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Abstract

This paper presentsa new way to acquire occupancy
grid mapswith mobile robots. Virtually all existing oc-
cupancy grid mapping algorithms decompose the high-
dimensional mapping problem into a collection of one-
dimensional problems,where the occupancyof each grid
cell is estimatedindependentlyof others. Thisinducescon-
flicts that canleadto inconsistentmaps.Thispaper shows
how to solvethe mapping problemin the original, high-
dimensional space, thereby maintaining all dependencies
betweenneighboringcells. Asa result,mapsgeneratedby
our approach areoftenmoreaccuratethanthosegenerated
usingtraditional techniques.Our approach relieson a rig-
orousstatisticalformulationof themapping problemusing
forward models. It employsthe expectation maximization
algorithm for estimatingmaps,and a Laplacian approxi-
mationto determineuncertainty.

1 Intr oduction

In thepasttwo decades,occupancy grid mapshavebecome
thedominantparadigm for environmentmodelingin mobile
robotics[4, 6, 7]. Occupancy gridmapsarespatialrepresen-
tationsof robot environments.They representan environ-
mentby a fine-grained,metricgrid of variables that reflect
theoccupancy of theenvironment.Onceacquired,they fa-
cilitatevariouskey aspectsof mobile robot navigation,such
aslocalization, pathplanning,collisionavoidance,andpeo-
plefinding[1, 5, 9].

Existing occupancy grid mapping algorithms suffer a
key problem. They often generate mapsthat are incon-
sistentwith thedata,particularly in clutteredenvironments
and when learnedfrom sonardata. This problem is due
to the fact that existing algorithms decompose the high-
dimensionalmappingproblem into many one-dimensional
estimationproblems—onefor eachgrid cell—which are
thentackledindependently.

Figure1 illustratestheproblem graphically. In diagram
(a), a passingrobot might receive the (noise-free)range

measurementsshown in diagram(b). Inversesensormod-
els mapthesebeamsinto probabilistic maps.This is done
separatelyfor eachgrid cell andeachbeam,as shown in
diagrams(c) and(d). Combining both interpretationsmay
yield a mapasshown in diagram(e). Obviously, thereis a
conflict in theoverlapregion, indicatedby thecirclesin this
diagram. Theinterestinginsightis: There exist maps,such
astheonein diagram (f), whichperfectly explainthesensor
measurementswithoutany suchconflict.Thisis becausefor
asensorreadingto beexplained,it sufficesto assumeanob-
staclesomewhere in its measurementcone.Putdifferently,
the fact that conessweepover multiple grid cells induces
importantdependencies betweenneighboring grid cells. A
decompositionof the mapping problem into thousands of
binary estimationproblems—asis common practicein the
literature—doesnotconsiderthesedependenciesandthere-
foremayyield suboptimal results.While thisconsideration
usessonarsensorsas motivating example, it is easilyex-
tendedto othersensortypesthatmaybeusedfor building
occupancy maps,suchasstereovision [8].

This paper proposes an alternative approach, which
solves the mapping problem in the original, high-
dimensionalspace.In particular, our approachformulates
themapping problem asa maximum likelihood estimation
problem in the high-dimensional spaceof all grid maps.
The estimationis carriedout using the expectationmaxi-
mizationalgorithm (in short: EM) [2], which is a popular
statisticaltool. A key featureof ourapproachis its reliance
on forward probabilistic modelsof sensors.Forwardmod-
els describethe physicsof sensors.This is in contrastto
the literature on occupancy grid mapping, which typically
invokesinversemodels. To obtaina probabilisticmapwith
uncertainty, we proposeto apply a Laplacianapproxima-
tion. Empirical resultsin high-noiseregimesshow thatour
approachyieldsconsiderablymoreaccuratemaps.

2 OccupancyGrids with InverseModels

We begin with a brief review of the classicaloccupancy
grid mapping algorithm [4, 7] to highlight its underlying
assumptions. Let � be a map, ����� the occupancy of the
grid cell
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(a binary random variable), and let ���
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Figure 1. Illustrationof theproblemwith current occupancy grid mappingalgorithms.Seetext.#%$'&%	)(�()(�	*$%+�,
denotethesensorsmeasurementsfrom time -

through time . alongwith the corresponding robot coordi-
nates. Put probabilistically, occupancy grid mapsseekto
estimatethe posterior probability over maps � given the
data: /10 �32 $4&5	�()()()	*$%+76 . However, the high dimensionality
of maps � makes it difficult to estimatethis posterior di-
rectly. Therefore, standardoccupancy grid mapping de-
composetheprobleminto a collectionof one-dimensional
estimationproblems /80 �9�%�:2 $'&5	�()()(�	*$%+;6 , one for eachgrid
cell �<��� . Calculatingtheseone-dimensional posteriorsis
tractable.

A common approachis to representthe posterior using
log-oddsratios, denoted = �%� , which is obtainedrecursively
via Bayesrule (see[4, 7] for aderivation):= +�%� � >@?4A /80 �<�%�:2 $'&5	�()()(�	*$%+76-CBD/80 � �%� 2 $ & 	)()(�(E	*$ + 6 (1)� >@?4A /80 �<�%�:2 $%+76-CBD/80 �D�%��2 $%+76GF >H?IA -CBD/80 �<�%� 6/10 �<��� 6 F = +KJL&�%�
As this updateequationsuggests,thebasicoccupancy grid
mapping algorithm requiresaprior for occupancy, /80 � �%� 6 ,
andan inversesensormodel, /80 � �%� 2 $:6 . Thelatteris called
‘inverse’ since it mapssensormeasurements back to its
causes.Occupancy grid mapscommonly rely on suchin-
versemodels. Notice that inversemodelsdo not take the
occupancy of neighboring cells into accountwhenpredict-
ing theoccupancy of a cell �M�%� .

Theupdateequation (1) restson two importantassump-
tions. Thefirst assumptionis thestatic world assumption,
which statesthatpastsensorreadings areconditionally in-
dependentgiven knowledgeof themap � :/10 $ + 2 $ & 	�()(�()	*$ +KJN& 	 � 6 � /10 $ + 2 � 6 (2)

This assumptionis valid in staticenvironments with a non-
changingmap.It will alsobemadeby ourapproach.How-
ever, by virtue of the grid decomposition,occupancy grid
mapsmakeamuchstrongerassumption: They assumecon-
ditional independencegiven knowledge of an individual
grid cell �O�%� :/80 $�+ 2 $'&5	)(�()(E	P$%+KJL&5	 �D�%� 6 � /10 $%+ 2 �<�%� 6 (3)

This is anincorrectassumption evenin staticworlds,since
sensormeasurements(e.g., sonarcones)sweepover multi-
ple grid cells,all of which have to beknown for obtaining
independence. Overcomingthis assumptionis themotivat-
ing factorbehind this research.

3 OccupancyGrids with Forward Models

3.1 Forward Models

Our alternative approach sidestepsthis independenceas-
sumption by using forward models. Forward models de-
scribethe physicsof the environment, from causes(occu-
pancy) to effects (measurements). They will be denoted/80 $ 2 � 6 , where

$
is ameasurementand � is themap.

Our forward modelis a mixture modelspecificto range
finders,suchassonarsensors.Often,ameasurement corre-
spondstoanobjectin thesensor’sperceptual cone. Suppose
the generic probability that an occupied grid cell may be
detectedis givenby /NQ)R S . Sonarstypically report thenear-
estsuchdetection. Thus,multiple occupiedgrid cells in a
sonarconeinducea geometricdistribution with parameter/ Q�R S . Our model convolvesthis geometric distribution with
a Gaussianwith zeromeanandvariance T to account for
smallmeasurementerrors. A secondsituationmodeledby
our forward model is that of failure to detectan object al-
together. Theresultingmeasurementis assumedto beran-
dom. In our model, failures of this typemay happen with
probability /VUXWPY)Z .

Figure2 illustratesour forwardmodelgraphically. Di-
agram(a) shows a mapwith threeobstacles(darksquares)
anda sonarcone. Two of the obstaclesoverlap with the
cone. With probability /NUXWPY)Z , the measurement is ran-
dom. The probability for detectingthe nearerof the two
obstaclesis 0�-4B[/\UXW*Y�Z 6^] /_Q�R S ; however, with probability07-IB1/\UXWPY)Z 68] 07-IB`/_Q�R S 6 therobotfails to detectthenearerob-
stacle. It may thendetectthe secondobstacle,which will
happen with probability 07-4B[/ UXWPY)Z 6a] 07-4B[/ Q)R S 6a] / Q)R S . Oth-
erwise,its sensorwill have missedboth obstaclesandre-
turn a max-rangereading, which happenswith probability07-IB1/\UXWPY)Z 6[] 07-IB`/_Q�R S 6�b . Figure2 (b) shows thecorrespond-
ing probability density function /10 $ 2 � 6 . Clearlyvisibleare
two high-probability peaks,which correspondto the two
obstaclesin thecone. A third peakat themax-rangeof the
sensormodelsthecasethatneitherobstacleis detected. Ob-
viously, thismodel is simplistic,andmoredetailedphysical
models will likely yield betterresults. Nevertheless,it is
sufficient to yield good results,asillustratedfurther below
in this paper.

To turn theseconsiderationsinto a concretemathemati-
calmodel, let cDd thenumberof obstaclesin thesensorcone
of the e -th measurement. Let f<dg� #%h dXi &j	*h dXi b 	)(�()()	Ph d�i kml ,
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Figure 2. Exampleof a probabilistic forward model. Diagram(a)
depictsa mapwith threeobstacles(darksquares),two of which lie
in thesensorconeof a sonarsensor. Diagram (b) depicts theprob-
ability of measuringo , for different ranges o . The large peak in
diagram (b) corresponds to the nearest obstacle in the cone. The
second(smaller) peak correspondsto the obstacle further away,
which is only detected if the nearobstacle is missed.If neither of
the obstacles is detected, the sensorreturns a max-range reading,
which is indicatedby thepeakon thefar right. Finally, this proba-
bili ty densityis mixedwith a uniform density thatmodelsrandom
measurementerrors.

denote the distancesto theseobstaclescomputed with ray
tracing and ordered in increasingorder. To describethe
multiple causesof a sensormeasurement

$ d , it is necessary
to introduce new variables, called correspondence vari-
ables. For eachsensormeasurement, we define c�d Fqp
binary variablesrsdt� #%u d�i &%	*u dXi b 	)(�()(E	Pu dXi kvl 	*u d�i kmlXw &5	*u dXi x , .
Exactly oneof thosevariablesis 1; all others must be 0.
Eachcorrespondencevariable correspondsto exactly one
cause: If

u dXi y is 1 (for -{z}|~z�c�d ), the measurement
is causedby the | -th obstaclein the obstaclelist f d . Ifu dXi kCw & �q- , none of theobstaclesin thelist weredetected.
Finally, therandom variable

u dXi x correspondsto the failure
case,whereameasurementwaspurely random.

Thecorrespondencevariablesenableusto describeeach
possiblecauseof a measurementseparately. If

u d�i y���- ,
thatis, if the |gB<.�� obstaclein ftd causedthemeasurement$ d , the forward model is a straightforward Gaussiannoise
variable with variance T andmean

h d�i y :/80 $ d 2 � 	*u d�i y���- 6 � -� pj� T bt� JC��L��� lK�I� l�� �E� �� � (4)

If themeasurementis entirelyrandom (failure), weobtaina
uniformdistribution:/80 $ d 2 � 	*u dXi xs��- 6 � -$%� W�� � -� pj� T bt� JC��V� Y � ��_������ � � (5)

Finally, thesensormeasurementmight becausedby miss-
ing all obstaclesin the cone,hence becomesa max-range
reading

$j� W*� , convolvedwith Gaussiannoise:/80 $ d 2 � 	*u dXi k l w & ��- 6 � -� p'� T b � J �� ��� l � � �_��� � �� � (6)

Puttingall thesedistributions together gives us the follow-
ing forwardmodel:/10 $ d 2 � 	 r�d 6 � -� pj� T b (7)

� J ��[ �¡ l�� ¢ � Y � ��_������ � � w8£{¤ l�*¥ � ¡ l�� � ��� l �I� l�� �E� �� � w ¡ l�� ¤ l�¦ � �§� l � � �_��� � �� � ¨
Equation (7) presupposes knowledge of the correspon-
dence, which in practice we do not have. It is therefore
convenientto calculatethe joint probability over measure-
mentsandcorrespondencesrgd :/80 $ d 	 r�d 2 � 6 � /10 $ d 2 � 	 r�d 6 /80�r�d 2 � 6 (8)

Here /10�rad 2 � 6 �©/10�r�d 6 is theprior over correspondences.
This prior arisesfrom our considerationabove, wherewe
described thedifferentcausesof sensormeasurements:

/80�rªd 6 � «¬ ­ /_UXWPY)Z if
u dXi xG��-07-4B[/ UXW*Y�Z 6 0�-4B[/ Q�R S 6 y B & / Q�R S if
u dXi y ��-07-4B[/\UXW*Y�Z 6 0�-4B[/_Q�R S 6 y if
u dXi k � w & �®-(9)

The resulting joint probability /80 $ d 	 r�d 2 � 6 implements a
simplisticgenerative modelof sonarmeasurements,factor-
ing in different causesof rangemeasurementsthrough the
correspondencevariables.

3.2 ExpectedData Log-Lik elihood

The definition of the forward model enablesus to define
the datalikelihood—which will be maximized to recover
themap.Exploiting thestaticworld assumption, thelikeli-
hood of the data � andall correspondences r is givenby
theproduct /10�� 	 r 2 � 6 ��¯ d /80 $ d 	 r d 2 � 6 , or in logarithmic
form: >H?IAN/80K� 	 r 2 � 6 � ° d >@?4A
/10 $ d 	 r d 2 � 6 (10)

In practice,we areinterestedin maximizing the likelihood
of thedataf , andnot thejoint over dataf andcorrespon-
dences r . This is achieved by maximizing the expected
log-likelihood ±³² >H?IA
/10�� 	 r 2 � 6;´ , wherethe expectationis
takenover the correspondencevariablesr . We obtainthe
expectedlog-likelihoodby substitutingEquations(10), (9),
(8), and(7) into theexpression±³² >H?IAN/80K� 	 r 2 � 6K´ , andsub-
sequently exploiting thelinearityof theexpectation:µ�¶ ·§¸%¹»º»¼�½m¾�¿ÁÀ ÂÄÃ�Å

(11)Æ °_ÇÉÈ µ�¶ ·§¸�¹»ºV¼�¿ Ç Ã�Å'ÊO·§¸%¹ ËÌ Í)Î_ÏVÐgÑ ËÍ È µ�¶ Ò ÇXÓ Ô ÅÕ·�ÖD× ÐØLÙKÚÍEÎ\Ï»ÐÊÜÛ l° ÝÕÞLß µ�¶ Ò Ç�Ó Ý Å ¼ × Ç Ñtà ÇXÓ Ý Ã ÐÏ»Ð Ê9µ�¶ Ò Ç�Ó Û l�á ß Å ¼ × Ç Ñ × ØLÙKÚ Ã ÐÏVÐ âVâ
Most of thetermsin this expressiondo not depend on the

map � , hencecanbe omitted in the optimization. Maxi-
mizing ±t² >@?4AN/10�� 	 r 2 � 6;´ is thusequivalentto minimizing

° d k l°yäã & ±³² u dXi y ´ 0 $ d B h dXi y 67bT b B»å æ^ç@è (12)



Here the ray tracing distances
h dXi y and the expectations±³² u dXi y ´ dependnon-linearly on the map � . Optimization

problemsof thistypeareknownasmaximumlikelihoodop-
timizationwith latent variables, wherethe latentvariables
arethecorrespondences r . Unfortunately, we know of no
closedform solutionfor theoptimizationproblem (12).

3.3 Finding Maps via EM

A common way to optimize functions with latent vari-
ablesis the expectationmaximizationalgorithm (in short:
EM) [2]. EM is aniterative algorithmthatgradually maxi-
mizesanexpectedlog-likelihood. Theoptimization begins
with anentirelyunoccupiedmap � . EM theniteratestwo
steps,anexpectationstep(E-step) anda maximizationstep
(M-step), thereby gradually increasingthelikelihoodof the
datauntil a localmaximumis reached.

TheE-stepcalculatestheexpectedcorrespondencesfor
a givenmap � . Theseexpectations aresimply the proba-
bilities for eachof thepossible“causes”of thesensormea-
surements:±³² u d�i x ´ � éG/\UXWPY)Z � B ��»� Y � ��\������ � � (13)±t² u d�i y ´ � é�0�-4B[/_U�W*Y�Z 6 0�-4B[/_Q�R S 6 y B & /_Q)R S � B ��L�§� l B � lX� �E� �� �±³² u dXi kml�w &P´ � é�0�-4B[/_U�W*Y�Z 6 0�-4B[/_Q�R S 6 kml � B �� �§� l B � �\��� � �� �
Here é is a normalizer, which ensures thatall expectations
in r�d addup to onefor eachindividual value of e . Only the
valuesof ±³² u dXi y ´ areneededfor theoptimization, though all
of themarerequiredto calculatethenormalizer é .

TheM-stepgeneratesanew mapfor afixedsetof expec-
tations±³² u dXi y ´ . This is doneby minimizing (12). Themaxi-
mizationof thisexpressionis performedby hill climbing in
thespaceof all maps.More specifically, the (discrete)oc-
cupancy of individual grid cells is flipped’ whenever doing
sodecreasesthetarget function (12). Thisdiscretesearchis
terminatedwhennoadditionalflipping canfurtherdecrease
thetargetfunction. It is easyto show thatouralgorithm ter-
minatesafterfinitely many steps.In practice,we found that
maximizing (12)takesonly afew secondsonalow-end PC,
for thetypesmapsshown in this paper.

Together, the E- and the M-stepperform hill climbing
in the spaceof all maps,by maximizing the likelihood of
thedata.EM mayterminatein a non-globalmaximum, al-
though in our experimentswe never observed this to bethe
case.Theresultingmapis amaximumlikelihoodmapgen-
eratedvia forwardmodels,whichis notsubjectto theinter-
cell independence assumption thatconventional occupancy
grid algorithmsmake.

3.4 Modeling Map Uncertainty

In many applications we would like to know how certain
we are in the map. This is an important feature of con-
ventionaloccupancy grid maps,whichcalculatea posterior

probability of occupancy. EM, on the otherhand,calcu-
latesonly a singlemapandnot anentireposterior. Our ap-
proachapproximatestheresidualuncertaintybyaLaplacian
method. The basicidea is to calculatethe secondderiva-
tive (curvature) of the log-likelihood function (11) with
respectto changes in occupancy of individual grid cells:ê ��ë`ì � íPîðï5ñóò i ôvõ öa÷óøê ö � ù�ú . Sincemapsare discrete,the derivative

is approximatedby thediscretedifferenceµ�¶ ·§¸%¹»º»¼�½m¾�¿ÁÀ ÂÜû%Âýüäþ Æ3ÿ Ã�Å Ñ µ�¶ ·§¸%¹\ºV¼�½m¾�¿ÁÀ ÂÜû%Âýüäþ Æ Ë Ã�Å
Theabsolutevaluesof thisdifferenceapproximatestheun-
certaintyin the grid cell. It can be viewed as a discrete
sensitivity analysisof thefinal map.Whenbuilding anun-
certaintymap, thesevaluesare ‘translated’ into posterior
probabilitiesusinga simplead-hoc algorithm.

4 Experimental Results

Our approach was successfullyapplied to learning grid
mapsusing simulatedand real robot data. In the real-
world experiments,poseestimateswe obtained via a sep-
aratemapping algorithmdescribed in [10].

Simulation results: Figure3 shows an example setof
sonarmeasurementsof a simulatedrobot traversinga hall-
waywith anopendoor. Of particular interestis thenumber
� of sensorreadings that correctlydetectthe opendoor—
insteadof beingbounced off the door posts.With aslittle
as � � - door detections, standardoccupancy grids fail
entirelyto mapthedoor, asshown in diagram(b). Our ap-
proach, in contrast,succeeds.Diagram (c) shows theresult
of applying EM (a singlemap)anddiagram(d) is obtained
by addinguncertainty extractedvia theLaplacianapproach.
The sameresultstill holds for � � �

, asvisualizedin di-
agrams (e) through (g). Only for valuesof � as large as
� � -�� doesthe sensorevidencesuffice to show an open
door in the regular occupancy grid mapping approach,as
shown in diagrams (h). It is interestingto notethat while
thestandardoccupancy grid mapping algorithm usesprob-
abilisticmeansto accommodateconflictingsensorinterpre-
tations,therearenosuchconflictsin ourapproach.All data
setsareperfectly explainedby any of themaximum likeli-
hood mapsshown in Figure3 (c), (f), or (i). In addition,
thestandardoccupancy grid mapsexhibit stripesin themap
thatarealmostperpendicular to thewall. Thesestripesre-
sult from measurementsthathit thewall at steepangles.

Real world results: Experimentswith two real-world
datasets,collectedwith a RWI B21 robot in an office en-
vironment,validatethe findings of our simulationexperi-
ments. Resultsare shown in Figures4 and 5. Figure 4
comparesthe standardoccupancy grid mapping algorithm
(diagram (a)) to the one using forward models (diagram
(b)). Our approachcorrectly identifiestwo narrow doors,
whicharemissedby thestandardapproach. Severaldotsin
theLaplacian mapstemfrom thefact thata personwalked
by therobot during datacollection. This highlights oneof



(a) raw data(example)

First simulation run: 1 measurement of the opendoor
(b) Conventional (c) ML map (d) Map with uncertainty

Second:Simulation run: 3 measurementsof the opendoor
(e) Conventional (f) ML map (g) Map with uncertainty

Third simulation run: 16 measurementsof the opendoor
(h) Conventional (i) ML map (j) Map with uncertainty

Figure 3. Simulation results: The robot travels along a corridor
with an opendoor. Whenonly a singlemeasurement detects the
opendoor(diagrams(b) through(d)), conventionaloccupancy grid
mapsdo not show the opendoor (diagram (b)), whereasour ap-
proach does(diagram(d)). Thesameis thecasefor adatasetwhere
theopendoorwasdetectedthreetimes(diagrams(e) through (g)).
With 16 measurements of the open door, the regular occupancy
mapshow anopendoor(diagram (h)).

the nice featuresof standardoccupancy grid maps,which
typically do not show tracesof peopleas long as they do
not remainat a singlelocationin themajority of measure-
ments.Our approachappearsto bemoresensitive to such
violations of the staticworld assumption, in its attemptto
maximize thelikelihood of thedata.

Figure5 (a)shows a robot tracein a 50meterslongcor-
ridor, characterizedby severalopendoors on onesideand
a smoothwall on theother, which causesmany false,long
measurements.Underourparameter setting,standard occu-
pancy grid mapsmissthesmoothwall entirely. A different
parametersetting(notshown here)identifieslarge fractions
of this wall, but none of theopendoors aredetected. Our
approachgeneratesa bettermap,wheretheonly visible in-
accuracy stemsfromthepersonwalkingbehindtherobot as
thedatawascollected.Generatingmapsof thesizeshown
heretypically takesa few minutesof processingtime on a
850Mhz PentiumPC.

(a) (b)

Figure4. Comparisonof (a)conventional occupancy grid mapping
with (b) our approach usingforward models.The opendoorsare
only visible in (b). However, several dot obstaclesareshown in (b)
that stemfrom apersonwalking by therobotduringdatacollection.

5 Discussion

This paperproposeda new approachfor generating occu-
pancy grid maps.Our approachrelieson physical forward
models, insteadof the inversemodelsthat arecommonly
usedfor learning occupancy grid maps.Insteadof breaking
down the map learningproblem into a multitude of inde-
pendent binary estimationproblems—asdoneby virtually
all existing occupancy grid mappingalgorithms—ourap-
proach searchesmapsin thehigh-dimensional spaceof all
maps.To perform this search,we haveadoptedthepopular
EM algorithm to themapestimationproblem. Uncertainty
mapsarefinally obtainedby applying a Laplacianapproxi-
mationto themaximumlikelihoodmapfoundby EM.

The advantageof our new approach is two-fold: First,
we conjecture that forward modelsaremorenaturalto ob-
tain thaninversemodels,sinceforwardmodels aredescrip-
tiveof thephysicalphenomenathatunderly thedatagener-
ation. Second,andmoreimportantly, our approachyields
moreconsistentmapsin many situations.This is because
it does not rely on a cell-wise independence assumption,
and insteadtreatsthe mapping problemfor what it is: A
searchin a high dimensional space. The disadvantageof
our approach,on theotherhand, is anincreasedsensitivity
to changes in non-stationaryenvironments; suchenviron-
mentsviolatea basicindependenceassumption that in fact
underliesbothoccupancy grid mapping paradigms. A sec-
onddisadvantageis a needto go through thedatamultiple
times,whichprohibits its usein real-timeapplications.

Experimental resultsillustrate that moreaccurate maps
can be built in situationswith seeminglyconflicting sen-
sorinformation.Suchsituationsincludeenvironmentswith
narrow openings andenvironments weresonarsfrequently
fail to detectobstacles.Theseadvantagesaresomewhatset
of by our approach’s increasedsensitivity to environment
dynamics,suchasa personwalkingnearby therobot.

Thereareseveral opportunities for follow-up research:
Webelievethatourapproachcanbeextendedintoaconcur-
rentmapping andlocalizationapproach[3], by introducing
additional hidden variables that correspond to the robot’s
pose.Weconjecture thatat leastlocalerrorsin robot odom-



(a)Raw data

(b) ConventionalOccupancy Grid Map

�

(c) MapGeneratedwith Forward Models

�

Figure 5. Results obtainedfor a larger dataset,shown in (a). While the wall locatedat the top of each diagram is easyto detect, the wall shown
locatedbelow therobot is extremelysmooth,producing a largenumberof erroneousreadings.Theoccupancy grid mapshown in (b) doesn’t model
thewall, while at thesametimeopendoorslike theonemarked by thearrow arefalsely modeledasclosed.(c) Forwardmodeling yieldsanimproved
modelof thebottomwall andalsomodelsthedoorcorrectly. In addition, this mapshows a traceof a personwalking behind therobot.

etry can be compensatedby suchan extension; however,
no experimentalresultsare currently available. A differ-
entdirection of researchinvolves theestimationof environ-
mentdynamics. Suchdynamicsarerelatively easilymod-
eledin theforwardmodeling approach,whichdescribesthe
physicsof theworld—asopposedto its inverse.Finally, a
worthwhile goal would be the extensionto real-timeopti-
mizationalgorithms, so that mapscanbe generatedasthe
robot moves.
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