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Abstract

Visual attention is one of the key issues for robots
to accomplish the given tasks, and the existing meth-
ods specify the image features and attention control
scheme in advance according to the task and the robot.
However, in order to cope with environmental changes
and/or task variations, the robot should construct its
own attention mechanism. As the first step towards
selective attention, this paper presents a method for
image feature generation by visio-motor map learning
for a mobile robot. The teaching data construct the
visio-motor mapping that constrains the image feature
generation and state vector estimation as well. The
resultant image feature and state vector are nothing
but task-oriented. The method is applied to indoor
navigation and soccer shooting tasks, and discussion
is given.

1 Introduction

Biological systems have evolved their organs and
acquired their own strategies so that they can survive
in hostile environments through billions of years of
evolution process. Visual attention can be regarded
as a combination of such organs and strategies, that
is, “vision” that brings a huge amount of data about
the external world and “attention mechanism” that
extracts the necessary and sufficient information from
them for the system to achieve the mission at hand.
Such a capability is desired in artificial systems too,
and therefore, it has been one of the most typical but
formidable issues in robotics and AI for long years.

Human beings can easily enjoy such a mechanism
in various kinds of situations, and a number of re-
searches focus on the early visual processing of hu-
man beings [1], improve the Treisman’ model [2, 3],
and apply Shanon’s information of the observed im-
age [4] in order to select the focus of attention in the

view. The main issues of these works are the analysis
of the human visual processing and the explanation
for our attention mechanism.

Some of computer vision researchers focused on the
view point selection (where to look) problem [5, 6]
in order to disambiguate the descriptions for the ob-
served image that is obtained by matching the im-
age with the model database. The selection criterion
is based on the statistics of the image data and ac-
tions (gaze control), if any, are intended to get the
better observation for object recognition, but are not
directly related to physical actions needed to accom-
plish a given task.

Self localization is the one of the issues in naviga-
tion task, and most of the works are based on a kind of
geometric reconstruction from the observed image us-
ing a priori knowledge of the environment. Thrun [7]
and Vlassis et al. [8] extracted the features correlated
to the information of the self-localization of the mobile
robot from the observed images based on the proba-
bilistic method. Kröse and Bunschoten [9] decided the
robot direction, i.e., camera direction by minimizing
the conditional entropy of the robot position given the
observations.

The existing approaches mentioned above mostly
specify the kinds of image features in advance and
adopt a sort of attention mechanism based on the
designers intuition having considered the given task.
However, in order to cope with environmental changes
and/or task variations, the robot should generate im-
age features and construct its own attention mecha-
nism. As the first step towards selective attention,
this paper presents a method for image feature gener-
ation by visio-motor map learning for a mobile robot.
The teaching data construct the visio-motor mapping
that constrains the image feature generation and state
vector estimation for the action selection as well. The
resultant image feature and state vector could be noth-
ing but they are task-oriented. The method is applied
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Figure 1: Image feature generation and action selec-
tion model

to indoor navigation and soccer shooting tasks.
In the existing approaches, there have been some

methods to construct the visual state spaces through
the task executions (e.g.[10, 11]). These methods
can construct the task-oriented state vector, but they
don’t focus on the image features. Our proposed
method constructs the task-oriented visual state space
and image feature which is useful for the selective at-
tention.

The rest of the paper is organized as follows. First,
the basic idea for image feature generation is described
along with the learning formulation. Here, the projec-
tion matrix from the extracted image feature to the
state vector is introduced to consequently determine
the optimal action. Next, the experimental results are
given to show the validity of the proposed method.
Finally, discussion on the attention mechanism sug-
gested from the current results is given towards the
next step.

2 Image feature generation

2.1 A basic idea

Fig.1 shows the proposed model of the system for
image feature generation and action selection. The
reason why adopting two stage learning is that we ex-
pect the former more general and less task specific
while the latter vice versa. In other words, at the im-
age feature generation stage, the interactions between
raw data are limited inside local area while the connec-
tions between the image features and the states spread
over the entire space to represent more global interac-
tions. A similar structure can be found in the synapse
connections in our brain, where the retinal signals ge-
ometrically close to each other are mapped to nearby

regions in the early visual processing area while the
post-processing and therefore more abstracted infor-
mation is spread out the whole brain via a number of
synapse connections (ex. [12]).

We prepare the image filter F to generate the im-
age features. The robot estimates its state s from the
filtered image If and decides the action appropriate to
the current state s. In order to avoid curse of dimen-
sion, we compress the filtered image If into Ic from
which the state vector is extracted by a projection
matrix W . We can regard W as a kind of attention
mechanism because it connects the filtered image Ic to
the state space, that is, it tells which part in the view
is more important to estimate each state, and finally
to decide the optimal action. Therefore, the problem
is how to learn F and W .

In order to reflect the task constraints, we use the
supervised successful instances (a training set). F and
W are computed by minimizing the conditional en-
tropy of the action given the state on the training set.

In this paper we prepare a 3×3 spatial filter Fs and
a color filter Fc as follows:

• a 3×3 spatial filter Fs ∈ <3×3:

Īxy = fs11Ix−1y−1+fs12Ixy−1+fs13Ix+1y−1

+fs21Ix−1y +fs22Ixy +fs23Ix+1y

+fs31Ix−1y+1+fs32Ixy+1+fs33Ix+1y+1,

Ifxy = g
(
Īxy

)
.

• a color filter Fc ∈ <3:

Īxy = fc1Irxy + fc2Igxy + fc3Ibxy,

Ifxy = g
(
Īxy

)
,

where x and y denote the position of the pixel, I, Ir, Ig

and Ib the gray, red, green and blue components of the
observed image, respectively, and g(·) a sigmoid func-
tion. For example, the following Fs and Fc represent a
vertical edge filter and a brightness one, respectively.

Fs =



−1 0 1
−1 0 1
−1 0 1


 ,

Fc =
(

0.2990 0.5870 0.1140
)T

.

2.2 Learning method

In the teaching stage the robot collect the i-th pair

Ti =< Ioi, ai >,



where Io is the observed image, a ∈ <l is the super-
vised robot action executed after the robot observes
Io and i denotes the data number. In the case of a
mobile robot, l is two.

The state of the robot s ∈ <m is extracted by W ∈
<m×ncxncy . Let ic ∈ <ncxncy be the one dimensional
representation of Ic, then

s = g (W ic) ,

where g(·) is a vector function of which components
are sigmoid functions.

To evaluate F and W , we use the conditional
entropyH(a|s):

H(a|s) = −
∫

p(s)
∫

p(a|s) log p(a|s)dads,

where p(·) denotes the probabilistic density. To ap-
proximate H(a|s), we use the risk function R [8].

R = − 1
N

N∑

d

log p(ad|sd)

= − 1
N

N∑

d

log
p(ad, sd)

p(sd)
,

where N is the size of the teaching data set. To model
p(a, s) and p(s), we use the kernel smoothing [13].

p(s) =
1
N

N∑
q

Ks(s, sq),

p(a, s) =
1
N

N∑
q

Ka(a, aq)Ks(s, sq),

where

Ks(s, sq) =
1

(2π)m/2hm
s

exp
(
−||s− sq||2

2h2
s

)
,

Ka(a, aq) =
1

(2π)l/2hl
a

exp
(
−||a− aq||2

2h2
a

)
,

hs and ha are the width of the kernels. R can be
regarded as the Kullback-Leibler distance between
p(a|sd) and a unimodal density sharply peaked at
a = ad. By minimizing R, we can bring p(a|s) close to
the unimodal density, that is, the robot can uniquely
decide the action a from the state s.

Using the steepest gradient method, we obtain a
pair of F and W which minimize R:

F ← F − αf
∂R

∂F
, W ← W − αw

∂R

∂W
,
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Figure 2: Task

where αf and αw are the step size parameters.
After learning the robot executes the action a de-

rived from its state s computed from the observed
image as follows:

a = arg max
a′

p(a′|s).

To find the maximum value, we adopt the coarse-fine
search strategy.

3 Experiments

3.1 Task and assumptions

We applied the proposed method to the indoor nav-
igation task with the Nomad mobile robot (Fig.2(a))
and the shooting ball task of the soccer robot
(Fig.2(b)). The mobile robot shown in Fig.2(a) is
equipped with stereo cameras and we use only the left
camera image. The soccer robot shown in Fig.2(b) is
equipped with a single camera directed ahead. The
size of observed image is 64 × 54 and the values of
I, Ir, Ig and Ib are normalized to [0 1]. The robots
can execute translational speed v and steering speed
ω independently, so the action vector is represented as

a = (v, ω)T
,

where v and ω are normalized to [-1 1], respectively.
We define the size of the compressed filtered image
as 8 × 6 and the dimension of state as m = 2. The
sigmoid function g is

g(x) =
1

1 + exp
(−x−θ

c

) ,

where θ = 0.0 and c = 0.2.
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(a) Model with Fs
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(b) Model with Fc

Figure 3: Learning curves of R

3.2 Learning results

At the teaching stage, we gave 158 pairs of images
and actions in the task 1, and 100 pairs in the task 2.
In each task we tested the two models (Fig.1) with
a spatial filter Fs and a color filter Fc, separately.
We initialized the components of W by random small
number and

Fs =




0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1


 (smoothing),

Fc =
(

0.2990 0.5870 0.1140
)T (brightness).

3.2.1 Task 1: simple navigation

Fig.3 shows the changes of R in the case of Fs and
Fc models. F and W are learned so as to decrease
R. Fig.4 shows the distributions of the state on the
teaching data set in the case of the model with Fs. To
show the relation between the states and actions, we
labeled the action indices as follows:

• v ≥ 0.6 : forward,
• v ≤ −0.6 : backward,
• −0.6 < v < 0.6 and ω < 0.0 : right turn, and
• −0.6 < v < 0.6 and ω > 0.0 : left turn.

As we can see from these figures, the state space can
be roughly classified in terms of the kind of action.
That is, the state space is constructed to correlated to
the action space. However it seems difficult to reveal
a physical interpretation from this relationship.

The generated Fs and Fc are shown below:

Fs =



−0.8915 −0.5995 −0.06528
−0.9696 −0.4790 1.357
−0.2482 0.1021 2.756


 ,
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(a) Initial state space
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(b) Learned state space

Figure 4: State distributions

(a) Io (b) If (c) Ic

Figure 5: Example of the filtered image with Fs

Fc =
( −0.4233 1.464 −0.1718

)T
.

Figs.5 and 6 show the examples of the filtered im-
ages. As we can see from Fig.5, Fs shows the charac-
teristic to extract vertical and horizontal edges. How-
ever Fc does not show remarkable characteristic be-
cause there are not salient color objects in the envi-
ronment (our laboratory). Intuitively, it implies that
the generated Fs is good at a navigation task of a
mobile robot.

3.2.2 Task 2: shooting a ball

The generated Fs and Fc are shown below. The ex-
amples of the filtered image are shown in Figs.7 and
8.

Fs =



−3.384 −1.953 −1.686
0.3491 −1.350 0.5363
1.656 −1.208 5.223


 ,

Fc =
(

1.836 1.616 −4.569
)T

.

Fs shows the characteristic to extract horizontal
edges (see Fig.7). Fc emphasizes the red ball and yel-
low goal but inhibits the white line and wall. This is
equivalent to a characteristic of a reversed U compo-
nent of YUV image. The generated Fc is good at a
soccer robot task in the colored soccer field.



(a) Io (b) If (c) Ic

Figure 6: Example of the filtered image with Fc

(a) Io (b) If (c) Ic

Figure 7: Example of the filtered image with Fs

3.3 Learned behavior

To verify the validity of the learned model, we ap-
plied the model with Fs (task 1) to a navigation task
of the Nomad mobile robot (see Fig.2(a)). Fig.9 shows
a sequence of the acquired behavior. The estimated
states in this experiment are not exactly coincident
with the states computed from the teaching data set,
but the robot accomplished the task. Hence it implies
that this model is an effective representation for the
task and environment.

4 Discussion and future work

In this paper we proposed the method to generate
an image feature and to learn a projection matrix from
the image feature to the state, that suggests which
part in the view is important, that is, a gaze selection
by visio-motor mapping. The generated image fea-
tures are appropriate for the task and environment.
Also the acquired projection matrices give appropri-
ate gaze selection for the task and environment. To
show this, we illustrate the absolute value of W ac-
quired in the model with Fc in the task 2. Figs.10(a)
and (b) show the values of components of W related
to the first and second components of the state s, re-
spectively. In these figures brighter pixels are more
closely related to the state vector, that is, the robot
gazes this parts in the view. Therefore we can regard
that a projection matrix gives a gaze selection.

(a) Io (b) If (c) Ic

Figure 8: Example of the filtered image with Fc
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Figure 9: Acquired behavior

In this paper we defined the dimension of the state
vector as two heuristically. However, as a result, this
number was appropriate. Fig.11(a) shows the relation-
ship between the number of dimension and R in the
case of learning the model with Fs in the task 1, and
Fig.11(b) shows the relationship between the number
of dimension and the action estimation error. This
error shows the sum of error norms between the esti-
mated action and the supervised action. From these
figures we can see that the necessary number of di-
mension is two to estimate the action from the state.

Next, in order to show the effectiveness of the
method we compare the acquired model with an atten-
tion control scheme specified by the designer heuristi-
cally. For example we specify the following scheme:

• Image feature is disparity.

• We extract the minimum disparity region (the re-
gion furthermost from the robot) in the disparity
image and define the center of the region as the
state s (two dimensions).

Using the same teaching data set as that of task 1,
we compute† the state distribution similar to Fig.4.
† At the training stage of the experiment in section 3, we also

have collected the right camera images, so we can compute the
disparity images.



(a) The first component of s (b) The second component of s

Figure 10: Projection matrix W
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(b) Estimation error

Figure 11: Effect of the dimension of the state vector

The result is shown in Fig.12. Comparing Fig.4(b)
and Fig.12, we can see that the states do not appro-
priately correlated to the action in Fig.12. In Fig.12
R is -4.211 larger than that of Fig.4(b)(R=-4.569).
This fact shows that the proposed method can learn
effective image feature and gaze selection for the task.

In the sequence of Fig.9 there are some cases that
the robot decides the actions with relatively low prob-
ability p(a|s), that is, the robot is not so sure about its
action decision. Therefore, it seems necessary for the
robot to select multiple image features from the im-
age feature set to accomplish more complicated tasks.
Now, we are investigating how to integrate the pro-
posed method and the image feature selection method
based on the information theoretic criterion [14].
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