
Robust Sensor-based Coverage of Unstructured Environments

Ercan U. Acar Howie Choset

Carnegie Mellon University

Pittsburgh, PA15213

eua,choset+@andrew.cmu.edu

Abstract

Sensor-based coverage uses sensor information to de-

termine a path that passes a detector or some e�ector

over all points in an unknown space. This work identi-

�es features of a provably complete coverage algorithm

to reject \bad" sensor readings in unstructured envi-

ronments without performing complicated sensor-data

processing. First, we brie
y review our provably com-

plete sensor-based coverage algorithm that uses an ex-

act cellular decomposition in terms of critical points of

Morse functions. Then we present features of the al-

gorithm that are used to overcome failures due to bad

sensor data. We veri�ed our approach by performing

experiments using a mobile robot that has 16 ultrasonic

sensors.

1 Introduction

Sensor-based coverage has many applications from


oor cleaning to de-mining. Our early work resulted in

a sensor-based provably complete coverage algorithm

for planar environments. Even though these spaces

were unknown a priori, we had to form obstacle bound-

aries using cardboard walls, i.e., form planar extrusions,

to make the planar space \friendly" to our sonar ring.

In this paper, we extend our early work to the case of

unstructured environments (Fig. 1) where \bad" sensor

readings often occur.

Our approach to coverage uses a cell decomposition

where coverage in each cell can be achieved by perform-

ing back and forth motions. Visiting each cell ensures

complete coverage. We de�ne each cell by passing a

slice (a line segment) through the free space from left to

right. The \left-most" and \right-most" boundaries of

cells occur at slices where the connectivity of the slice in

the free space changes. These connectivity changes oc-

cur at the points called critical points. Our prior work

described how to sense these critical points in planar

structured environments. Bad sensor readings cause

trouble when the robot is fooled into thinking that it

sensed a critical point. However a thorough analysis of

our coverage algorithm enabled us to reject such bad

sensor readings and verify correct ones. Previously re-

searchers [5], [7] have developed algorithms that deal

with uncertainty. In these algorithms, bounds on sensor

uncertainty are utilized to determine the regions from

which certain motions are ensured to reach a desired

goal. In this work, rather than using error bounds, we

re-analyze our algorithm to identify features that can

be used to overcome failures due to sensor uncertainty.

Fig. 1. Unstructured indoor environment with sonar \unfriendly"

obstacles.

2 Sensor-based Coverage

Our sensor-based coverage algorithm is built upon

\a slicing method" [2] that sweeps a slice CS� (a line

segment) through out the con�guration space CS of a

circular robot. The slice is the pre-image of a real-

valued function h(x) = x1, i.e. CS� = fx 2 CSjh(x) =

�; � 2 <g. We use the critical points of hj@CC(x), the re-

striction of h(x) to the boundaries of the con�guration

space obstacles @CC as described in the next section to

decompose the space.

2.1 Critical Points

We know from basic calculus that at the critical

points of a function, its �rst derivative vanishes and

the function takes a local extremum. Also a critical

point is non-degenerate if and only if the Hessian of

the function at the critical point is non-singular. If

all the critical points of a function are non-degenerate,

then the function is a Morse function [8].

To decompose the space into cells, we use the critical

points of hj@CC(x)
1. In our early work [1], we showed

that at a critical point of hj@CCi(x), the gradient of h(x),

rh(x), and surface normals, rm(x), of the obstacles

CCi are parallel to each other (Fig. 2-(a)).

1In fact, we assume that obstacle boundaries have a structure

that ensures hj@CC to be Morse. Fomenko and Kunii [6] show

that there always exists a Morse function. In other words, given

the space it is always possible to �nd a real-valued function with

non-degenerate critical points.



CC1 CC2

rm(x)rh(x)

(a)

Slices

Cp1

Cp1

Cp2

Cp2

Cp3

Cp3

Cp4

Cp4

Cp5

Cp5

Cp6

Cp6

Cell

Critical Points

(b)

Fig. 2. (a) At the critical points of hj@CCi , the gradient of h,

rh(x), and the surface normals, rm(x), are parallel. (b)

An example exact cellular decomposition and its Reeb graph.

The cell boundaries have two parts: slices that contain critical

points and portions of the obstacle boundaries.

Cp1

Cp1 Cp1

Cp1

Cp1

Cp1 Cp1

Cp1

Cp2 Cp2

Cp2

Cp2

Cp2

Cp2

Cp3
Cp3

Cp3 Cp3

Cp4

Cp4

(1) (2) (3) (4)

Fig. 3. Incremental construction of the graph while the robot is

covering the space. Gray area depicts the covered region.

2.2 Cells and Graph Representation of the

Cellular Decomposition

We know that as we sweep the slice in the free space,

its connectivity changes at the critical points [3]. We

use these connectivity changes to form cells by iden-

tifying slices that contain critical points and portions

of obstacle boundaries between the critical points. In

Fig. 2-(b) we show the cellular decomposition of an ex-

ample space and its Reeb graph [6] representation that

describes the topology of the cellular decomposition.

The Reeb graph represents the critical points as nodes

and cells as edges. In this work, we assume that \left"

or \right" most cell boundaries in the interior of the free

space is de�ned by one critical point each. Therefore

generically, we can characterize each cell by two critical

points and represent it with an edge between two nodes.

Note that dealing with non-generic con�gurations is an

implementation problem.

2.3 Incremental Construction of the Cellular

Decomposition

To achieve coverage in an unknown space, the robot

simultaneously covers the space and incrementally con-

structs the Reeb graph representation. In Figure 3-(1),

the robot starts to cover the space at the critical point

Cp1 and it instantiates an edge with only one node.

When the robot is done covering the cell between Cp1
and Cp2, it joins their corresponding nodes with an

edge (Figure 3-(2)). Now the robot has two new un-

covered cells. It chooses the lower cell to cover. When

c0
di(x)

rdi(x)Ci x Robot

C1
C2

C3

C4

d1
d2

d3
d4

xx

�

Fig. 4. The distance between x and the workspace obstacle Ci is

the distance to the closest point c0 on @Ci. The gradient of

the distance function rdi(x) is the unit vector pointing away

from c0 2 @Ci. The distances to obstacles, di(x), are the

local minima of all the distance measurements with respect

to angular parameter �. The corresponding angle �i is used

to calculate rdi(x).

the robot reaches Cp3, nodes of Cp2 and Cp3 become

connected with an edge and the lower cell is completed

(Figure 3-(3)). At Cp3, the robot decides to cover the

cell to the right of Cp3. When the robot senses Cp4,

it goes back to Cp3 and starts to cover the upper cell.

When it comes back to Cp2, it determines that all the

edges of all the nodes (critical points) have been ex-

plored (Figure 3-(4)). Thus the robot concludes that

it has completely covered the space. This incremental

construction method serves a basis for the sensor-based

coverage algorithm.

2.4 Critical Point Sensing Methods

In unknown environments, the incremental construc-

tion approach that we described requires methods to

sense critical points. In this section we present two

methods. The �rst method uses range sensors, and

the second method uses relative position data. We

use these methods concurrently to eliminate both false-

negatives and positives.

2.4.1 Critical Point Sensing Using

Range Sensors

We use a distance function di(x) to model range sen-

sors. The value di(x) is the shortest distance between

a point x and a workspace obstacle Ci. The distance

function and its gradient are (Fig. 4)

di(x) = min
c2Ci

kx� ck and

rdi(x) =
x� c0

kx� c0k
for c0 = argminc2Ci = kx�ck:

We calculate di(x) and rdi(x) by using a range sen-

sor, such as a sonar ring, that supplies distance mea-

surements radially distributed around the robot. The

distances di(x) to obstacles are determined by calculat-

ing the local minima of the range measurements with

respect to an angular parameter � (Fig. 4). The mag-

nitude of the local minimum together with its direction

� are used to determine di(x) and rdi(x).

Once the distance measurements and rh(x) (sweep

direction) are available, we relate them for critical point



CCi

Cp

rdi(x)

rh
rm(Cp)

CS�1 CS�2

x

Fig. 5. At point x, rdi(x) ? CS�2 . Therefore there exists a

critical point Cp at x � rdi(x)di(x). Note that the critical

point is located in the boundary of the con�guration space

obstacle.

Cp

rdi(x) rdi(x)

rh rh

rm(Cp)

CS�

Robot

x

(a) (b)

Wall Following Path

Workspace Obstacle Con�guration Space Obstacle

Fig. 6. (a) The robot senses the critical point Cp while it

is following the boundary of the obstacle using the work s-

pace distance measurements. (b) At point x, rdi(x) ? CS�,

rm(Cp) k rh(Cp) and rm(Cp) k rdi(x). The critical point

Cp lies in the boundary of the con�guration space obstacle.

The position of the center of the robot is, in fact, the critical

point.

sensing. In our prior work [1], we showed that if the

robot is located at x 2 CS�2 and rdi(x) is orthogonal

to the slice, then there exists a critical point on the

boundary of the con�guration space obstacle, @CCi, at

(x�rdi(x)di(x)) 2 @CCi (Fig. 5).

In this work, we restrict the robot to sense the criti-

cal points while it is following the boundaries of the ob-

stacles. Then if the robot senses a critical point (Fig. 6-

a), it is located in con�guration space at a position that

corresponds to the center of the robot (Fig. 6-b).

2.4.2 Critical Point Sensing Using

Relative Position Information

We know that at critical points, the function hj@CC
takes its local extrema. Since we use the function

hj@CC(x) = x1, the robot can look for local extrema in

the �rst coordinate of its position to locate the critical

points while it is performing wall following. In Fig. 7 we

hj@CC(Cp1) hj@CC(Cp2)

Cp1 Cp2

CC1 CC2

x1

x2

Fig. 7. The restriction of the slice function h(x) = x1 to the

obstacle boundaries hj@CC takes a local minimum at Cp1 and

a local maximum at Cp2. Since hj@CC takes its extrema at

Cp1 and Cp2, they are the critical points.

Robot

rh(x)

rdi(x)rdi(x)

rdi(x)rdi(x)

rdj(x)rdj(x)

(a) (b)

(c) (d)

IN OUT

START
END

Fig. 8. The robot can use the direction of rdi(x) with re-

spect to rh(x) to identify four di�erent types of critical

points. (a) �rh(x) = rdi(x), IN (b) rh(x) = rdi(x),

OUT (c) �rh(x) 2 COfrdi(x);rdj(x)g, END (d) rh(x) 2

COfrdi(x);rdj(x)g, START.

depict two sample critical points Cp1 and Cp2 on the

boundaries of the obstacles CC1 and CC2 respectively.

Consider a path on @CC1 that passes through Cp1 as

depicted in Fig. 7. Moving along the path towards Cp1
decreases the value of hj@CC(x). After passing through

Cp1, the value increases. In other words, hj@CC(Cp1)

is a local minimum of hj@CC . Likewise, hj@CC(Cp2)

is a local maximum of hj@CC . Since hj@CC(Cp1) and

hj@CC(Cp2) are extrema of hj@CC , Cp1 and Cp2 are the

critical points of hj@CC .

2.5 Types of Critical Points and How to Sense

Them

Borrowing terms from computational geometry [10],

we classify the critical points as IN, OUT, START,

END and use this characterization later in Sec. 3 to

reject bad sensor readings. Recall that critical points

occur on the boundaries of obstacles. When the obsta-

cle is locally convex near the critical point, we have an

IN or OUT critical point where rdi(x) = �rh(x) at

IN critical points and rdi(x) = rh(x) at OUT criti-

cal points (Fig. 8-(a; b)). When the obstacle is locally

concave, we have a START or an END critical point.

We can sense these types of critical points when cur-

vature of the robot's periphery is greater than the ob-

stacle's. Note that at such critical points, the gradi-

ent of d(x) is non-smooth. Then at an END critical

point �rh(x) 2 COfrdi(x);rdj(x)g (Fig. 8-(c)). At

a START critical point rh(x) 2 COfrdi(x);rdj (x)g

(Fig. 8-(d)) where COfrdi(x);rdj(x)g is the convex

hull of rdi(x) and rdj(x). When the boundary's cur-

vature is smaller than the robot's periphery, i.e. the

gradient of d(x) is smooth, we cannot distinguish the

START and END critical points with IN and OUT crit-

ical points using range data (Fig. 9). However, by ob-

serving the relative history of the dead-reckoning data

and using the features of the algorithm, presented in



Robot

rh(x)
rdi(x)

Fig. 9. The curvature of the boundary is smaller than 1=r where

r is the radius of the robot. In this case the robot uses rela-

tive position data and features of the algorithm to sense and

determine the type of the critical point.

Robot

rh(x)

rdi(x)

IN
OUT

STARTEND

Fig. 10. The robot uses relative position data to determine the ex-

istence of local extrema and hence to sense the critical points.

IN and START critical points occur when there is a local min-

imum. OUT and END critical points occur when there is a

local maximum.

Sec. 3, we can make this judgment.

Using relative position information, the robot can

determine whether it has just passed a local minimum

or maximum while it is following the boundary of an

obstacle (Fig. 10). If the robot senses a local minimum,

the critical point can be either an IN or a START criti-

cal point. If the robot senses a local maximum, the crit-

ical point can be either an OUT or END critical point.

Even though the robot cannot distinguish between the

types of critical points between IN or START (similarly

OUT or END), in Sec. 3 we show how to deal with this

ambiguity.

3 Encountering all Critical Points and

Rejecting Bad Sensor Data:

Cycle Algorithm

Now that we know how to sense and determine the

types of critical points, in this section we present a

provably complete algorithm that allows the robot to

simultaneously cover the space and look for the critical

point that indicates the completion of a cell (for the

completeness proof of the algorithm see [1]). Our cov-

erage algorithm basically runs the cycle algorithm, de-

scribed below, repetitively and as the robot encounters

the critical points, updates the graph representation of

the cellular decomposition.

We assume that the lap width, i.e., lateral distance

between two consecutive laps, is equal to the robot's

diameter. Without loss of generality, the robot starts

the cycle algorithm at Si in slice CS�i and lies in the

ceiling2 of the cell being covered. Any lapping path

(motion along a straight line) followed in a direction

from ceiling towards 
oor is referred as forward lapping.

We also refer to sweep direction as forward. From Si the

robot looks for critical points via the following phases

(Fig. 11-(a)).
1. Forward phase: The robot follows a forward

lapping path starting at Si along CS�i towards the


oor. Then it follows the wall in the forward direc-

tion. The robot terminates forward wall following

and the forward phase if it laterally moves one lap

width or encounters a critical point in the 
oor.

2. Reverse phase: The reverse phase is an inter-

leaved sequence of reverse laps, (towards ceiling),

and reverse wall following paths. A reverse wall

following path initially starts in the reverse direc-

tion. Each reverse wall following operation termi-

nates when the robot either

(a) senses a critical point Cpk with rdi(Cpk) =

�rh(Cpk)
3, or

(b) returns back to the slice that contains the start

point Si, and thus completes the reverse phase.

3. Closing phase: The robot may reach the start

point Si at the end of the reverse phase, but if

not, it executes the closing phase as follows. The

robot follows lapping paths along the slice CS�i
inter-mixed with wall following paths. Closing wall

following paths initially start in the forward di-

rection, and terminate when the robot returns to

CS�i .

Example 3.1 An example path generated by the re-

peated execution of the cycle algorithm for coverage in

a hallway is shown in Fig. 11-(b). The robot starts

to lap at point S1, encounters an object and performs

wall following. Then it performs reverse lapping and

at the end of reverse wall following returns back to S1.

The robot completes the cycle. Now, the robot must

perform the next cycle. So �rst, it \undoes" the prior

reverse wall following step. Let S2 be the beginning of

the next cycle, but we locate it at the start point of the

last lapping motion. The robot does not need to drive

to S2, because it has already traveled along previous

2We borrowed the terms ceiling and 
oor from computational

geometry literature [10]. Ceiling refers to the upper boundary of

a cell and 
oor refers to the lower boundary.
3Note that if rdi(Cpk) = rh(Cpk), robot continues to follow

the boundary.



Start Point

Closing Phase

Si

2

3

CS�i CS�i+1

rh(x)

(a)

S1

S2

S3

S4

S5

(b)

Fig. 11. (a) Phases of the cycle algorithm. In the forward phase,

the robot follows the dashed path between Si and point 2. In

the reverse phase, the robot follows the solid path between

points 2 and 3. Finally, in the closing phase the robot follows

the dotted path between points 3 and Si. (b) Path generated

by the cycle algorithm in a simple space. Si refers to start

point of each cycle.

START OUT IN END

Forward X X

Reverse X X X

Closing X X
TABLE 1

Types of critical points for each phase

lap. So it completes the next cycle starting with wall

following, pretending as if it has started at S2.

3.1 Types of Critical Points Encountered in

Each Phase

Along each path followed in each phase of the cycle

algorithm, there can exist only certain types of critical

points (due to space restrictions we do not give the re-

lated proofs) as summarized in Table 1. In the forward

phase, the robot can only sense OUT or END type of

critical point (Fig. 12-(a)). In the reverse phase, there

are three possibilities: (1) only IN, or (2) only START

and OUT, or (3) IN and START and OUT types of crit-

ical points can be sensed (Fig. 12-(b)). Finally in the

closing phase, the robot can only sense OUT and/or

START type of critical point (Fig. 12-(c)).

In the experiments we performed using a Nomad

Scout mobile robot [9] that has 16 sonar sensors, we

frequently encountered bad sensor readings. We use

Table 1 to reject such bad sensor data. For example,

in Fig. 13, the robot senses an IN critical point while it

is executing the forward phase right before it senses an

END critical point. Since there cannot exist an IN crit-

rh(x)

Forward wall following path

Reverse wall following path

Closing wall following path

(a) (b) (c)

Fig. 12. (a) Only OUT or END type of critical point can exist

along a forward-phase path (b) Only IN and/or START and

OUT types of critical points can exist along a reverse-phase

path (c) Only OUT and/or START type of critical point can

exist along a closing-phase path.

rh(x)

rdi(x)

start

forward wall following path

Fig. 13. Experimental data and sketch of the path followed by

the robot. Gray dots are the sonar returns and black dots

are the path followed by the robot. An IN critical point

is sensed during forward wall following rdi(x) = �rh(x)

due to sensor noise. However according to Table 1, during

forward wall following, the robot cannot sense an IN critical

point. Therefore the robot continues to perform forward wall

following until it senses the END critical point.

ical point along the forward-phase path (Table 1), the

robot ignores the sensor data that indicates an IN crit-

ical point and continues to follow the boundary until it

senses the END critical point.

3.2 Special Note on Closing Phase

The closing phase of the cycle algorithm is executed

when the robot cannot reach the starting point of the

cycle path at the end of the reverse phase. In the closing

phase the robot is ensured to reach starting point of the

cycle by performing wall following and lapping motions.

Moreover, the end point of the closing phase should lie

above the starting point of the cycle along the slice in

which the robot has started the cycle. However, as seen

in Fig. 14, the robot may end up at a lower position

along the slice at the end of the closing phase because

of the sensor noise. In this case, since the distance

between the start and end points is bigger than the

error threshold, the robot could have thought that it

had not reached the starting point of the cycle and

continued to execute the closing phase. However, we

know that the robot cannot end up at a lower position,

if that is the case, then it must be because of bad sensor



start

end

Fig. 14. The end point of the closing phase should always lie

above the starting point of the cycle along the slice.

(a)

missed

critical
point

start

foward lap

Reverse

path

(b)

Fig. 15. A commonly encountered non-generic con�guration. (a)

The robot just passes by a critical point while it is lapping.

The robot has to sense the critical point during reverse wall

following motion. However, it reaches the slice before sensing

it. (b) We solve this problem by making the robot continue to

perform reverse wall following motion until the robot senses

a critical point.

data. Therefore the robot concludes that it has reached

the starting point of the cycle path and continues to

execute the coverage algorithm.

4 Non-Generic Con�gurations

Commonly Encountered

The lap-width is determined by the detector's range.

Therefore for small detector ranges, the robot has to

perform laps close to each other. This increases the

chances of encountering non-generic con�gurations of

the obstacles. We identify two commonly encountered

non-generic con�gurations. The �rst one is depicted

in Fig. 15-(a; b). The robot just passes by a critical

point while it is lapping in the forward direction. Now

it has to sense the \missed" critical point while it is

performing reverse wall following. However because of

the sensor noise, the robot reaches the forward lapping

path (travels laterally one lap-width) and terminates

the reverse wall following motion without sensing the

critical point.

To deal with this problem, we note the possible lo-

cations of the end point of the reverse phase. It should

always be above the starting point of the cycle path. In

start

Forward

Reverse

Undo Reverse

Slice-1
Slice-2

(a)

Fig. 16. Non-generic position. The critical point is located on

lapping path. The robot could not reach the slice at the end

of the undo reverse wall following motion.

the situation we described, this is not the case. Hence

the robot concludes that there must be a critical point

very close to the previous forward lapping path. There-

fore the robot continues to perform the reverse wall fol-

lowing motion until it senses the critical point. When

the robot senses the critical point, it terminates the re-

verse phase and the cycle path (no need to execute the

closing phase). Then the robot chooses an uncovered

cell (if any left) and starts to cover it.

Another non-generic con�guration commonly en-

countered is shown in Fig. 16. The robot starts with

a forward wall following path. At the end of the for-

ward wall following motion, the robot reaches the cor-

ner and executes a reverse lap with zero path length.

The robot starts to perform a reverse wall following

path and when it is done, the robot starts to \undo"

the reverse wall following path by following the wall in

the forward direction. Normally we expect the robot to

reach the slice-1. However because of sensor noise, the

robot cannot reach the slice-1 and continue to follow

the wall. Since the robot continues to perform undo

reverse wall following motion, it misses the end critical

point. We solved this problem by making the robot

look for the END critical point while it is undoing the

reverse wall following motion using range and position

data.

5 Incremental Construction with a

Mobile Robot in Unstructured

Environments

In the previous sections, we showed snapshots of ex-

perimental data collected while the robot was perform-

ing coverage in unstructured rooms that has obstacle

boundaries as shown in Fig. 1. In this section, we show

full successful coverage experiments. We processed the

distance measurements made by the 16 sonars of the

Nomad Scout mobile robot using a method [4] that im-

proves the angular resolution of the distance measure-

ments. Note that this sonar processing method does



not eliminate bad sonar data. We use the processed

data to �nd the closest point on the closest object to

the robot. In other words, we calculate the global min-

imum of the processed distance measurements and its

direction. The global position and orientation of the

robot (x; y; �) are determined via dead-reckoning using

the wheel encoders.

We used an inter-lap spacing that is equal to the

robot's diameter (0:40[m]). Since the test environments

were not known a priori, we picked an arbitrary slicing

direction for each one. Note that, to achieve complete

coverage, we only need to store the locations of the

critical points and the graph representation, but not

the sensed locations of the obstacle boundaries and the

path followed by the robot.

Figure 17 shows di�erent stages of a coverage exper-

iment in a 2:5� 3:1[m] room with a stool in the middle

and a time-exposure photograph to show the area swept

by a light stick that is as wide as the robot. The dot-

ted black lines represent the path traced by the center

point of the robot. The vertical lines are the lapping

portions of the path and the jagged-curved lines repre-

sent wall following. Note how the wall following path

resembles the con�guration space obstacle for the mo-

bile robot. This makes sense because we are taking the

center point of the circular robot as a reference point

and we are �nding the critical points in the con�gu-

ration space using work space distance measurements.

Unlike prior work [1], the robot determined the loca-

tions of the critical points more robustly and precisely

using both range and relative position data as described

in Sec. 2.4. In Fig. 17-(1), notice how the robot followed

the boundary of the obstacle in the vicinity of the crit-

ical point 2 to sense the local minimum and hence the

critical point.

In Fig. 18, we show the coverage path in a more com-

plicated 4� 4:6[m] room with a table in the middle. In

this experiment, we observed the failures due to bad

sonar data and recoveries from them. Around critical

point A, the robot encounters a non-generic con�gura-

tion (Fig. 19-(a)). Since the end point of the reverse

wall following path is below the start point of the cycle

path, as we described in Sec. 4, the robot continues to

follow the boundary until it senses the critical point.

Around point B, the robot receives sonar data that in-

dicates that the surface normal of the obstacle and the

sweep direction are parallel while it is performing re-

verse wall following (Fig. 19-(b)). This is the condition

for an IN critical point. However the robot does not

sense a local minimum to verify the existence of an IN

critical point. Therefore the robot rejects the bad sonar

data and �nishes the reverse wall following motion.

We performed an experiment in a 2 � 2[m] living

(1) (2)

(3) (4)

Fig. 17. Three stages of the coverage in an unknown environment

and a time-exposure photograph that shows the covered area.

The robot incrementally constructs the graph representation

by sensing the critical points 1; 2; 3; 4; 2 (in the order of ap-

pearance) while covering the space. In the �nal stage (3),

since all the critical points have explored edges, the robot

concludes that it has completely covered the space. For the

sake of discussion, we outlined the boundaries of the obstacles

and cells in (3). L = 0:40[m].

room of an apartment that has a co�ee table in the

middle (Fig. 20). We observed two failures and recover-

ies from them. Around point A (Fig. 21-(a)), the robot

senses an IN critical point using range data during for-

ward following path. However, we know that along a

forward wall following path, there cannot exist an IN

critical point (Sec. 3.1). Therefore the robot rejects the

sonar data and continues to follow the boundary of the

obstacle until it senses the END critical point. Around

point B (Fig. 21-(b)), the robot senses an IN critical

point using range data along the reverse following path.

However the robot cannot verify the existence of an IN

critical point by sensing a local minimum. Therefore it

rejects the IN critical point and continues to perform

reverse wall following motion. In this experiment, we

observed the e�ect of the dead-reckoning error. Robot's

perception of the left corner of the co�ee table was ro-

tated and shifted. Even though in this experiment,

dead-reckoning error did not cause a problem, in larg-

er spaces we need to develop localization methods for

coverage.

6 Conclusions

Most coverage tasks require a complete coverage al-

gorithm that works in unstructured environments. Our



Fig. 18. Coverage path followed by the robot and the sonar re-

turns in 4�4:6[m] room with a table in the middle. The robot

successfully covers the room. Note that the robot covers the

area under the table too.

(a) (b)

Fig. 19. Blown up shots of the data shown in Fig. 18. (a) A

non-generic con�guration. The robot continues to follow the

boundary until it senses the critical point. (b) The robot

cannot verify the IN critical point indicated by the sonar

data using the relative position data. Therefore it rejects the

sonar data.

earlier work resulted in a provably complete coverage

algorithm that works in unknown environments that

has cardboard or 
at walls. In this paper we intro-

duced methods and identi�ed features of our algorithm

that can be used to overcome failures due to sensor

noise. Our approach does not require any complicat-

ed sensor-data processing algorithms. However in the

future we are planning to develop such processing algo-

rithms to further improve the performance of our im-

plementation. We veri�ed our approach by performing

experiments with a mobile robot that has a sonar ring.

Even though we overcame the problems due to sensor

noise, we still observe the e�ect of the dead-reckoning

error. As a part of the future work, we plan to de-

velop localization algorithms using topological features

of the space as natural landmarks. Finally we would

like to develope a systematic framework to extend the

ideas that we use to reject bad sensor readings to other

planning algorithms.

Acknowledgements

The authors gratefully acknowledge the support of

the OÆce of Naval Research Young Investigator Pro-

gram Grant #N00014-99-1-0478, Tom Swean, and the

Fig. 20. Coverage path followed by the robot and the sonar

returns in 2 � 2[m] room with a co�ee table in the middle.

The robot successfully covers the room. Dead-reckoning error

is observable.

(a)
(b)

Fig. 21. Blown up shots of the data shown in Fig. 20. (a) Bad

sonar data indicates an IN critical point along a forward-

phase path. However there cannot exist an IN critical point

in the forward-phase, therefore the robot rejects the data. (b)

Bad sonar data indicates an IN critical point, but the robot

cannot verify it using the relative position data. Therefore

the robot rejects the data.

Naval Explosive Ordnance Division for support of this

work.

References

[1] E. Acar and H. Choset. Critical point sensing in unknown

environments. In Proc. of IEEE ICRA'00, San Francisco,

CA, 2000.

[2] J.F. Canny. The Complexity of Robot Motion Planning.

MIT Press, Cambridge, MA, 1988.

[3] H. Choset, E. Acar, A. Rizzi, and J. Luntz. Exact cellular

decompositions in terms of critical points of morse functions.

In Proc. of IEEE ICRA'00, San Francisco, CA, 2000.

[4] H. Choset, K. Nagatani, and N. Lazar. The Arc-Transversal

Median Algorithm: an Approach to Increasing Ultrasonic

Sensor Accuracy. In Proc. IEEE Int. Conf. on Robotics

and Automation, Detroit, 1999.

[5] M. Erdmann. Using backprojections for �ne motion plan-

ning with uncertainty. International Journal of Robotics

Research, 5(1):19{45, 1986.

[6] A. T. Fomenko and T. L. Kunii. Topological Modeling for

Visualization. Springer-Verlag, Tokyo, 1997.

[7] T. Lozano-Perez, M.T. Mason, and R. H. Taylor. Automatic

synthesis of �ne-motion strategies for robots. International

Journal of Robotics Research, 3(1):3{24, 1984.

[8] J. Milnor. Morse Theory. Princeton University Press,

Princeton, New Jersey, 1963.

[9] Nomadic Technologies . Nomad Scout User's Manual. No-

madic Technologies, Inc., Mountain View, CA, 1996.

[10] J. O'Rourke. Computational Geometry in C. Cambridge

University Press, 1998.


