and 0.5. Maximum speed of the hunter must be
greater than maximum speed of prey since prey is intelligent
(described bellow). Otherwise, hunter cannot capture the prey.
The prey is captured when its distance from hunter is less than
0.5 (which is called reward field). Upon capturing the prey, the
hunter receives +R reward and -P otherwise.

Each agent has a visual field in that it can locate other agent.
In the studied experiments, visual field of hunter was 2 and
visual field of prey was 3. Greater visual field causes the prey to
escape before the hunter see it.

The states of hunter are specified with respect to the prey
(x,y) coordinates in its local coordination frame. If hunter was
not in its visual field a default state was considered. Actions of
the hunter consist of rotation and changing velocity that provides
movement in a two dimensional environment: a V= (,)θ .

Here, we divided distance, velocity difference, and angle
difference into sections of 1 distance unit, 0.5 velocity unit and
45 degrees respectively.

For complicating the learning problem and to show the
differences in efficiency of learning algorithms clearly, we have
tested two simple and complex versions of the hunter-prey
problem. In simple version, similar to other researches, the
moving pattern of prey is irregular and random. In the complex
version, the prey moves based on potential field model and
escape from the hunter. We call this agent intelligent.

In the potential field model, 4 walls at each side of the
environment, prey and hunter are assumed to be electropositive
materials, which repulse each other. Therefore, the prey selects
the path with minimum potential. Repulsive force of the hunter
was considered 1.5 times of the walls. The hunter was modeled
as a spot load and walls as a linear load. An example of
computing resultant showed in figure 1.

In an environment with Intelligent Prey, each hunter’s
movements may affect the prey. So, if several numbers of
hunters learn in an environment altogether, effect of an
individual hunter on the prey cannot be calculated easily. So,
we put only one hunter in the environment in each trail. Also for
creating agents with different expertness, we have given the
agents different learning times (tis). First hunter learns 6 trials,
then the second one is permitted to do 3 trials and finally, the
last hunter does one learning trial. In other case the hunters have
equal tis. The total number of Individual Learning trials was
1000 and Cooperation Times were after 50 Individual Learning
trials of three hunters together. Reward and punishment signals
were one of 6 pairs: (10,-0.01), (10,-0.1), (10,-1), (5,-0.01), (5,-
0.1), (5,-1).

In simulations, learning trials ends when the hunter captures
the prey. At the beginning of each Individual Learning trial,
agents are at a random. The One-Step Q-learning parameters
were set to β = 0 01. , γ = 0 9. , and T=0.4. Q-table values have

initialized to zero and all agents had α
i

= 0 7. . Also, for trial n,

we have measured the average number of hunter actions to
capture the prey over past n trials.

Hunter Repulsive Force

Prey

Hunter

Wall 1

Wall 2

Wall 2
Repulsive

Force

Wall 1
Repulsive

Force

Prey Visual Field Boundary

Figure 1 - an example of computing resultant
force

4-1 Equal Experiences

In figures 2 and 3, average number of moves using six
mentioned Reinforcement Values are shown for individual and
cooperative learning methods with the expertness criteria
described above. Also, improvements of each method to
Independent Learning are given in table 1.

It is clear that all of cooperative learning methods (except for
Positive Only and Negative Only) have approximately the same
results as Independent Learning (Ind). Positive Only and
Negative Only are the worst methods. Because, these methods
change the probability distribution of actions in Boltzmann
selection function and make the selection probability of positive-
value and negative-value actions closer. So, the probability of
selecting an inefficient action raises. Negative Only is worse
than Positive Only, because even significant difference between
two negative-value actions makes little change in the selection
probability of the actions in Booltzmann selection method. But a
little difference between two positive-value actions can raise the
probability of better action significantly.

4-2 Different Experiences

In figures 4 and 5, average number of moves over the 6
described Reinforcement Values are shown for each cooperation
method. Also improvement percent of each method are written
in table 2.

Table 2 shows that Absolute, Positive, and Negative are
resulted in improvement in all cases. In random-prey case, where
the number of punishments is less than intelligent-prey case,
Positive criterion has the best results. But, in intelligent-prey
case, Negative criterion has the best results.

Normal and Gradient have the worst results. These criteria
mistake in assigning expertness to the agents. It is due to the fact
that the more experienced agent has more tries and,
consequently, has received more punishments. Therefore, its
expertness becomes negative and less weight is assigned to its
knowledge.

Average Move criterion has negative effect in random-prey
case and approximately no effect in intelligent-prey case. In this
criterion, the difference between expertness of agents is little,
even when they have considerably different number of moves.

Negative Only has negative effect on learning in the two
cases and Positive Only has approximately no effect. Simple
Averaging (SA) has negative impact in two cases because of
assigning equal weights to agents, which have different
expertness.

5 Object Pushing

In the Object Pushing problem, simulated in this paper, two
robots learn to push an object toward a target area cooperatively
(figure 6). Pushing forces (F1 and F2) are applied horizontally at
2 points (A and B) on the object. Friction forces are fix and
uniformly distributed over the environment surface. Pushing
velocity is slow and inertia forces are neglected. Therefore,
considering figure 6, linear (a) and angular (α) acceleration can
be computed as:

a
F F Fs

M
=

− + − −1 1 45 2 2 45. cos(') . cos(')θ θ

α
θ θ

=
−F r F r

I

1 1 2 2. . sin() . . sin()

where M is mass of object and I is its moment of inertia.
Mechanical parameters are set to M=1(Kg), I=1, r=1(m),
µ s = 0 5. , and g=9.8(N/Kg).

To avoid Structural Credit Assignment
[Claus&Boutilier,1997], we have considered a common Q-table
for two robots such that actions are joint actions, consisting the
first and the second robots actions: a=(a1,a2).

States of group are specified based on coordination of mass
center and angle of object relative to target: s=(x,y, θ). Ranges
of x, y, and θ are discredited to segments of 1(m), 1(m), and
45(deg), respectively. Environment size is 10×10 and since x
and y can change between 10 and -10, the robots have
8×20×20=3200 states. Actions of robots are specified based on
the amount and angle of forces.

Each force is applied 4 seconds and then robots follow the
object until it stops. Target position is at (8,8) and initial
position of object is (2,2). If the object crosses the walls the
robots are positioned to initial point. Each learning trial starts
from initial position and ends when the robots take the object
into the target area or their number of actions exceeds from 2000
actions.

To implement cooperative learning, three groups of such
systems are instantiated. Their learning trials are divided based
on t1=6, t2=3, and t3=1 and cooperation times occur after each
100 learning trials. Maximum number of trials is 50,000 and
other parameters are α = 0 7. , β = 0 01. , γ = 0 9. , and T=0.4.

To define suitable reinforcement functions, we computed the
average number of randomly selected moves of each group to
arrive at the target (i.e. without learning) and got approximately
200 moves. Then we set rewards to 10 and adjust three cases of
punishments such that sum of received punishments were

Table 1-Improvement Percents in equal experience case.

SA Nrm Abs P N PO NO G AM
random-prey -0.047 -1.36 -0.141 0.375 0.235 -4.972 -23.358 0.704 2.111

intelligent-prey -3.136 -3.339 0.936 -1.95 -0.156 -17.663 -65.096 -1.264 -0.452

Table 2- Improvement Percents in different experience case.

SA Nrm Abs P N PO NO G AM
random-prey -2.735 -15.307 7.582 9.933 8.301 0.845 -5.777 -7.486 -6.286

intelligent-prey -7.572 -51.153 13.9 14.244 14.44 -1.676 -44.841 -47.49 -0.654

approximately lower than (-0.01×200), equal to (-0.05×200), or
greater than (-0.1×200) the reward (+10).

5-1 Simulation Results

A sample of the learnt path for pushing the object is shown
in figure 7. The average number of moves to push the object into
the target area after 50,000 learning trials is shown in table 3 for
each reinforcement function. It is seen that the Simple Averaging
has little positive effect on learning relative to Independent
Learning. Also in all cases, Weighted Strategy Sharing based on
Normal, Absolute, Positive, and Negative criteria have better
results than Simple Averaging. When punishments are greater
than rewards at the beginning of learning, Negative is the best
criteria and Positive is the worst between the four criteria. But in
the case where rewards are greater than punishments, Positive is
the best criterion and Negative is the worst. Also when
punishments and rewards are approximately equal, Absolute has

the best results. But since any little difference in rewards and
punishments significantly affects the weights in this case, the
Normal criterion has the worst results. Naturally, In this case,
Positive and Negative have approximately the same results.

6 Conclusion

In this paper, Weighted Strategy-Sharing, a cooperative
learning method was introduced. Also some criteria to measure
the expertness of agents were introduced and a suitable weight
assigning method was presented based on expertness measuring
and learning from experts. The methods were tested on Hunter-
Prey and Object Pushing problems.

Results showed that Strategy-Sharing Methods had no effect
(or little effect) on the learning of a multi-agent system when
agents had equal experiences. When the experience of agents
was different they resulted in improvement in group learning.

Simple Averaging, Gradient, Normal and Average Move had

Ind
SA
Nrm
Abs
P
N
PO
NO
G
AM

Trial
1,000800600400200

A
v
e
r
a
g
e

M
o
v
e

560

540

520

500

480

460

440

420

400

380

360

Figure 2- Average number of moves in random-prey and equal
experience case.

Ind
SA
Nrm
Abs
P
N
PO
NO
G
AM

Trial
1,000900800700600500400300200100

A
v
e
r
a
g
e

M
o
v
e

3,400

3,200

3,000

2,800

2,600

2,400

2,200

2,000

1,800

1,600

1,400

1,200

Figure 3-Average number of moves in intelligent-prey and equal
experience case.

Ind
SA
Nrm
Abs
P
N
PO
NO
G
AM

Trial
1,000800600400200

A
v
e
r
a
g
e

M
o
v
e

640

620

600

580

560

540

520

500

480

460

440

420

400

380

360

340

320

Figure 4-Average number of moves in random-prey and
different experience case.

Ind
SA
Nrm
Abs
P
N
PO
NO
G
AM

Trial
1,000900800700600500400300200100

A
v
e
r
a
g
e

M
o
v
e

3,200

3,000

2,800

2,600

2,400

2,200

2,000

1,800

1,600

1,400

1,200

1,000

Figure 5-Average number of moves in intelligent-prey and
different experience case.

Table 3-Average Number of moves to push the object to target area.

reward, punishment Independent Simple Averaging Normal Absolute Positive Negative
10,-0.01 25.0 24.8 20.6 21.4 20.6 21.5
10,-0.05 27.9 26.9 21.4 20.8 21.0 21.1
10,-0.1 27.3 26.4 20.7 21.8 22.5 20.5

positive effect on group learning when the learning problem was
simple. In other case (e.g. Intelligent-Prey case) they had
negative effects. Positive Only and Negative Only methods have
completely negative effects and are not useful for cooperative
learning.

The introduced criteria were sensitive to reward function of
agents but Absolute criterion had the minimum sensitivity.
Because, it has the properties of both Positive and Negative
criteria.

Between Absolute, Normal, Positive, and Negative criteria,
Positive criterion was the best method when sum of received
rewards was greater than punishments in the beginning of
learning. And, Negative had the worst results. In contrast, when
the sum of received punishments was greater than rewards,
Negative was the best and Positive was the worst. When the
difference between rewards and punishments were little, Normal
method had the worst results. Positive and Negative had
approximately the same results, and Absolute was the best
method.

References

[Alpaydin,1998] Alpaydin E., “Techniques for Combining
Multiple Learners”, In: Alpaydin E., Proceedings of
Engineering of Intelligent Systems’98 Conference, ICSC Press,
Vol.2, pp.6-12, 1998.
[Bakker&Kuniyoshi,1996] Bakker P., and Kuniyoshi Y.,
“Robot See, Robot Do: An Overview of Robot Imitation”, 1996.
 [Claus&Boutilier,1997] Claus C., Boutilier C., “The Dynamics
of Reinforcement Learning in Cooperative Multiagent Systems”,
AAAI’97 workshop on Multiagent Learning, 1997.
[Dorigo&Gambardella,1997] Dorigo M., Gambardella L.M.,
“Ant Colony System:A Cooperative Learning Approach to the
Traveling Salesman Problem”, IEEE Transactions on
Evolutionary Computation, Vol. 1, No. 1, April 1997.
[Friedrich et al.,1996] Friedrich H., Kaiser M., Rogalla O.,
Dillmann R., “Learning and Communication in Multi-Agent
Systems”, Distributed Artificial Intelligence Meets Machine
Learning, Lecture notes in AI, vol.1221, 1996.
[Garland&Alterman,1996] Garland A., and Alterman R.,
“Multiagent Learning through Collective Memory”,
AAAISS’96, 1996.
 [Hayes&Demiris, 1994] Hayes G., and Demiris J., “A Robot
controller using learning by imitation”, In: Borkowski A.,
Crowley J.L.(eds.), Proceeding of the 2nd International

Symposium on Intelligent Robotic Systems, pp.198-204,
renoble, France: LIFTA-IMAG, 1994.
[Kuniyoshi et al., 1994] Kuniyoshi Y., Inaba M., and Inoue H.,
“Learning by watching: Extracting reusable task knowledge
from visual observation of human performance”, IEEE
Transaction on Robotics and Automation, Vol.10, No.6, pp.799-
822, 1994.
[Liu&Yao,1998] Liu Y., Yao X., “A Cooperative Ensemble
Learning System”, Proceeding of the 1998 IEEE International
Joint Conference on Neural Networks(IJCNN’98), Anchorage,
USA, pp.2202-2207, May 1998.
[Maclin&Shavlic,1996] Maclin R., Shavlic J.W., “Creating
Advice-Taking Reinforcement Learners”, Machine Learning,
Vol.22, pp.251-282,1996]
[Meuleau,1991] Meuleau, N., Simulating Co-Evolution with
Mimetism, Proc of the First European Conf. on Artificial
Life(ECAL-91), pp.179-184, 1991.
[Provost&Hennessy, 1996] Provost F.J., and Hennessy D.N.,
“Scaling Up:Distributed Machine Learning with Cooperation”,
AAAI’96, 1996.
[Samuel,1963] Samuel A., “Some Studies in Machine Learning
Using the Game of Checkers”, Computer and Thought.
[Tan,1993] Tan, M., Multi-agent reinforcement learning:
independent vs. cooperative agents. In:Machine Learning,
Proceedings of the 10th International Conference, Amherst,
Massachusetts, 1993.
[Watkins,1989] Christopher J.C.H. Watkins. Learning from
Delayed Rewards. PhD thesis, King’s College, May 1989.
[Watkins&Dayan,1992] Christopher J.C.H. Watkins and
PeterDayan. Q-Learning(technical note), In: Sutton
R.S.(ed.), “Machine Learning: Special issue on
reinforcement learning”, vol 8, May 1992.
[Yamaguchi et al.,1997] Yamaguchi T., Tanaka Y.,
Yachida M., “Speed up Reinforcement Learning between
two Agents with Adaptive Mimetism”, IROS’97, pp. 594-
600, 1997.

Figure 7- A sample of the learnt pushing paths.Figure 6- Object Pushing

