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Abstract

This paper presentsa new way to acquire occupacy
grid mapswith mobile robots. Vrtually all existing oc-
cupancy grid mappng algorithms decompse the high-
dimensimal mappng probleminto a collection of one-
dimensimal problems,whee the occumncy of eat grid

cellis estimatedndependentlyof others. Thisinducescon-
flicts that canleadto incorsistentmaps. This pape shows
how to solvethe mappng problemin the original, high-
dimensimal space thereby maintaning all depemnlencies
betweemeighboringcells. As a result,mapsgeneatedby
our approach are oftenmore accuratethanthosegeneated
usingtraditiond techniques. Our apgroach relieson a rig-

orousstatisticalformulationof the magping problemusing
forward models. It employsthe expectation maximization
algarithm for estimatingmaps,and a Laplacian approxi-

mationto determineuncertairy.

1 Intr oduction

In the pasttwo deca@s,occlpany grid mapshave becone
thedomirantparadign for environmentmodelingin mokle
robotics[4, 6, 7]. Occupacy grid magsarespatialrepresen-
tationsof robot environments. They representn erviron-
mentby afine-graired, metric grid of varialles thatreflect
the occu@ng of the ervironment.Onceacquied, they fa-
cilitate variouskey aspect®f molhile robot navigation, such
aslocalization pathplannirg, collision avoidarce,andpeo-
plefinding[1, 5, 9].

Existing occupagy grid mappng algoritms sufer a
key prodem. They often geneate mapsthat are incon-
sistentwith the data,particdarly in clutteredervironments
andwhen learnedfrom sonardata. This problemis due
to the fact that existing algorithms decompse the high-
dimersionalmappingprodem into mary onedimensioml
estimationproblens—onefor eachgrid cell—which are
thentackledindependently

Figurel illustratesthe prodem graghically. In diagram
(a), a passingroba might receve the (nase-free)range

measurmentsshowvn in diagram(b). Inverse sensomod-
els mapthesebeamsinto probailistic maps. This is done
separatelyfor eachgrid cell and eachbeam,as shavn in
diagams(c) and(d). Combiring bothinterpretationsmay
yield amapasshavn in diagiam (e). Obviously, thereis a
conflictin theoverdapregion, indicatedby thecirclesin this
diagiam. Theinterestingnsightis: There exist maps,such
astheonein diagran (f), which perfedly explainthesensor
measurmentswithoutany suchconflict. Thisis becauséor
asensoreadingo beexplained,it sufficesto assumenob-
staclesomevhele in its measurerentcone. Putdifferently,
the fact that cores sweepover multiple grid cells induces
importtantdependencis betweemeightoring grid cells. A
deconposition of the mappng problem into thousads of
binary estimationprodems—asis comman practicein the
literature—aesnotconsidetthesedepenénciesandthere-
fore mayyield suboptinal results.While this considertion
usessonarsensorsas motivating exanple, it is easily ex-
tendedto othersensottypesthat may be usedfor building
occup@ng/ maps suchasstereovision [8].

This paper propases an alternatve apprach, which
solves the mappng prodem in the original, high-
dimersionalspace.In particdar, our apprachformulates
the mappirg prodem asa maximum likelihoad estimation
prodem in the high-dimensioml spaceof all grid maps.
The estimationis carriedout using the expectationmaxi-
mizationalgorithm (in short: EM) [2], which is a popuar
statisticaltool. A key featureof our appoachis its reliance
on forward prohabilistic modelsof sensorsForward mod-
els describethe physicsof sensors.This is in contrastto
the literature on occwpang grid mappng, which typically
invokesinversemockls. To obtaina probabilistic mapwith
uncetainty, we proposeto apply a Laplacianappioxima-
tion. Empiricd resultsin high-noiseregimesshaw thatour
appoachyieldsconsideably moreaccuratenaps.

2 OccupancyGrids with InverseModels

We begin with a brief review of the classicaloccumngy
grid mappirg algoritrm [4, 7] to highight its underlying
assumptios. Let m bea map,m,, the occipany of the
grid cell {z,y) (a binaly randbm varialle), andlet Z =
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Figure 1. lllustration of the problemwith current occupang grid mappingalgarithms. Seetext.

{71, ..., 2} denotethe sensorsneasurerentsfrom time 1
throughtime ¢ alongwith the correspnding roba coadi-
nates. Put probabilistically, occuang/ grid mapsseekto
estimatethe posteior prabability over mapsm given the
data: p(m|z1,...,2). However, the high dimersionality
of mapsm makesit difficult to estimatethis posteior di-
rectly. Therebre, standardoccumng/ grid mappirg de-
compsethe probleminto a collectionof onedimensioml
estimationproblemsp(m gy |21, - - -, 2:), onefor eachgrid
cell mg,. Calculatingtheseone-dmensioral posteriorsis
tractalbe.

A comnon apprachis to representhe posteriao using
log-oddsratios, deroted!,,,, whichis obtaired recusively
via Bayesrule (se€[4, 7] for aderivation):

P(Mgyl21,-- -, 2t)
1 lo 1
v gl—p(mwy|z1,...,zt) (1)
— log p(may|2t) 1 — p(mgy) + l;;l
1 — p(mgy|2e) P(May)

As this updateequationsuggests,the basicoccupany grid
mappng algoithm requiresaprior for occuncy, p(m ),
andaninversesensomode, p(m,,|z). Thelatteris called
‘inverse’ since it mapssensormeasuremas back to its
causes.Occupany grid mapscomnonly rely on suchin-
verse mocels. Notice thatinverse modelsdo not take the
occlpang of neightoring cellsinto accountwhenpredict-
ing theoccpangy of acell m gy.

The updateequatiom (1) restson two impartantassump-
tions. Thefirst assumptions the static world assumption
which statesthat pastsensoreading areconditinally in-
dependengiven knowledge of the mapm:

= p(zlm) 2

This assumptiors valid in staticervironmerts with anon-
charging map. It will alsobemadeby ourapprach. How-
ever, by virtue of the grid deconposition, occu@ng grid
mapsmake amuchstrongerassumptia: They assumeon-
ditional indep@xdencegiven knowledge of an individual
grid cell mg,:

p(2¢|21, -y 20-1,m)

= p(zt|may) 3)

Thisis anincorrectassumptia evenin staticworlds, since
sensomeasuementge.g, sonarcones)sweepover multi-

ple grid cells, all of which have to be known for obtairing

independere. Overcomingthis assumptions the motivat-
ing factorbehird thisresearch.

p(ztlzl; Y 4 mzy)

3 OccupancyGrids with Forward Models
3.1 Forward Models

Our alternatve appioach sidestepghis indepemenceas-
sumptio by using forward models Forward mocels de-
scribethe physics of the ervironmen, from causeqocau-
pang) to effects (measuremnts). They will be dended
p(z|m), wherez is ameasuremntandm is themap.

Our forward modelis a mixture modelspecificto range
finders,suchassonarsensorsOften,ameasuren corre-
spondto anobjectin thesensoisperceptal core. Suppee
the gereric probability that an occuped grid cell may be
detecteds givenby py;;. Sonargypically repot the near
estsuchdetection Thus, multiple occupiedgrid cellsin a
sonarconeinduce a geometricdistribution with parameer
Phis- Our mockl convolvesthis geometic distribution with
a Gaussianwith zeromeanandvarian@ o to account for
smallmeasuementerrors. A secondsituationmoceledby
our forward mocel is that of failure to detectan objed al-
togetter. Theresultingmeasuementis assumedo beran-
dom In our mocel, failures of this type may hapgen with
prokability prand.

Figure2 illustratesour forward modelgraphcally. Di-
agram(a) shavs a mapwith threeobstaclegdark squares)
anda sonarcone. Two of the obstaclesoveldap with the
cone. With probability p...q4, the measuremnt is ran-
dom The prolkability for detectingthe nearerof the two
obstaclesis (1—prand) - Pnit; however, with probability
(1—prana) - (1—pnit) therobotfailsto detecthenearerob-
stacle. It may thendetectthe secondobstacle which will
hapgen with prabability (1—prana) - (1—Phit) - Pis- Oth-
erwise, its sensomwill have missedboth obstaclesandre-
turn a max-rangereadirg, which hapgnswith probability
(1—prana) - (1—pnit)?. Figure2 (b) shavs the correspnd-
ing probability dersity fundion p(z|m). Clearlyvisible are
two high-prabability peaks,which correspondto the two
obstaclesn the cone A third peakatthe max-rangeof the
sensomodelsthecasehatneitherobstaclds detectedOb-
viously, thismodé is simplistic,andmoredetailedphysical
modcels will likely yield betterresults. Nevertheless,it is
sufficient to yield godd results,asillustratedfurther below
in this paper

To turn theseconsideationsinto a concretemathemati-
calmockl, let K; thenumber of obstaclesn thesensorcone
of thei-th measurerent. Let D; = {d;1,d;i2,...,dik;}
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Figure 2. Exampleof a probabilistic forward model. Diagram (a)

depictsamapwith threeobstades (dark squares)two of which lie

in the sensorconeof a sonarsensorDiagram (b) depids the prob-
ability of measuringz, for differentranges z. The large pe& in

diagram (b) correspods to the nearet obstade in the cone The
second(smaller) peak correspondsto the obstale further away,

which is only detededif the nearobstade is missed.If neither of
the obstades is deteded, the sensoretuns a max-rang reading,
which is indicated by the peakon the far right. Finally, this proba

bility densityis mixedwith a uniform densty thatmodelsrandom
measurenenterrors.

derote the distancego theseobstaclessompued with ray
tracingand ordeed in increasingorder. To describethe
multiple cause®f a sensomeasurmentz;, it is necessary
to introduce new varialles, called corresponénce vari-
ables For eachsensormeasuremnt, we define K; + 2
binaly variablesC; = {Ci,1, Ci25-+-3CiK;yCi, K;+15 C,’y*}.
Exactly one of thosevariablesis 1; all othess mustbe 0.
Eachcorresponéncevarialle correspndsto exactly one
cause:lf ¢; 5 is 1 (for 1 < k < K;), the measuement
is causedby the k-th obstaclein the obstaclelist D;. If
¢i,k+1 = 1, nore of the obstaclesn thelist weredetected.
Finally, the rancbm varialie ¢; . corresponddo the failure
casewhereameasurem@ntwaspurely rancdom.

Thecorrespnderte varicblesenableusto describesach
possiblecauseof a measurmentseparately If ¢, = 1,
thatis, if thek — th obstacldn D; causedhemeasuement
z;, the forward mockl is a straightfaward Gaussiamoise
varigble with variarces andmeand; j:

(e 1) L5
p(zi\m, cip = = ——e 2 o2

’ ’ V2mwo?

If themeasurmentis entirelyrandan (failure), we obtaina
uniform distribution:

1 1 max
zilm,cix =1) = = e 5
p( | ) Zmax V 27T0'2 ( )

Finally, the sensomeasurmentmight be causedy miss-
ing all obstaclesn the cone,hen® becanesa max-range
readng zmax, CONnvolvedwith Gaussiamoise:

1 1 (zi—2max)?
p(zi|maci,K,'+1 =1) = \/2_2 e 2 -2 (6)
o

Puttingall thesedistributions togetter gives us the follow-
ing forwardmodel:

p(zilmJ Cz) =

V2mwo? @

2 —d; 2
1. Zmax K; (= (25— 2zmax)
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Equdion (7) presuppses knowledge of the correspon-
dence which in pradice we do not have. It is therefae
convenientto calculatethe joint probablity over measure-
mentsandcorresponénce’;:

p(zi,Cilm) = p(zi|m, C;) p(Cilm) (8)
Herep(C;|m) = p(C;) is the prior over corresponénces.
This prior arisesfrom our considrationabore, wherewe
describd the differentcause®f sensomeasuements:

if Cix = 1
if Cik = 1 (9)
if Ci,K1+1 = 1

Prand
(1=prana) (1—Pnit)* ™" phit
(]- _prand) (]- —Dhit ) k

p(Ci) =

The resulting joint prabability p(z;, C;|m) implemetts a
simplistic geneative modelof sonameasurments factor
ing in different cause®f rangemeasuementsthroughthe
correspondenevarigbles.

3.2 ExpectedData Log-Lik elihood

The definition of the forward model enablesus to define
the datalikelihood—which will be maximizd to recover
themap. Explating the staticworld assumptionthelik eli-
hodl of the dataZ andall correspndercesC is givenby
theprodwctp(Z, C|lm) = [, p(zi, C;/m), orin logaithmic
form:

logp(Z,C|m)

> logp(:,Cilm)  (10)

In practice,we areinterestedn maximzing the likelihoad

of thedataD, andnotthejoint over dataD andcorrespon-
dencs C. This is achiezed by maximizirg the expected
log-likelihood E[log p(Z, C|m)], wherethe expectationis

taken over the corresponéncevariablesC. We obtainthe

expectediog-ik elihoodby substitutingequaions (10), (9),

(8), and(7) into theexpressionE[log p(Z, C|m)], andsub-
sequetly exploiting thelinearity of the expectation:

Ellog p(Z, C|m)] a1
= Z [E[logp(Ci)] + log 1 1 [E[Ci *]lnzrznl
i re2 2 ’ 2m02
i - 2
+ Z Elei k] ad k) [Q,K¢+ﬂ%‘| ]

Most of thetermsin this expressiondo not depem on the
mapm, hencecanbe omittedin the optimization Maxi-
mizing Eflog p(Z, C|m)] is thusequivalentto minimizing

K; 9
Z ZE[Ci,k]%

i k=1

— min (12)



Here the ray tracing distancesd; , and the expectations
Elc; 1] depend nondinearly on the mapm. Optimization
prablemsof thistypeareknown asmaxinum ik elihoodop-
timizationwith latent varialles, wherethe latentvarialles
arethecorrespadenesC. Unfortunately we know of no
closedform solutionfor the optimizationproddem (12).

3.3 Finding Maps via EM

A comnon way to optimize fundions with latent vari-
ablesis the expectationmaximizationalgorithm (in short:
EM) [2]. EM is aniterative algorithmthatgradually maxi-
mizesan expectedlog-likelihood Theoptimizatian begins
with anentirelyunoccypied mapm. EM theniteratestwo
stepsanexpectationstep(E-step) anda maximizationstep
(M-step, therely gradudly increasinghelikelihoodof the
datauntil alocal maximumis reached

The E-step calculateghe expectedcorrespondecesfor
agivenmapm. Theseexpectatims are simply the praba-
bilities for eachof the possible‘causes”of the sensomea-
suremats:

2
Zmax

—1In
E[ci,*] = 1 Prand € 2105t (13)
— 1 (EiTdig)
Elcix] = 1 (1—prand)(1—phit)” phite 2~ o2
. _1(2i—2max)
Eleixi+1] = 10 (1=prana)(l—pnit)® e” 27 <2

Heren is anormalizer, which ensure thatall expectations
in C; addupto onefor eachindividual value of i. Only the
valuesof Elc; 1] areneededor theoptimization thoud all
of themarerequiredto calculatethe normalizern.

TheM-step generateanen mapfor afixedsetof expec-
tationsE|c; ). Thisis doreby minimizing (12). Themaxi-
mizationof this expressioris periormedby hill climbingin
the spaceof all maps. More specifically the (discrete)oc-
cupang of individual grid cellsis flipped’ wheneer doing
sodeceaseshetargetfunction (12). Thisdiscretesearchs
terminatedwhenno additianal flipping canfurtherdecease
thetargetfunction It is easyto shav thatouralgaithm ter-
minatesafterfinitely mary steps.In practice we found that
maximizing (12) takesonly afew second®nalow-erd PC,
for thetypesmapsshavn in this paper

Together the E- and the M-step perfom hill climbing
in the spaceof all maps,by maximzing the likelihoad of
thedata. EM mayterminatein a non-globalmaximum, al-
thouwghin our experimentswe never obsered thisto bethe
case.Theresultingmapis amaxinum likelihood mapgen-
eratedvia forwardmodels whichis notsubjectto theinter
cell independene assumptia thatconventioral occlipang
grid algoritms male.

3.4 Modeling Map Uncertainty
In mary applicatioxs we would like to know how certain

we arein the map. This is an important featue of con-
vertional occupagy grid mapswhich calculatea posterior

prokability of occupacy. EM, on the otherhand, calcu-
latesonly a singlemapandnot anentireposterior Our ap-
proahappoximategheresiduauncertaintyby aLaplacian
methal. The basicideais to calculatethe secondderiva-
tive (cuwvature) of the log-likelihood function (11) with
respectto changs in occumng of individual grid cells:
2 Ellogp(2.Clm)] - Gince mapsare discrete,the derivative

is approﬁ?natedby thediscretedifference
Ellogp(Z,Clm : mqy = 0)] — E[log p(Z, Clm : mgy = 1)]

Theabsolue valuesof this differenceapprximatestheun-

certaintyin the grid cell. It canbe viewed as a discrete
sensitvity analysisof the final map. Whenbuilding anun-

certainty map, thesevaluesare ‘translated’into posterior
probabilitiesusinga simplead-ha algoiithm.

4 Experimental Results

Our appoach was successfullyapplied to learnirg grid
mapsusing simulatedand real robot data. In the real-
world expeliments, poseestimatesve obtdned via a sep-
aratemappng algorithmdescribe in [10].

Simulation results: Figure3 shovs an examge setof
sonarmeasuementsof a simulatedrobottraversing a hall-
way with anopendoa. Of particlar interestis the numker
n of sensomreadirgs that correctlydetectthe opendoor—
insteadof beingbouned off the doa posts. With aslittle
asn = 1 door detectios, standardoccupany grids fall
entirelyto mapthe doa, asshavn in diagram(b). Our ap-
proach, in contrastsucceedsDiagran (c) shavs theresult
of applyirg EM (a singlemap)anddiagram(d) is obtaired
by addinguncertaity extractedvia theLaplacianappoach.
The sameresultstill holds for n = 3, asvisualizedin di-
agrans (e) through (g). Only for valuesof n aslarge as
n = 16 doesthe sensorevidencesufiice to shav anopen
doa in the reguar occu@ng grid mappng appoach,as
shawvn in diagrans (h). It is interestingto note that while
the standardbccumng grid mappng algoithm usesprob-
abilistic meango accomnedateconflictingsensointerpre-
tations,thereareno suchconflictsin ourappoach.All data
setsare perfectly explained by ary of the maximum likeli-
hoad mapsshowvn in Figure 3 (c), (f), or (i). In addition,
thestandaraccumngy grid mapsexhibit stripesin themap
thatarealmostperpendicuar to thewall. Thesestripesre-
sultfrom measuementshathit thewall at steepangles.

Real world results: Experimentswith two real-world
datasets,collectedwith a RwI B21 robot in an office en-
vironment, validatethe findings of our simulationexperi-
ments. Resultsare shavn in Figures4 and5. Figure4
compmresthe standardoccumng/ grid mappirg algoithm
(diagam (a)) to the one using forward mockls (diagam
(b)). Our appoachcorrectlyidentifiestwo narrav doors,
which aremissedby the standardppro@h. Severaldotsin
the Lapladan mapstemfrom the factthata personwalked
by theroba during datacollection This highights oneof



(a) raw data(example)

First simulation run: 1 measurement of the opendoor
(b) Corventiorel (c) ML map (d) Map with uncetainty
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Second:Simulation run: 3 measurementsof the opendoor
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Third simulation run: 16 measurementsof the opendoor
(h) Corventiorel (i) ML map () Map with uncetainty

Figure 3. Simulation resuls: The robot travels along a corridor
with an opendoor Whenonly a single measuremet deteds the
opendoor (diagrans(b) through(d)), corventionalocaupang grid
mapsdo not shav the opendoor (diagram (b)), whereasour ap-
proat does(diagram(d)). Thesames thecasefor adatasetwhere
the opendoorwasdetedted threetimes(diagrams(e) through (g)).

With 16 measuremestof the opendoor, the regular occupacy
mapshav anopendoor (diagram (h)).
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the nice featuresof standardocciypang grid maps,which

typically do not shav tracesof peopleaslong asthey do

not remainat a singlelocationin the majority of measure-
ments. Our appoachappearsto be moresensitve to such

violations of the staticworld assumptionin its attemptto

maximze thelikelihoa of thedata.

Figure5 (a) shavs aroba tracein a 50 metersong cor
ridor, charactaeed by several opendoas on onesideand
a smoothwall on the other, which causesnary false,long
measuementsUnderour parametesetting standad occu-
parcy grid mapsmissthe smoothwall entirely A different
paranetersetting(notshavn here)identifieslarge fractiors
of this wall, but nore of the opendoors aredetected Our
appoachgereratesa bettermap,wherethe only visible in-
accuncgy stemdromthepersonwalkingbehindtherobot as
the datawascollected.Generatingnapsof the sizeshavn
heretypically takesa few minutesof processingime on a
850Mhz PentiumPC.

(b)

Figure 4. Comparisorof (a) corventioral occupang grid mapping
with (b) our approab usingforward models. The opendoorsare
only visible in (b). However, severd dot obstatesareshavn in (b)
that stemfrom apersorwalking by therobotduringdatacollection.

5 Discussion

This paperproposeda new appoachfor geneating occu-
pany grid maps.Our appoachrelieson physical forward
mockls, insteadof the inversemodelsthat are commanly
usedfor learnirg occyang grid maps.Insteadof breakng
down the map learningprodem into a multitude of inde-
penckntbinary estimationprodems—asdoneby virtually
all existing occupacy grid mappingalgoithms—ourap-
proach searchesnapsin the high-dimensioml spaceof all
maps.To perfam this searchwe have adopedthe popuar
EM algorithm to the mapestimationproblem. Uncetainty
mapsarefinally obtainedoy applying a Laplacianapproxi-
mationto themaxinum likelihoodmapfound by EM.

The advartageof our new apprachis two-fold: First,
we conjectue thatforward models aremorenaturalto ob-
tainthaninversemodels sinceforwardmodds aredescrip-
tive of the physical phenanenathatunderly the datagener
ation. Secondandmoreimportantly, our appoachyields
more consistenmapsin mary situations. This is becase
it does not rely on a cell-wise indegndeige assumptia,
and insteadtreatsthe mappirg problemfor whatit is: A
searchin a high dimensioml space. The disadwantageof
our appoach,on the otherhand is anincreasedensitvity
to changs in nonstationaryernvironmens; suchernviron-
mentsviolate a basicindepenlenceassumptia thatin fact
uncerliesboth occypang grid mappng paradigns. A sec-
onddisadwantageis a needto go through the datamultiple
times,which prohbits its usein real-timeapplicatiors.

Experinental resultsillustrate that more accurée maps
can be built in situationswith seeminglyconflicting sen-
sorinformation. Suchsituationsncludeervironmentswith
narrav openirgs andervironmeris were sonarsrequently
fail to detectobstaclesTheseadvantgesaresomeavhatset
of by our appoachs increasedsensitvity to ervironment
dynamics,suchasa persorwalking neaby therobot.

Thereare several oppatunities for follow-up research:
We believe thatourappoachcanbeextencedinto aconair-
rentmappng andlocalizationappioach[3], by introducing
additinal hidden variales that correspad to the robd’s
pose.We conjectuie thatatleastlocal errorsin roba odam-



(a) Raw data

Figure 5. Resuts obtanedfor a larger dataset,showvn in (a). While the wall locatedat the top of ead diagran is easyto detect, the wall shovn
located belav therobotis extremelysmooth,producirg alarge numberof erroneusreadings. Theoccumng grid mapshavn in (b) doesnt model
thewall, while atthe sametime opendoorslik e the onemarked by thearrow arefalsdy modeledasclosed.(c) Forward modelirg yieldsanimproved
modelof the bottomwall andalsomodelsthe doorcorrectly. In addtion, this mapshavs a traceof a persorwalking behird the robot.

etry can be compasatedby suchan extersion; howeve,
no experimentalresultsare currently available. A differ-
entdirectian of researclhinvolves theestimationof environ-
mentdynamics. Suchdynamicsarerelatively easilymod-
eledin theforwardmodéing apprach,whichdescribeshe
physics of the world—asopposedto its inverse. Finally, a
worthwhile goalwould be the extensionto real-timeopti-
mizationalgoithms, so that mapscanbe gengatedasthe
robot moves.
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