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Abstract

This paper proposes a Hybrid Coordination method for
Behavior-based Control Architectures. The hybrid method
takes in advantages of the robustness and modularity in
competitive approaches as well as optimized trajectories in
cooperative ones. This paper shows the feasibility of this
hybrid method with a 3D-navigation application to an
Autonomous Underwater Vehicle (AUV). The behaviors
were learnt online by means of Reinforcement Learning.
Continuous Q-learning implemented with a feed-forward
neural network was applied. Realistic simulations were
carried out. Results show the good performance of the
hybrid method on behavior coordination as well as the
convergence of the behaviors.

1 Introduction

Behavior-based Robotics [1] is a methodology for
designing autonomous agents and robots. Since its
appearance, in the middle of 1980s, a huge amount of
robotic applications have used this methodology. An
endless quantity of methods have been proposed to solve
the common characteristics of a Behavior-based system:
behavior expression, design, encoding and coordination.
Behaviors are implemented as a control law using inputs
and outputs. The basic structure consists of all behaviors
taking inputs from the robot’s sensors and sending outputs
to the robot’s actuators. Behavior coordination is the phase
in which a coordinator module receives the responses of all
the behaviors and generates a single output to be applied to
the robots. If the output is the selection of a single
behavior, the coordinator is classified as competitive. On
the other hand, if the output is the superposition of several
behavior responses, the coordinator is called cooperative.

According to the coordination system, some advantages
and disadvantages appear in the control performance of an
autonomous vehicle. After testing 4 well-known behavior-
based architectures (Subsumption [2], Action Selection
Dynamics {3], Schema-based approach [4] and Process
Description Language [5]) in a simulated 3D-navigation
mission with an AUV some conclusions were extracted
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[6,7]. Competitive methods (subsumption and action
selection dynamics) show good robustness in the behavior
selection and modularity when adding new behaviors.
However, a bad trajectory is found when there is a
continuous change of the dominant behavior. As far as
cooperative methods are concemed, they have an optimal
trajectory when parameters are properly tuned. However,
they lack of robustness. A small change on the parameters
can lead to control failures. In some circumstances, a set of
behaviors can cancel the action of behaviors with a higher
priority (i.e. obstacle avoidance behavior).

In this paper we propose a hybrid approach between
competitive and cooperative coordination systems with the
aim of taking advantage of both. Coordination is done
through hierarchical hybrid nodes. These nodes act as
cooperative or competitive coordinators depending on an
activation level associated to each behavior. To test the
feasibility of the hybrid coordination method, a behavior-
based control architecture was designed and tested.

Making use of the high capability of Reinforcement
Leaming [8] for robot learning, behaviors were
implemented using this technique. RL has been applied to
various Behavior-based systems, most of them using
Q_learning [9]. In some cases, the RL algorithm was used
to adapt the coordination system [10, 11]. On the other
hand, some researchers have used RL to learn the internal
structure of a behavior, mapping the perceived states to
robot actions [12, 13, 14]). The work presented by
Mahadevan [12] demonstrated that the decomposition of
the whole agent leaming policy in a set of behaviors, as
Behavior-based robotics proposes, simplified and
increased the leamming speed. The approach taken in this
paper is a continuous implementation of the Q_leaming
algorithm. Generalization between states and actions was
achieved by a feed-forward neural network which
approximates the Q_function. Direct Q_leaming [15]
(backpropagation) was used to train the network.

As stated above, the field of application is underwater
robotics. The work presented in this paper corresponds to a
research project on Behavior-based Robotics and
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Reinforcement Learning experimenting with AUVs. In this
paper, the theoretical assumptions are presented together
with results based on realistic simulations of our AUV
URIS. We use the term “realistic” due to the use of an
accurate hydrodynamic model of the vehicle, the
simulation of sensor noise and the use of onboard control
software. Further work will be based on real experiments.

The structure of this paper is as follows. Section 2
describes the proposed hybrid coordination system. Section
3 introduces the continuous Q_learning algorithm used for
behavior learning. In section 4, the application to test the
hybrid coordination method is detailed. In section 5,
simulation results are given. And finally, conclusions and
future work are presented in section 6.

2 Hybrid Coordinator

Due to the disadvantages of competitive and cooperative
methodologies and with the aim of making use of their
advantages, a hybrid coordination method is proposed. In
the proposed method, the coordination of the responses is
done through a hybrid approach that keeps the robustness
and modularity of competitive approaches as well as the
good performance of the cooperative ones.

The coordinator is based on normalized behavior outputs.
The outputs contain a three-dimensional vector “v;” which
represents the velocity proposed by the behavior.
Associated with this vector is an activation level “a;” which
indicates how important it is for the behavior to take
control of the robot. This value is between 0 and 1, see
figure 1. This codification sharply defines the control
action from the activation of the behavior.

The proposed coordination system is composed of a set of
hierarchical hybrid nodes, see figure 2. The nodes have
two inputs and generate a merged normalized control
response. The nodes compose a hierarchical and
cooperative coordination system. The idea is to use the
good performance of cooperation when the predominant
behavior is not completely active. The nodes have a
dominant behavior which suppresses the responses of the
non-dominant behavior when the first one is completely
activated (a;=1). However, when the dominant behavior is
partially activated (0<a;<1), the final response will be a
combination of both inputs. Non-dominant behaviors can
slightly modify the responses of dominant behaviors when
they aren’t completely activated. For example, if the
dominant behavior is “obstacle avoidance” and the non-
dominant is “go to point”, when “obstacle avoidance” is
only slightly activated (the obstacles are still far), a mixed
response will be obtained. When non-decisive situations
occur, cooperation between behaviors is allowed.
Nevertheless, robustness is present when dealing with
critical situations.

Vi Vi 2y T »
" a0 n

X,

Figure 1. Normalized output of a behavior.
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Figure 2. Hierarchical hybrid node.
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Figure 3. Behavior-based architecture with the hybrid
coordination system.

The node “n;” has the ability to generate a normalized
response like the one generated by behaviors. The effect of
the non-dominant behavior depends on the squared
activation of the dominant to assure that in a critical
situation between both, the dominant will always take
control. Depending on the situation, the control response
could be produced by all the behaviors or by only one. The
hybrid nodes do not need a tuning phase. The coordination
of a set of behaviors is defined hierarchically classifying
each behavior depending on its priority. A disposition of
the whole coordination system using hierarchical hybrid
nodes can be seen in figure 3.

The coordination method can be classified as a hybrid
approach because the response is the one generated by the
dominant behavior affected by non-dominant behaviors
according to the level of activation of the first. Although to
the authors best knowledge there is not any sort of hybrid
coordination system presented in the literature, this method
offers good properties and can be successfully
implemented in an autonomous robot. The proposed
method has been implemented in simulation [7] showing
its good path performance, robustness and modularity
controlling an AUV in a 3D-navigation mission.
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3 Reinforcement Learning-based Behaviors

When programming a Behavior-based system, there are
some unknown parameters which cannot be identified
without experimentation. To solve this difficulty, many
robotic systems have included learning techniques.
Adaptation is also needed in order to be able to perform in
different and changing environments. Reinforcement
Leaming (RL) [8] is a class of learning suitable for
robotics when online learning without information about
the environment is required. In RL an agent tries to
maximize a scalar evaluation (reward or punishment) of its
interaction with the environment. The evaluation is
generated by the critic using an utility function. A RL
system tries to map the states of the environment to actions
(policy) in order to obtain the maximum reward. In our
case, the state is the sensor information perceived by the
robot and the action is the behavior output (the velocity
set-points). RL does not use any knowledge database as in
most forms of machine learning. Most of the theories are
based on Finite Markov Decision Processes (FMDPs).

The approach taken in this paper was a continuous
implementation of the Q_learning algorithm [9].
Q_learning is a temporal difference [8] algorithm, which
means that the transition probabilities between the states of
the FMDPs are not required, and therefore, the dynamics
of the environment does not have to be known. Temporal
difference methods are also suitable to learn in an
incremental way, required in online robot learning. An
important characteristic of Q_learning is that is an off-
policy algorithm. The optimal action values are leant
independently of the policy being followed. This is very
important in our behavior-based architecture because all
the behaviors can be learnt even if they are not controlling
the vehicle.

The original Q_learning algorithm is based on FMDPs. It
uses the states perceived (s), the actions taken (a) and the
reinforcements received (r) to update the values of a table,
denoted as Qfs,a). If state/action pairs are continually
visited, the Q values converge to a greedy policy, in which
the maximum Q value for a given state points to the
optimal action. Figure 4 shows the Q_leaming algorithm,

There are several parameters which define the learning
evolution:

e v discount rate [0 1]. Conceming the maximization
of future rewards. If y=0, the agent is “myopic” in
being concerned only with maximizing immediate
rewards.

e o leaming rate {0 1].

e ¢e: random action probability [0 1]. (Exploitation /
Exploration dilemma) The agent needs to explore new
actions in order to find the optimal ones.
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1. Initialize Q(s,a) arbitrarily
2. Repeat:
(a)s, « the current state
(b) choose an action a, that maximizes Q(s, ,a)overalla
(c) carry out action g, in the world with probability (1-¢),
otherwise apply a random action (exploration)
@ I:et the short term reward be 7, and the new state be s
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Figure 4. Q_learning algorithm.

Due to its use of finite spaces, Q-learning has a
considerably large learning time and memory requirement.
More sophisticated methods [16,17] implement a
parameterized Q-function which enables generalization
between states and actions. In this paper a continuous
implementation of the algorithm was used. A neural
network approximates the Q_function and its weights are
updated according to the backpropagation algorithm or
direct Q_learning [15]. There is no convergence proof of
this continuous implementation. However, with suitable
network configuration and parameter selection, the
algorithm demonstrated to converge. The continuous
Q_leamning algorithm structure is showed in figure 5.
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Figure 5. Continuous Q_learning algorithm structure.

The neural network approximates the Q_function:
Q(s;a) =r +Y maxQ,(s’,2’)

therefore, its inputs are the continuous states and actions,
and the output is the Q_value. A reinforcement function
associates each state with a reward “r” (-1, 0 and 1). In
order to find the action that maximizes the Q_value, the
network evaluates all the possible actions that could be
applied. Although actions are continuous, a finite set,
which guarantee enough resolution, is used.
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4 Experimentation with an AUV

The kind of robot which we are working on is an
Autonomous Underwater Vehicle (AUV) called URIS
(Underwater Robotic Intelligent System). The proposed
application consists of following a target by means of a
camera and avoiding obstacles using a set of sonar sensors.
The AUV must act as an autonomous camera recording all
the movements of the target without colliding or losing the
target. This application was designed to be carried out in a
swimming pool where light absorption does not apply. In
this paper, the application is fulfilled using realistic
simulations. Further work will be based on real
experiments.

4.1 The URIS Vehicle

URIS is a small-sized non-holonomic AUV designed and
built at the University of Girona. The hull is composed of a
&350mm stainless steel sphere, designed to withstand
pressures of 4 atmospheres (40 meters depth). The
spherical shape simplifies the construction of a dynamic
model of the vehicle which is very useful for simulation of
missions in the laboratory. On the outside of the sphere
there are 4 thrusters (2 in X direction and 2 in Z direction).
Due to the stability of the vehicle in pitch and roll, there
are four degrees of freedom; X, Y, Z and Yaw.

4.2 The Behavior-based Architecture

To accomplish this mission a Behavior-based architecture
with three behaviors was designed. Each behavior has its
own input from sensors and generates a 3D-speed vector
defined by (v, w, r). In association with this response, the
behavior generates the activation level which determines
the final robot movement. Figure 6 shows the schema of
the architecture. The three behaviors are:

e Obstacle avoidance. The goal is to avoid any
obstacles perceived by means of 7 sonar sensors, see
figure 7. The behavior is learnt using a continuous
Q_learning algorithm for each DOF (x,y,2). A
reinforcement  function gives negative rewards
depending on the distance at which obstacles are
detected. The activation level is also proportional to the
proximity of obstacles.

e Target following. The behavior follows the target
using a video camera pointed towards X-axis, see
figure 7. A real-time tracking board based on chromatic
characteristics gives the relative position of the target.
The behavior is learnt using a continuous Q_learning
algorithm for each DOF (x,y,z). The reinforcement
function gives negative rewards when the target
moves away from the position X=5, Y=0 and Z=0,
relative to the on-board coordinate system. The
activation level is 1 when the target is detected,
alternatively, it is 0.
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Figure 7. Sonar transducer and video camera layout.
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e Target recovery. The goal of this behavior is to
recover the target when it disappears from the camera
view. Considering that the dynamics of the vehicle are
relatively slow, we have adopted a very simple policy.
When the tracking systemn loses the target, the behavior
spins and moves the vehicle vertically in the direction
last seen. This behavior is not learned but
preprogrammed. The activation level is contrary to that
of target following behavior.

S Simulated Results

An environment called DEVRE [18] (Distributed
Environment for Virtual and/or Real Experimentation) was
developed to control, design and implement missions.
DEVRE is an integrated software platform composed of
three modules: (1) the Object Oriented Control
Architecture for Autonomy (OOCAA) [19], which is in
charge of controlling the vehicle at high and low levels; (2)
the Human Machine Interface (HMI); and (3) the
Mathematical Model of the Vehicle and Virtual
Environment (MMVVE). The latter module simulates the
vehicle according to the actions sent by the OOCAA
module and provides a virtual representation of an
underwater environment, see figure 8. It also simulates
sensors (sonar transducers, video camera, etc.) according
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] *I*;igure 8, MMVVE ing a simulation.

to the position of the vehicle in the environment and it uses
a hydrodynamic model of an AUV [20] with the identified
parameters of URIS.

The architecture proposed above was implemented in the
OOCAA. A structured 3-dimensional environment was
designed and used by the MMVVE, see figure 8. A
moving target was introduced carrying out a 3D closed
path repeatedly. The velocity of the target changed
between 0 and 0.17 m/s (60% of the maximum velocity of
URIS).

“Target following” and “Obstacle avoidance” behaviors
were implemented using the neural Q_learning algorithm.
Each degree of freedom was implemented independently
with its inputs/outputs and rewards. At the beginning, each
behavior was learnt alone, without the influence of the
other. The number of iterations required to learn each DOF
was approximately 2000 (Sample time=l1s). Figure 9
shows the evolution of the “x” DOF of the “target
following” behavior during its trammg. It can be seen how
the algorithm explores the action space and learns how to
track the target. Figure 10 shows the state/action mapping
of two behaviors after the learning phase.

Once the 3 DOFs of both behaviors were completely
learnt, the mission was tested. Figure 11 shows the
tracking error evolution during the mission. When the
vehicle was close to an obstacle, the obstacie avoidance
behavior took partial control of the vehicle, and therefore,
the tracking error increased. However, the hybrid
coordination system generated a cooperative response
between both behaviors, and the target was not lost.

Many simulation episodes were done in order to find the
optimal neural network configuration. Finally a 3 layer
neural network was used. The parameters and
specifications of the “obstacle avoidance” and “target
following” behaviors can be seen in tables 1 and 2
respectively.
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Figure 11. Tracking error evolution during a mission.

OBSTACLE AVOIDANCE BEHAVIOR

Input variables 8 sonar d values

Codification xu,yo,zo (gravity center of the perceived
1 ['4 4 m)

Qutput variables Ay ,3y,3; ( d vehicle speed in x,y,z {0 1])

Critic function If dist>32m:r=1

elseifdist>16m:n=0
else r, = -1 (dist = abs(x,) or abs(y.) or abs(z,))
act=dist/3 (if act>1, act =1)
o=01;y=09;€ =02
inputs : 2 (i.e.: x, ax) outputs : 1 (Q_val)
layers: 1- 5 neurons; sigmoidal act. function

2- 3 neurons; sigmoidal act. function

3- 1 neuron; lineal act. function

Table 1. Obstacle avoidance behavior specifications.

Behavior activation
Q_learning param.
Neural Network
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TARGET FOLLOWING BEHAVIOR

Input variables - XuYisz (errors between the target position and
the target desired location, [-3 3]m)
- Vy:,Vr, V (target velocity estim. {-0.3 0.3] m/s)
- 8,3y,3; (desired vehicle speed in x,y,z [0 1))
If dist>2m:r=-1
elseif dist>0.5m:n=0
else r, =1 (dist = abs(x,) or abs(y,) or abs(z))
act=1 if the target is visible, altemnatively 0.
a=0.1;y=09;€ =02
inputs : 3 (i.e.: x, vy ;) outputs : 1 (O_val)
layers: 1- 4 neurons; sigmoidal act. function

2- 2 neurons; sigmoidal act. function

3- | neurons; lineal act. function

Table 2. Target following behavior specifications.

Output variables
Critic function

Behavior activation
Q_learning param.
Neural Network

6 Conclusions and Future Work

This paper has proposed a hybrid coordination method for
Behavior-based control architectures. The method has been
tested in a simulated experiment. The architecture has been
implemented using a continuous implementation of the Q-
learning algorithm. The simulated results showed the
feasibility of the hybrid approach as well as the
convergence of the leamning algorithm. The proposed
hybrid coordination demonstrated as behaving with the
robustness of competitive coordinators and with the
optimized paths of cooperative ones. The neural network
implementation of the Q_learning algorithm also
demonstrated to converge to the optimal policy, obtaining
maximum rewards.

Future work will concentrate on the realization of real
experiments and on the improvement of the RL-based
behaviors in order to learn simultaneously all the behaviors
and to use only one RL function for each behavior.
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