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Abstract

In this paper we propose a new contribution to treat a
class of cooperative issues in the multi-robot context.
These issues are associated with the common use of
some entities, called mechanisms, by several robots.
A mechanism can be seen as a generalization of the
notion of resource. The robots can modify its state di-
rectly or through requests. The robots can also share its
wtilization. Multi-robot cooperation will be expressed
as a distributed decisional process that tends to solve
detect and treat resource conflict situations as well as
sources of inefficiency. We discuss these issued and
illustrate them through a simulated system, which al-
lows a number of autonomous robots to plan and per-
form cooperatively a set of servicing tasks in a hospital
environment.

1 Introduction

Starting from the Plan-Merging Paradigm [1] for
coordinated resource utilization - and the M+ Ne-
gotiation for Task Allocation - M+NTA [4, 3]
for distributed task allocation, we have developed a
generic architecture for multi-robot cooperation [5, 2].
This architecture is based on a combination of local
individual planning and coordinated decision for in-
cremental plan adaptation to the multi-robot context.
In this paper we present a method developed to detect
and treat conflict and cooperative situations due to
common utilization of some entities. The mechanism
concept allows a set of autonomous agents not only
to perform their tasks in a coherent and non-conflict
manner but also to cooperatively enhance their task
achievement performance.

After a brief analysis of related work, we present a
general architecture for multi-robot cooperation. We
introduce the mechanisms and focus on the coopera-
tive plan enhancement issues. Finally, we present an
implemented system which illustrates, in simulation,
the key aspects of our contribution.

2 Related work

The field of multi-robot systems has become a large
field[9]. We restrict our analysis here to contributions
proposing cooperative schemes at the architectural
and/or decisional level. In such stream, behavior-based
and similar approaches [17], [16], propose to build so-
phisticated multi-robot cooperation through the com-
bination of simple (but robust) interaction behaviors.
ALLTANCE [18] is a distributed behavior based archi-
tecture, which uses mathematically modeled motiva-
tions that enable/inhibit behaviors, resulting in tasks
(re)allocation and (re)decomposition.

Al-based cooperative systems have proposed to pro-
vide models for the agents interaction which are do-
main independent. For example, Brafman [7]/Ephrati
[14] enrich the STRIPS formalism, aiming to build
centralized/decentralized conflict-free plans. Clement
[10] develops specialized agents which are responsible
for HTN individual plans coordination.

Several generic approaches have been proposed con-
cerning goal decomposition, task allocation and ne-
gotiation [12]. PGP [13] (and later GPGP [11]) is
a specialized mission representation that allows ex-
changes of plans among the agents. DIPART [19] is
a scheme for task (re)allocation based on load balanc-
ing. Cooperation has also been treated through ne-
gotiation strategies [20] like CNP-based protocols[22],
or BDI approaches where agents interaction is based
on their commitment to achieve individual/collective
goals ([15],[23]). Another perspective is based on
the elaboration of conventions and/or rules. Shoham
[21] proposed “social behaviors” as a way to program
multi-agent systems. In STEAM [24], coordination
rules are designed in order to facilitate the cohesion of
the group.

Cooperation for achieving independent goals has been
mostly addressed in the framework of application-
specific techniques such as multi-robot cooperative



navigation [26, 8].

3 Cooperation for Plan En-

hancement

In the context of autonomous multi-robot systems, we
identify three main steps that can often be treated
separately: the decomposition of a mission into tasks
(mission planning), the allocation of tasks among the
available robots and the tasks achievement in a multi-
robot context (Fig. 1). In this paper, we limit our-
selves to this last aspect i.e. the concurrent achieve-
ment of a set of tasks. Indeed, we assume a set of
autonomous robots which have been given a set of
partially ordered tasks. This could be the output of
a central planner [25], or the result of a collabora-
tive planning and task allocation process [4]. One can
consider this plan elaboration process is finished when
the obtained tasks have a sufficient range and are suf-
ficiently independent to allow a substantial “selfish”
robot activity.

Centralized . Our
mission

M+ System
Approach

Decomposition

mission planning| } High Level

Communication

with others ‘ M+NTA
M+ Negotiation for

Task Allocation

task allocation

allocated task

task achievemen problems? M+CTA
; i M+ Cooperative
Task Achievement

Planning
Merging

Figure 1: Our architecture for multi-robot cooperation

Decentralized

However, and this is a key aspect in robotics, the allo-
cated tasks cannot be directly “executed” but require
further refinement taking into account the execution
context. Since each robot synthesizes its own detailed
plan, we identify two classes of problems related to the
distributed nature of the system: 1. coordination to
avoid and/or solve conflicts and 2. cooperation to en-
hance the efficiency of the system. The first class has
been often treated in the literature. The second class
is newer and raises some interesting cooperative issues
linked to the improvement of the global performance
by detecting possible enhancements.

We have developed a distributed cooperative

scheme[6] called M+ cooperative task achievement -
M+CTA. It is based on the mechanism concept and
provides a framework for dealing with issues such as:

1. opportunistic action re-allocation: one robot
can opportunistically detect that it will be benefi-
cial for the global performance if it could perform
an action that was originally planned by another
robot;

2. detection and suppression of redundancy:
it may happen that various robots have planned
actions which achieve the same world state. This
feature provides the reasoning capabilities that
allow them to decide when and which robot will
achieve them, avoiding redundant executions;

3. incremental/additive actions: the robots de-
tect that an action originally planned by one
robot can be incrementally achieved by several
robots with a “cumulative” effect and that this
could be beneficial to the global performance.

4 The mechanism concept

In M+CTA. the task achievement level is based on an
incremental plan validation process. Starting from a
task that has been allocated to it, a robot, R,, plans its
own sequence of actions, called individual plan. This
plan is produced without taking into account the other
robots’ plan. After this planning step, R, negotiates
with the other robots in order to incrementally adapt
its plan in the multi-robot context.

A number of conflict/cooperative situation problems
are raised when a group of agents share the common
use of some entities or devices in the environment.

The mechanisms provide a suitable framework for
robot cooperation. Indeed, there are numerous ap-
plications and particularly for servicing tasks, where
the robots often need to operate or to interact with au-
tomatic machines or passive devices in order to reach
their goals or to satisfy some intermediate sub-goals
that allow them to finally reach their main goals.

For example, a robot has to open a door in order to
enter a room, or heat the oven to a given temperature
before cooking a cake, etc..

The mechanism can be seen as an extension of the con-
cept of resource token: a robot not only allocates and
frees a mechanism, it not only consumes or produces
it, it can also explicitly manipulate it or act on it, di-
rectly or through requests to a controller attached to
the mechanism.



The simplest entity that will be dealt with through
a mechanism is a spatial resource that can be used
by only one robot at a time: a place where to park.
A door is a little more sophisticated. It may have
several states, it may been open or closed, or open to
a certain extent. A door can be automatic or manual.
Besides, depending on the context, a door should be
maintained closed as much as possible or not. Note
also that there often exist procedures to operate some
machines with several steps and rules to share the use
of a machine. An interesting example is the elevator.

The mechanisms will allow: 1. to identify the entities
of common use, 2. to fix rules to guarantee correct and
coherent cooperative utilization of such entities and 3.
to negotiate their common use among the agents.

4.1 A scenario of cooperation

A mechanism is a data structure that defines how to
use a device or a machine. It defines, somehow, the
instructions (or directions) for use: the possible se-
quences of operations, in what conditions it can be
shared or used simultaneously by several users, etc..

A mechanism is a data structure that defines how to
use a device or a machine. It defines, somehow, the
instructions (or directions) for use: the possible se-
quences of operations, in what conditions it can be
shared or used simultaneously by several users, etc..

In the current version of our system, this knowledge
is represented by:

e known initial and final states,
e a set of alternative paths; each path is partially
instantiated and represents a valid sequence of

actions and state changes of the associated entity.

e a set of social rules.

name—mechanism(?entity)

Begin—state=
{attxlattx=ATT(?object): ?value}
Pathi i
Pathl # List-Eventl=
. {Eventlx|Event1x=Event(ATT(?object): ?value,’new—valuel,?e1)}
o :Lisl—Evcnln=l
x {Eventn|Eventn=Event(ATT(?object):’new_valuen—1,’new—valuen,?n)

End-State=
{attxlattx=ATTx(?0bject):?valuen}

Rules—lis{={Ev—rulej|Ev—rulej={mleh\
ruleh=Rule(?type state—violation,u proposed—state)} }

Figure 2: A generic mechanism M

Social Rules impose constraints that must be taken
into account during the mechanisms use. They have
been introduced in order to allow the robots produce
easily merge-able plans. Social rules are always associ-
ated with some mechanism states, which, in particular
situations, are not allowed. Social rules specify for-
bidden or undesirable states and propose states that
satisfy the rules. This field is used by the planner in
order to avoid the violation of the rule. Thus, social
rules have the following generic description:

RULE(type, violation_state, s, proposed_state)

Social rules are domain dependent; the current version
of our system deals with three types of constraints:

1. amount: where the “resource” violation_state =
(att(?object) : v) represented by an attribute att
and a value v is limited to a maximum num-
ber of s agents. Note that such rules allow to
describe the resource constraints of the system.
For instance a limitation of 2 robots at desk D1
can be represented by RULE(amount,pos—robot(?r):
D1,2,pos—robot(?r):0PEN_AREA), where it is proposed
to send the robot to an OPEN_AREA, in order to
satisfy the rule.

2. end: where proposed_state must be satisfied at
the end of each robot utilization of the resource.
This class guarantees a known final state, allow-
ing the planner to predict the state of an attribute
(initial state for the next plan).

3. time: where violated_state can be maintained
true only during a given amount of time s.

The use of social rules in the planning phase:
We associate to the social rules a scalar value called
obligation level. Whenever a robot plans, it considers
the proposed states of the rules as mandatory goals
that will be added to its current list of goals. However,
depending on the obligation level, goals will be posted
1. as a conjunction with the current robot goals or 2.
as additional goals that the robot will try to satisfy in
subsequent planning steps. In such case, the planner
will produce additional plans that will achieve each
low-level obligation social rule.

During the execution of a plan, the robot may or may
not execute these additional plans, thus neglecting
temporarily the proposed state. Note that if another
agent asks the robot to fulfill the rule proposed state,
it will then (and only then) perform the associated



additional plan. The obligation level may also change
depending on the context!®.

4.2 Mechanisms and Jobs

Whenever a robot R, detects that its plan uses an en-
tity associated with a mechanism M, it builds a job
M ]’-’ . A job is a dynamic structure, which results from
the instantiation of a path of a given mechanism by
the current robot plan. A job is composed of steps.
Each step has a set of information associated with
it: for instance, the agent that effectively executes
the action, the other plan actions that depend on it
(successors), etc. Jobs are used as structure and
language of negotiation allowing R, and other agents
to decide about the common utilization of an entity.
Figure 3 shows a plan produced the robot R, that
uses a furnace. R, builds a job M]P and that will be
negotiated. This job ends when the final state of the
associated mechanism is reached.

Rp plan
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door-state:DOOR-FS1,CLOSED
furnace-state(S1-FURNACE):OFF

1 Event (door-state(DOOR—FS1):(Closed,Opened),e12),Rp,Suc={el3}

[ door-state(DOOR-FS1):0PENED J

1 Event (furnace-state(SI-FURNACE):(OFF ,ON),el4),Rp,Suc={el8}

[ furnace—state(S1-FURNACE):ON J

Event (door-state(DOOR-FS1):(opened,closed),e19) Rp Suc=(}

—

furnace-state(DOOR-FS1):CLOSED J

Event (furnace-state(SI-FURNACE):(ON,OFF),e20) ,Rp Suc={}

door-state(DOOR-FS1):CLOSED
furnace-state(S1-FURNACE):OFF

Figure 3: A job corresponding to the use of a furnace
by Rp

INote that this notion of social rules is different, or even com-
plementary, from the social behaviors proposed by [21]. While
social behaviors are explicitly coded in its reactive task exe-
cution, the social rules are used at the robot decision level as
constraints in its planning, negotiation and execution activities.

5 Cooperation based on mecha-
niSMs

The M+CTA level involves three activities that corre-
spond to different temporal horizons and may run in
parallel: 1. task planning which produces an individ-
ual robot plan; 2. the plan negotiation activity which
adapts the plan to the multi-robot context; and 3. the
effective plan execution.

From time to time, depending on higher level require-
ments, the robot invokes its own planner and it in-
crementally appends new sequences of actions to its
current individual plan. This is a standard task plan-
ning activity; however, the obtained plan satisfies the
social rules and is consequently easily merge-able.

Incremental plan negotiation

Let us assume that R, has an individual plan com-
posed of a set of actions A? which manipulate mech-
anisms. It performs an incremental negotiation pro-
cess in order to introduce each action AY in the multi-
robots context. This operation is “protected” by a
mutual exclusion mechanism?. The result is a coher-
ent plan which includes all the necessary coordinations
and some cooperative actions. It is default free and
can be directly executed. However, it remains “ne-
gotiable” (other robots can propose a plan modifica-
tion) until it is incrementally “frozen” in order to be
executed. We analyze here below the different steps
involved in this negotiation process.

The negotiation steps:

The negotiation process comprises two steps: the an-
nouncement and the deliberation. During this pro-
cess, a robot negotiates a set of jobs of its current plan,
which are not yet announced?.

Step 1: the announcement. Whenever a robot,R,
needs to validate an action A} (belonging to job M7
R, corresponding to the use of a mechanism M), in the
multi-robot context, it announces its will to negotiate
a job involving M. It obtains the current list of jobs
involving M.

Step 2: R, deliberates. Having the current job list,
R, has two alternatives associated with its job M ]I-’ and
each member list M, see figure 4:

2We assume that the robots are equipped with a reliable
inter-robot communication device.

3We treat together all jobs “entwined” to avoid deadlock
situations.
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Figure 4: Job treatment possibilities: fusion or coor-
dination.

Fusion: since our robots are cooperative, the aim is to
enhance as much as possible the overall performance.
Thus, the robot always try to merge his job with the
current (already negotiated) jobs M. This is done by
trying to detect and suppress redundant transitions.
The result is a new job qu, whose actions may be
distributed between the different robots.

However, the constraints imposed by social rules may
prevent a fusion between two jobs. The only remain-
ing solution is to coordinate them in order to avoid
conflicts.

Coordination: in this situation R, can use a mecha-
nism M only after its released by the agents associated
with M;. In other words, MJ’.’ has to be coordinated
with M J‘-’ by adding temporal constraints to the jobs.

After each deliberation process, the robots to adapt
their plans to the job modification. We have defined
the following operations:

insert_message_wait that introduces a temporal or-
der constraint between two actions belonging two
robots, and insert/delete, when an action is re-
assigned to another robot or when an action execution
is neglected.

Note that such a negotiation process involves only
communication and computation and concerns future
(short term) robot actions. It can run in parallel with
execution of the current coordination plan.

Job execution process:

Before executing an action A?, the robot validates
the transition associated to AY. Indeed, a transition
remains “negotiable” until its validation. Once val-

idated, it is “frozen” and the other robots can only
perform insertions after a validated transition. Action
execution causes the evolution of the system, result-
ing in events that will entail new planning, negotia-
tion and execution steps for the robot itself and for
the other robots.

6 Illustration and future work

We have implemented a first version of the overall sys-
tem and run it on simulation. We describe here below
some of the obtained results. The application domain
that we have chosen is a set of mobile robots in a hos-
pital environment. Servicing tasks are items delivery
to beds as well as bed cleaning and room prepara-
tion?. Fig. 5 shows the simulated environment and
14 partially ordered tasks: TO,...T13 and the initial
world state description®. Each robot is equipped with
a STRIPS-based task planner and a motion planner.

=

ooy OPe~gpe,

\
;

Figure 5: Example 1: Transfer object and clean beds
in a hospital area

The robots must negotiate the use of the following
mechanisms, see figure 6: 1. clean-room that al-
lows cleaning actions with cumulative effects when
executed several times or by several robots; 2) door-
manipulation with open/close actions, which can be
potentially redundant; and 3) a mechanism that con-
trols the use the dock station by the robots. This
mechanism has an amount rule (with low obligation
level) that limits the number of robots near a station
to one.

The set of tasks is transmitted to five robots. Af-
ter a first phase (not described here [4]), they plan

4Bach robot control system runs on an independent Sun
workstation which communicates with the other workstations
through TCP/IP.

5Due to the lack of space, we exhibit here a simplified world
state representation.



door(?d)

Begin stal
smle—door( 7d):CLOSE

clean-room(?r)

Begin state
state—room(?r):DIRTY

Event(state—room(?r):DIRTY ,CLEAN,%1)

End State
state—room(?r):CLEAN

occuped-—station(?new—station)

End State
state—door(?d):CLOSE

Begin state .
pos—robot(?robot): ?old—station

Event(pos—robot(?robot): ?old—station,?new—station,?e1)

Event(pos—robot(?robot),’new—station OPEN-AREA ,%e2)

End State
pos—robot(?robot):OPEN-AREA

?e1:Amount-rule(pos-robot,1,?new-station,0 PEN-AREA)

Figure 6: Mechanisms to negotiate.

and incrementally allocate the tasks using M+ Coop-
erative Task Allocation. Fig. 7 shows the individual
plans after a number of negotiation processes. Note
that rO has allocated T6 in a first step. However
it has lost it because r1 has found a better cost to
achieve it. r1 is achieving T3. It has elaborated a
plan with six actions in order to achieve its main goal
state-room(S1) : CLEAN and to satisfy the social rule
requiring state-door (DO) : CLOSED with a high obliga-
tion level. Besides, it has also produced an additional
plan that satisfies rule 1 (with a low obligation level)
by introducing a go-to (OPEN-AREA) action. After sev-
eral jobs negotiation processes, r1 deletes its open ac-
tion, which will be accomplished by r3. This robot
will open a first time the door and after all robots take
in advantage of this event. Afterwards, r1 will close
the door for everybody. We can see also the incremen-
tal allocation process: while the robots are achieving
their current tasks, they try to allocate their future
task, for instance: r1-T6 and r2-T9. The arrows be-
tween robot plans illustrate the temporal constraints
induced by the coordination between jobs.

The overall process continues; the tasks are incremen-
tally planned, negotiated and executed. Fig. 8 shows
the final result of this run. One can notice, that the
robots have satisfied the social rule associated to the
robot position near the stations. Indeed, some robots
delete redundant actions (open/close door), accom-
plished opportunistically by others. Besides, some
robots also helped the others to clean rooms.

Table 9 shows the time sharing among execution and
deliberation activities. Deliberation activities are de-
composed into task allocation and mechanisms nego-

Event(state—door(?d):CLOSE,OPEN, 1)

Event(state—door(?d):OPEN,CLOSE,?e2)
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Figure 7: M+ task achievement process.

tiation. All activities run in parallel. Note that exe-
cution activities are more expensive, however r0 has
a high task allocation activity due to the mission na-
ture and to its proper context: the tasks order limits
their execution in parallel and r0 spends a lot of time
searching for a task to perform.

We have run the system several times with different
parameter values. These parameters are associated
with two aspects: the type of cooperation and the
number of robots. We have run the system with three
different cooperation strategies: 1. COOP-TOTAL: treat-
ing redundancy and opportunistic incremental help
between jobs ; 2. NO-INC: only treating redundant
cases with no incremental help; and 3. NO-COOP: the
system allows only coordination between jobs.

On the whole, COOP-TOTAL enhance the system per-
formance: better cost and less actions (see Figs; 10
and 11).

When we change the number of robots, we can see,
table 12 that the number of achieved actions with 5
and 3 robots is smaller than with 2 robots. Note that
there is no difference between 3 and 5 robots tests; this
is due to the nature of mission. The partial order of
tasks prevents an optimum deployment of more than
3 robots.

The number of robots vs. the workload is presented
in table 13. We can see that when we have 5 robots,
one of them (r0) is almost idle. This fact explains the

next task (T7)
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Figure 9: Time Sharing.

similar results between 3 or 5 robots tests. However,
note that our system has found a very good balance
when only three robots are involved.

Conclusion:

We have proposed and discussed a scheme for coop-
erative multi-robot task achievement based on mech-
anism. This scheme is a key component of a gen-
eral architecture for multi-robot cooperation. Its main
originality comes from its ability to allow the robots
to detect and treat - in a distributed and cooperative
manner - resource conflict situations as well as sources
of inefficiency among the robots. We have presented
its main ingredients and operators, and illustrated its
use through a simulated system.

We intend to validate our approach through a num-
ber of significant different application domains. Be-

future

COOP-TOTAL NO-INC NO-COOP

[ Total actions B Accomplished actions

COOP-TOTAL

NO-INC NO-COOP

Figure 10: Planned and achieved action by the robots.

Figure 11: The costs.

sides, we would like to extend and further formalize
the overall system and its representational and algo-
rithmic ingredients, taking into account cost and time
issues to help planning and negotiation activities.
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