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Abstract-In this paper we propose an approach to solve 
the problem of finding an.object in a polygon which may 
contain holes. We define an optimal solution as the route 
that minimizes the expected time it takes to find said object. 

The object search problem is shown tu be NP-hard by 
reduction, therefore, we propose the heuristic of an utility 
function, defined as the ratio of a gain over a cost and an 
greedy algorithm in a reduced search space that is able to 
explore several steps ahead withont incurring in too high a 
computational cost. 

This approach was implemented and simulation results 
are shown. 

I. INTRODUCTION 
The problem of determining a good strategy to accom- 

plish a visibility-based task such as environment modeling 
[2], pursuit-evasion [5] [6], or object finding [4] [13], is 
a very challenging an interesting research area. Specially 
when the sensors are not static but rather are carried by 
mobile robots. 

We are interested in the problem of finding an object. 
Our goal is to find an efficient strategy to perform the 
object search. The possible applications have a wide range, 
from finding a specific piece of art in a museum to search 
and rescue injured people inside a building. 

In general, the robot will not be able to see the whole 
environment in a single sensing. Therefore, more than 
one perceptions will be needed to completely cover the 
environment. There are several schemes to generate and 
combine these perceptions. 

One approach is to have the robot continuously sense 
the world as it moves along a given trajectory, thereby 
scanning the environment in a continuous fashion. In this 
case, it is not clear how to generate a globally optimal 
trajectory for a given criterion. A greedy strategy could use 
the gradient of the new visibility information to guide the 
search. This strategy could be based on critical events such 
as crossing lines in an aspect graph based on perspective 
projection [13]. 

Another approach is to make the robot sense the en- 
vironment only at specific locations. This changes the 
nature of the problem from continuous to discrete, with 
information arriving in blocks. This also introduces the 

problem of generating an “appropriate” set of sensing 
locations. 

There are several criteria for determining the goodness 
of this set. For example, the minimal number of locations 
(art gallery problem [SI), locations along the shortest path 
that covers the whole environment (shortest watchman 
path [121), and so on. 

In this paper we will assume that the set of locations is 
given as input - they will not be generated automatically. 
In any case, once the sensing locations are known, it is 
still necessary to visit those locations in a specific order 
to minimize the expected time to find the object. This 
transforms the object search into a combinatorial problem. 

In this paper our objective is to generate an exploration 
strategy based on the given sensing locations that finds the 
object as quickly as possible. That is, a strategy that min- 
imizes the expected time it takes to find it (as explained 
in the next section). Under this definition of optimality, 
we have pmven that the best exploration strategy is not 
necessarily the one that minimizes the distance traveled 
by the mbot [ I l l .  

11. PROBLEM DEFINITION 
In general terms, we define the problem of searching for 

an object as follows: Given a mobile robot with some kind 
of sensing capabilities, a completely known environment 
and an object sitting somewhere in the world, develop a 
motion strategy for the robot to find the object in the least 
amount of time. 

At this point we are not concerned with the geometry 
of the robot or the capabilities of the sensor (field of view, 
range, resolution and so on). For now, we consider only a 
point robot with an omnidirectional, infinite range sensor. 
These assumptions are made to simplify the analysis and 
to better understand the problem. In the future, we will 
address the more complex cases. 

We established that the environment W is known and 
modeled as a polygon which may contain holes. All these 
obstacles generate both motion and visibiliry constraints. 

Furthermore, we assume that the probability of the 
object being in any specific point is evenly distributed 
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throughout the polygon’s interior. Therefore, the prob- 
ability of the object being in any subset R C 1V is 
proportional to the area of R. 

We also assume that we are given a set of locations L 
(also known as guards from the art gallery problem [12]) 
from which every point in W can be seen. The visibility 
region of location Lj, denoted V ( L j ,  W ) ,  is the set of 
points in W that have a clear line of sight to L, (the line 
segment connecting them does not intersect the exterior of 
W). The set L is chosen so that the associated visibility 
regions define a cover of W .  This means that their union 
adds up to the whole environment W .  

U V ( L j , W )  = w 
j 

We do not require nor assume the set L to be minimal. 
Our exploration protocol is as follows: the robot always 

starts at a particular location in L (the starting point) and 
visits the other locations as time progresses (it follows the 
shortest paths between them). It only gathers information 
about the environment (sensing) when it reaches one of 
these locations - it does not sense while moving. We 
describe the route followed by the robot as a series of 
locations Li, that stans with the robot’s initial location 
and includes the other locations once. It is important to 
note that while Lj refers to locations in the environment, 
Li, refers to the order in which those locations are visited. 
That is, the robot always starts at L$,  and the IC-th location 
it visits is referred to as Li,. Obviously, every L;, has 
a corresponding Lj in the environment, but their indices 
need not match. 

For any route S, we define the time to find the object 
T as the time it takes to go through the locations - in 
order - until the object is first seen. We assume that the 
robot will be able to identify the object from any given 
viewpoint and that there are no other objects that could 
be mistaken as the searched object [3]. 

Our goal is to find the route that minimizes the expected 
value of the time it takes to find the object 

E [TIS] = CtjP (T = t j )  (1) 
j 

where 

Area ( v ( L i , , w )  \Uk<jV(Li*rW))  
Area(W) 

P(T = t j )  = 

Where ti is the time it takes the robot to go from its ini- 
tial position - through all locations along the route - until 
it reaches the j-th visited location LE,. and P (T  = t j )  

is the probability of finding the object there. Since the 
robot only senses at specific locations, we also denote 
this probability of finding the object at location Lij as 
P (Lij) .  

Explicitly, the probability of finding the object from a 
given location is proportional to the visibility polygon of 
that region (V ( L , j ,  W ) )  minus the already explored space 
up to that point (Uk<, V (Li t ,  W ) ) .  

111. PROPOSED SOLUTION 
Since we assume that we are given a set of sensing 

locations that completely cover the environment, we are 
interested in finding an order of visiting those locations 
- the problem becomes a combinatorial search. In this 
section we present two algorithms for such a task. The 
first one is a traditional graph search that finds the op- 
timal ordering hut is intractable. The second is a greedy 
algorithm that can be computed in polynomial time and 
yields good results. 

In general, the robot will not be able to travel between 
two locations by following a straight line. In this cases, we 
use a reduced visibility graph [9] and Dijkstra’s Algorithm 
to follow the shortest path between them. 

A. Algorithm for Optimal Ordering 
Given a set of locations L that are guards to a polygonal 

region W ,  there exists an algorithm for computing the 
route that minimizes the expected time to find the object. 
It is described hereafter. 

Construct a complete weighted graph as follows: 
(1) For each location L j ,  create a node Ni in the graph. 
( 2 )  For each pair of nodes Nj and Nk; add an edge with 

variable weight W j k .  
( 3 )  The weight wjk is dynamic, meaning it depends on 

the route followed by the robot before reaching Nj.  
These weights are calculated on-line. 

The weight Wjk should correspond to the increase in 
expected time AE[T]  the robot incurs by going from Lj 
to Lk. This is a function of the time in which it arrives at 
Lk, which in turn depends on the route followed by the 
robot up to that point. 

In this graph, we need to find the path of minimum cost 
that starts at the robot’s initial location Li, and includes all 
other locations. This can be accomplished with a Branch 
and Bound graph search. This search strategy maintains a 
list of nodes to be opened ordered by their accumulated 
cost. The next node to be expanded is always the head 
of the list, the one whose accumulated cost is currently 
minimal. 

When a node is expanded, only those nodes that are 
adjacent and not already included in the current path are 
considered children. The added cost IYjk of expanding a 
child Nk from its parent N j  is 

Wjk = T i m e  (Nk) ’ P (Lk) 
Time (Nk) = Time ( N j )  + Speed .  D i d  (Lj ,  Lk) 

Then, the accumulated cost for the child is 

cOSt(Nk) = Cost (Nj) +‘wjk 
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Initially, the Branch and Bound list contains only the 
starting robot location. Then, the head of the list is 
expanded and its children added to the ordered list until 
a solution is found - a path that contains all locations in 
L. When this happens, the currently best nodes continue 
to be expanded until 

(a) A lower cost solution is found, in which case the 
better solution is saved and the process continues, 

(b) The lowest cost node is worse than the current 
solution. In this case we know that this solution is 
optimal. 

This algorithm finds the optimal solution - the one 
that minimizes the expected time to find the object. 
Unfortunately, its space and time complexities are not 
of polynomial order. Furthermore, the problem itself is 
inrractable, more specifically, NP-hard. 

B. Reduction from an NP-hard problem 
The Minimum Weight Hamiltonian Path Problem, 

known to be NP-hard [l], can be reduced to the problem 
of finding the optimal visiting order of sensing locations 
which minimizes the expected time to find an object. 

In order to make a formal reduction, we abstract the 
concept of environment and visibility regions. We only 
consider a set of locations which have an associated 
probability of finding the object and are independent of 
each other. 

The reduction consists in defining the distance between 
the sensing locations as the edge weights of the Minimum 
Weight Hamiltonian Path Problem and setting the proba- 
bilities uniformly (same value for all). 

Since the probabilities are set uniformly, the route that 
minimizes the expected time will he the exactly the same 
as the one that minimizes the distance traveled. This 
happens because the expected value of the time to find 
an object is determined only by the time it takes to reach 
locations along the route. Since time is proportional to 
distance, the route that minimizes time will also minimize 
the distance. 

Given that the solutions to both problems are the same 
ordering of locations, finding a polynomial algorithm to 
solve these instances of the defined problem would also 
solve the Minimum Weight Hamiltonian Path Problem 
in polynomial time. Thereby proving that the proposed 
problem is NI-hard. 

C. Utiliq Heuristic 
Since trying to find an optimal solution is a futile effort, 

we decided to implement an iterative greedy strategy. One 
that tries to achieve a good result in one (or just a few) 
steps at a time. 

In the obvious version of this algorithm the next lo- 
cation to visit is chosen as the one that causes the least 

or 

increase in the partial calculation of (1) along the current 
route. That is, at each step of the route, calculate how 
much would the expected value of the time to find the ob- 
ject increase for going to the remaining locations and then 
choose the least increase. This has 0 (n2) complexity, 
because each step has to consider every available location. 

This algorithm performs poorly. We believe this hap- 
pens because the product in ( I )  makes locations with low 
probability be preferred and visited first, which seems 
contrary to what should be done. 

For this reason, we propose an alternate greedy algo- 
rithm, called utiliry greedy, that tries to maximize an utility 
function. This function measures how convenient it is to 
visit a determined location from another, and is defined as 
follows: 

(2) 

This means that if the robot is currently in Lj ,  the utility 
of going to location L k  is proportional to the probability 
of finding the object there and inversely proportional to 
the time it must invest in traveling. 

A robot using this function to determine its next desti- 
nation will tend to prefer locations that are close andlor 
locations where the probability of finding the object is 
high. Intuitively, it is convenient to follow such an strategy, 
but its relationship with the expected value minimization 
will be more evident after the following analysis. 

Consider a definition of expectation for a non-negative 
random variable, such as time, from [IO] 

p ( L k )  
Time ( L j , L r )  U ( L j ,  Lk) = 

E[T] = P(T > t )d t  I= 
This is equivalent to 

Where FT is a cumulative distribution function. 
In our problem, every valid trajectory defines a par- 

ticular cumulative distribution function of finding the 
object, FT. Since we are dealing with a discrete problem, 
the distributions are only piecewise continuous with the 
discontinuities being the times at which the robot reaches 
the distinct locations along the route, as shown in Fig. la. 

By (3), we know that the expected value of a random 
variable with distribution FT is the arca under the curve 
1 - FT, shown in Fig. Ib. This area is the value we want 
to minimize. 

One method for making this area small is to have the 
time intervals as small as possible and the probability 
changes (down step) as large as possible. This is the notion 
that our utility function in (2) captures; its value is larger 
when the probability of finding the object in a particular 
location is high (large down step) and/or when the location 
is near (small time interval). 
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D. Eficient Utility Greedy Algorithm 

The utility function in (2) is sufficient to define a 1- 
step greedy algorithm. At each step, simply evaluate the 
utility function for all available locations and choose the 
one with the highest value. This algorithm has a running 
time of 0 (n') . 

However, it might be convenient to explore several 
steps ahead instead of just one to try to "escape local 
minima" and improve the quality of the solution found. 
The downside of this idea is that it usually increases the 
complexity of the algorithm by a factor of O(n) for each 
step ahead. 

To reduce this effect we propose a second heuristic 
that reduces the branching factor. The heuristic is that 
the children of each location can only be those other 
locations that are not strictly dominated according to the 
two variables in the utility function. As seen from the j-th 
location L j ,  a location Lk strictly dominates another LI 
if both of the following conditions are m e  

~. . ... . , ;  

' Lk 

distance Disr(Lj,LkJ Disr(LjL,J 

Fig. 2. Location dominance 

Graphically, this is shown in Fig. 2. It is straightforward 
that dominating locations will lie on the convex hull of the 
remaining set of locations when plotted on the probability 
vs. distance plane. The endpoints of this partial convex 
hull are not considered as candidates since they are not 
defined locations. 

By only considering a subset of the remaining locations 
at each step, we are reducing the branching factor, making 
it possible to explore more steps ahead without incurring 
in too high a computational cost. Of course, there is no 
guarantee that the optimal solution is indeed a member of 
this reduced search space or even that this will yield better 
results. However, we have found it to be a good heuristic 
in practice, as described in the next section. 

The full algorithm consists in iteratively exploring sev- 
eral steps ahead, choosing the most promising route up to 
that point and starting over from there. For n locations, 
if the branching factor is B, a tree of beigbt log,(n) 
can be explored in linear time. This creates a partial 
route of length log,(n). Since a solution should be of 
length n, the process needs to be repeated fi times 
for the complete route. This is depicted in Ffg. 3. The 
big triangle represents the tree that would be generated 
if a complete exploration was made, whereas the small 
triangles represent the trees that are actually generated 
(explored) by the algorithm. 

Thus, our final algorithm is as follows: 
(1) For the last location along the current solution 

(initially just the robot starting location) explore the 
possible routes (create a tree breadth-first) until the 
number of nodes is of order O(n). 

(2) For each node that needs to be expanded, compute 
the set of locations that are not strictly domi- 
nated by others and only choose those as children. 
This can be done with a convex hull algorithm in - 
0 ( n h d n ) ) .  P(h.1 > P ( L d  

DiSt (Lj ,  Lk) < DiSt (Lj ,  Ll) 
(3) When the number of nodes in the exploration tree 

has reached order O(n),  choose the best leaf accord- 
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Fig. 3. Exploration algorithm 

ing to the heuristic in (2), discard the current tree 
and start over with the best node as root. 

This has to be repeated several times to generate a com- 
plete route, therefore the total complexity of the algorithm 

Of course, this result depends on the number of dom- 
inating locations being significantly smaller than n on 
average. Which may be difficult to determine for a specific 
problem. We know, for exampk'ihat the expected number 
of points on the convex hull of a set sampled uniformly 
from a convex polygon is of order 0 ( k l o g ( n ) )  for a k- 
sided polygon [7]. In the worst case, when the branching 
factor is not reduced at all, our algorithm only explores 
one step at a time and has a running time of 

O (n . n Iog(n)  . n) = O (n3 Iog (n ) )  

This analysis only considers the time complexity of 
the search algorithm itself. I t  does not include the time 
coniplexio of performing polygon clipping operations. 
These are needed every step of the algorithm because they 
are used to calculate the probability of finding the object at 
any given location (which depends on the route followed 
up to that point). 

-IV. SIMULATION RESULTS 

For our simulations, we implemented routines for com- 
puting visibility polygons, the reduced visibility graph 
and shortest paths (Dijkstra's Algorithm). For calculating 
the union of visibility regions, we used the gpc library 
developed by Alan Mum [14]. 

This section presents the simulation results for the 
polygonal world shown in Fig. 4. The black regions 
correspond to the obstacles, the small circles to the sensing 
locations(gnards) given as input and the grey region is the 
visibility polygon of the starting location. 

Fig. 4. Test plygonal world 

For this instance, we generated the sensing locations 
manually. While we tried to find as few as possible, they 
do not correspond to any kind of optimal criteria. 

For the following routes, we show the expected value 
of the time it takes to find the object following that 
particular route, and its total length. These values are given 
in arbitrary units, what really.matters in the relative value 
differences between the routes. The execution times are in 
seconds for a regular PC workstation. 

For this polygonal world, we computed three routes. 
The first one is the route that minimizes the expected value 
of the time to find the object (the optimal solution). For 
purposes of comparison, we also computed the route that 
minimizes the distance traveled, and finally, we show the 
route generated by our heuristic algorithm. 

We were able to solve thie optimal cases because the 
number of sensing locations is relatively small (10). 

Fig. 5 shows the route that minimizes the expected value 
of the time to find the object - the optimal solution to our 
problem. For this route the expected value is 943.21 with a 
total distance traveled of 2783.20. This result took 892.82 
seconds to compute. 

Fig. 6 shows the route that minimizes the distance trav- 
eled from the starting location. In this case, the expected 
value of the time to find the object is 994.79 with a total 
distance of 2273.09. This route was computed in 488.87 
seconds. This result further shows that the best strategy 
to find an object as quickly as possible on average, is not 

Fig. 5. Route that minimizes lhe expened time to find the object 
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Fig. 6. Route that minimizes the dismce baveled 

Fig. 7. Route generated by the utility heuristic algorithm 

the one that minimizes the distance traveled. 
Fig. 7 shows the route generated by our heuristic 

algorithm. The expected value along this route is 982.21 
with a total distance traveled of 2970.43. This result was 
obtained in only 0.44 seconds. 

For this particular example, the expected value of the 
time to find the object along the route obtained by our 
heuristic algorithm is slightly smaller (by 1.2%) than along 
the route that minimizes the distance traveled. Of course, 
the length of the route is larger (by about 30%). 

With respect to the optimal solution, the route generated 
by our algorithm is worse in both expected value of the 
time to find the object (by 4.1%) and distance travelled 
(by 6.7%). However, in execution time, our algorithm is 
more than 2000 times faster. 

V. CONCLUSIONS 

In this paper we proposed an efficient approach to 
solve the problem of searching an object in a polygonal 
environment. We defined an optimal solution as the route 
that minimizes the expected time it takes to find the object. 

The problem itself was shown to be NP-hard by re- 
duction, therefore, we proposed the heuristic of an utility 
function, defined as the ratio of a gain (increase in a 
cumulative distribution function) over a cost (travel time). 

We also proposed an greedy algorithm in a reduced 
search space that is able to explore several steps ahead 
without incurring in too high a computational cost. 

1158 

We showed experiments in simulation that suggest that 
the quality of the routes generated by our algorithm is 
close to the optimal solutions. 

Future work will consist in the development of an ap- 
proach to generate a set of sensing locations automatically. 
The set should be “helpful” to the problem of minimizing 
the expected time to find an object. It seems that desirable 
properties include low cardinality and low dispersion. A 
formal definition of these properties is a major part of the 
solution to the problem. 
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