
Proceedings of the 2003 IEEURSJ
Intl. Conference on Intelligent Robots and Systems
Las Vegas. Nevada ’ October 2003

An Efficient Strategy for Rapidly Finding an Object
in a Polygonal World

Alejandro Sarmiento Rafael Murrieta Seth A. Hutchinson
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
{ a s h e n , mumeta, seth } @ uiuc.edu

Urbana, Illinois 61801
USA

Abstract-In this paper we propose an approach to solve
the problem of finding an.object in a polygon which may
contain holes. We define an optimal solution as the route
that minimizes the expected time it takes to find said object.

The object search problem is shown tu be NP-hard by
reduction, therefore, we propose the heuristic of an utility
function, defined as the ratio of a gain over a cost and an
greedy algorithm in a reduced search space that is able to
explore several steps ahead withont incurring in too high a
computational cost.

This approach was implemented and simulation results
are shown.

I. INTRODUCTION
The problem of determining a good strategy to accom-

plish a visibility-based task such as environment modeling
[2], pursuit-evasion [5] [6], or object finding [4] [13], is
a very challenging an interesting research area. Specially
when the sensors are not static but rather are carried by
mobile robots.

We are interested in the problem of finding an object.
Our goal is to find an efficient strategy to perform the
object search. The possible applications have a wide range,
from finding a specific piece of art in a museum to search
and rescue injured people inside a building.

In general, the robot will not be able to see the whole
environment in a single sensing. Therefore, more than
one perceptions will be needed to completely cover the
environment. There are several schemes to generate and
combine these perceptions.

One approach is to have the robot continuously sense
the world as it moves along a given trajectory, thereby
scanning the environment in a continuous fashion. In this
case, it is not clear how to generate a globally optimal
trajectory for a given criterion. A greedy strategy could use
the gradient of the new visibility information to guide the
search. This strategy could be based on critical events such
as crossing lines in an aspect graph based on perspective
projection [13].

Another approach is to make the robot sense the en-
vironment only at specific locations. This changes the
nature of the problem from continuous to discrete, with
information arriving in blocks. This also introduces the

problem of generating an “appropriate” set of sensing
locations.

There are several criteria for determining the goodness
of this set. For example, the minimal number of locations
(art gallery problem [SI), locations along the shortest path
that covers the whole environment (shortest watchman
path [121), and so on.

In this paper we will assume that the set of locations is
given as input - they will not be generated automatically.
In any case, once the sensing locations are known, it is
still necessary to visit those locations in a specific order
to minimize the expected time to find the object. This
transforms the object search into a combinatorial problem.

In this paper our objective is to generate an exploration
strategy based on the given sensing locations that finds the
object as quickly as possible. That is, a strategy that min-
imizes the expected time it takes to find it (as explained
in the next section). Under this definition of optimality,
we have pmven that the best exploration strategy is not
necessarily the one that minimizes the distance traveled
by the mbot [I l l .

11. PROBLEM DEFINITION
In general terms, we define the problem of searching for

an object as follows: Given a mobile robot with some kind
of sensing capabilities, a completely known environment
and an object sitting somewhere in the world, develop a
motion strategy for the robot to find the object in the least
amount of time.

At this point we are not concerned with the geometry
of the robot or the capabilities of the sensor (field of view,
range, resolution and so on). For now, we consider only a
point robot with an omnidirectional, infinite range sensor.
These assumptions are made to simplify the analysis and
to better understand the problem. In the future, we will
address the more complex cases.

We established that the environment W is known and
modeled as a polygon which may contain holes. All these
obstacles generate both motion and visibiliry constraints.

Furthermore, we assume that the probability of the
object being in any specific point is evenly distributed

0-7803-7860-1/03/$17.00 8 2003 IEEE 1153

http://uiuc.edu

throughout the polygon’s interior. Therefore, the prob-
ability of the object being in any subset R C 1V is
proportional to the area of R.

We also assume that we are given a set of locations L
(also known as guards from the art gallery problem [12])
from which every point in W can be seen. The visibility
region of location Lj, denoted V (L j , W) , is the set of
points in W that have a clear line of sight to L, (the line
segment connecting them does not intersect the exterior of
W). The set L is chosen so that the associated visibility
regions define a cover of W . This means that their union
adds up to the whole environment W .

U V (L j , W) = w
j

We do not require nor assume the set L to be minimal.
Our exploration protocol is as follows: the robot always

starts at a particular location in L (the starting point) and
visits the other locations as time progresses (it follows the
shortest paths between them). It only gathers information
about the environment (sensing) when it reaches one of
these locations - it does not sense while moving. We
describe the route followed by the robot as a series of
locations Li, that stans with the robot’s initial location
and includes the other locations once. It is important to
note that while Lj refers to locations in the environment,
Li, refers to the order in which those locations are visited.
That is, the robot always starts at L$, and the IC-th location
it visits is referred to as Li,. Obviously, every L;, has
a corresponding Lj in the environment, but their indices
need not match.

For any route S, we define the time to find the object
T as the time it takes to go through the locations - in
order - until the object is first seen. We assume that the
robot will be able to identify the object from any given
viewpoint and that there are no other objects that could
be mistaken as the searched object [3].

Our goal is to find the route that minimizes the expected
value of the time it takes to find the object

E [TIS] = CtjP (T = t j) (1)
j

where

Area (v (L i , , w) \Uk<jV(Li*rW))
Area(W)

P(T = t j) =

Where ti is the time it takes the robot to go from its ini-
tial position - through all locations along the route - until
it reaches the j-th visited location LE,. and P (T = t j)

is the probability of finding the object there. Since the
robot only senses at specific locations, we also denote
this probability of finding the object at location Lij as
P (Lij) .

Explicitly, the probability of finding the object from a
given location is proportional to the visibility polygon of
that region (V (L , j , W)) minus the already explored space
up to that point (Uk<, V (Li t , W)) .

111. PROPOSED SOLUTION
Since we assume that we are given a set of sensing

locations that completely cover the environment, we are
interested in finding an order of visiting those locations
- the problem becomes a combinatorial search. In this
section we present two algorithms for such a task. The
first one is a traditional graph search that finds the op-
timal ordering hut is intractable. The second is a greedy
algorithm that can be computed in polynomial time and
yields good results.

In general, the robot will not be able to travel between
two locations by following a straight line. In this cases, we
use a reduced visibility graph [9] and Dijkstra’s Algorithm
to follow the shortest path between them.

A. Algorithm for Optimal Ordering
Given a set of locations L that are guards to a polygonal

region W , there exists an algorithm for computing the
route that minimizes the expected time to find the object.
It is described hereafter.

Construct a complete weighted graph as follows:
(1) For each location L j , create a node Ni in the graph.
(2) For each pair of nodes Nj and Nk; add an edge with

variable weight W j k .
(3) The weight wjk is dynamic, meaning it depends on

the route followed by the robot before reaching Nj.
These weights are calculated on-line.

The weight Wjk should correspond to the increase in
expected time AE[T] the robot incurs by going from Lj
to Lk. This is a function of the time in which it arrives at
Lk, which in turn depends on the route followed by the
robot up to that point.

In this graph, we need to find the path of minimum cost
that starts at the robot’s initial location Li, and includes all
other locations. This can be accomplished with a Branch
and Bound graph search. This search strategy maintains a
list of nodes to be opened ordered by their accumulated
cost. The next node to be expanded is always the head
of the list, the one whose accumulated cost is currently
minimal.

When a node is expanded, only those nodes that are
adjacent and not already included in the current path are
considered children. The added cost IYjk of expanding a
child Nk from its parent N j is

Wjk = T i m e (Nk) ’ P (Lk)
Time (Nk) = Time (N j) + Speed . D i d (Lj , Lk)

Then, the accumulated cost for the child is

cOSt(Nk) = Cost (Nj) +‘wjk

1154

Initially, the Branch and Bound list contains only the
starting robot location. Then, the head of the list is
expanded and its children added to the ordered list until
a solution is found - a path that contains all locations in
L. When this happens, the currently best nodes continue
to be expanded until

(a) A lower cost solution is found, in which case the
better solution is saved and the process continues,

(b) The lowest cost node is worse than the current
solution. In this case we know that this solution is
optimal.

This algorithm finds the optimal solution - the one
that minimizes the expected time to find the object.
Unfortunately, its space and time complexities are not
of polynomial order. Furthermore, the problem itself is
inrractable, more specifically, NP-hard.

B. Reduction from an NP-hard problem
The Minimum Weight Hamiltonian Path Problem,

known to be NP-hard [l], can be reduced to the problem
of finding the optimal visiting order of sensing locations
which minimizes the expected time to find an object.

In order to make a formal reduction, we abstract the
concept of environment and visibility regions. We only
consider a set of locations which have an associated
probability of finding the object and are independent of
each other.

The reduction consists in defining the distance between
the sensing locations as the edge weights of the Minimum
Weight Hamiltonian Path Problem and setting the proba-
bilities uniformly (same value for all).

Since the probabilities are set uniformly, the route that
minimizes the expected time will he the exactly the same
as the one that minimizes the distance traveled. This
happens because the expected value of the time to find
an object is determined only by the time it takes to reach
locations along the route. Since time is proportional to
distance, the route that minimizes time will also minimize
the distance.

Given that the solutions to both problems are the same
ordering of locations, finding a polynomial algorithm to
solve these instances of the defined problem would also
solve the Minimum Weight Hamiltonian Path Problem
in polynomial time. Thereby proving that the proposed
problem is NI-hard.

C. Utiliq Heuristic
Since trying to find an optimal solution is a futile effort,

we decided to implement an iterative greedy strategy. One
that tries to achieve a good result in one (or just a few)
steps at a time.

In the obvious version of this algorithm the next lo-
cation to visit is chosen as the one that causes the least

or

increase in the partial calculation of (1) along the current
route. That is, at each step of the route, calculate how
much would the expected value of the time to find the ob-
ject increase for going to the remaining locations and then
choose the least increase. This has 0 (n2) complexity,
because each step has to consider every available location.

This algorithm performs poorly. We believe this hap-
pens because the product in (I) makes locations with low
probability be preferred and visited first, which seems
contrary to what should be done.

For this reason, we propose an alternate greedy algo-
rithm, called utiliry greedy, that tries to maximize an utility
function. This function measures how convenient it is to
visit a determined location from another, and is defined as
follows:

(2)

This means that if the robot is currently in Lj , the utility
of going to location L k is proportional to the probability
of finding the object there and inversely proportional to
the time it must invest in traveling.

A robot using this function to determine its next desti-
nation will tend to prefer locations that are close andlor
locations where the probability of finding the object is
high. Intuitively, it is convenient to follow such an strategy,
but its relationship with the expected value minimization
will be more evident after the following analysis.

Consider a definition of expectation for a non-negative
random variable, such as time, from [IO]

p (L k)
Time (L j , L r) U (L j , Lk) =

E[T] = P(T > t)d t I=
This is equivalent to

Where FT is a cumulative distribution function.
In our problem, every valid trajectory defines a par-

ticular cumulative distribution function of finding the
object, FT. Since we are dealing with a discrete problem,
the distributions are only piecewise continuous with the
discontinuities being the times at which the robot reaches
the distinct locations along the route, as shown in Fig. la.

By (3), we know that the expected value of a random
variable with distribution FT is the arca under the curve
1 - FT, shown in Fig. Ib. This area is the value we want
to minimize.

One method for making this area small is to have the
time intervals as small as possible and the probability
changes (down step) as large as possible. This is the notion
that our utility function in (2) captures; its value is larger
when the probability of finding the object in a particular
location is high (large down step) and/or when the location
is near (small time interval).

1155

A F7
IC

+
rime

-1

D. Eficient Utility Greedy Algorithm

The utility function in (2) is sufficient to define a 1-
step greedy algorithm. At each step, simply evaluate the
utility function for all available locations and choose the
one with the highest value. This algorithm has a running
time of 0 (n') .

However, it might be convenient to explore several
steps ahead instead of just one to try to "escape local
minima" and improve the quality of the solution found.
The downside of this idea is that it usually increases the
complexity of the algorithm by a factor of O(n) for each
step ahead.

To reduce this effect we propose a second heuristic
that reduces the branching factor. The heuristic is that
the children of each location can only be those other
locations that are not strictly dominated according to the
two variables in the utility function. As seen from the j-th
location L j , a location Lk strictly dominates another LI
if both of the following conditions are m e

~. , ;

' Lk

distance Disr(Lj,LkJ Disr(LjL,J

Fig. 2. Location dominance

Graphically, this is shown in Fig. 2. It is straightforward
that dominating locations will lie on the convex hull of the
remaining set of locations when plotted on the probability
vs. distance plane. The endpoints of this partial convex
hull are not considered as candidates since they are not
defined locations.

By only considering a subset of the remaining locations
at each step, we are reducing the branching factor, making
it possible to explore more steps ahead without incurring
in too high a computational cost. Of course, there is no
guarantee that the optimal solution is indeed a member of
this reduced search space or even that this will yield better
results. However, we have found it to be a good heuristic
in practice, as described in the next section.

The full algorithm consists in iteratively exploring sev-
eral steps ahead, choosing the most promising route up to
that point and starting over from there. For n locations,
if the branching factor is B, a tree of beigbt log,(n)
can be explored in linear time. This creates a partial
route of length log,(n). Since a solution should be of
length n, the process needs to be repeated fi times
for the complete route. This is depicted in Ffg. 3. The
big triangle represents the tree that would be generated
if a complete exploration was made, whereas the small
triangles represent the trees that are actually generated
(explored) by the algorithm.

Thus, our final algorithm is as follows:
(1) For the last location along the current solution

(initially just the robot starting location) explore the
possible routes (create a tree breadth-first) until the
number of nodes is of order O(n).

(2) For each node that needs to be expanded, compute
the set of locations that are not strictly domi-
nated by others and only choose those as children.
This can be done with a convex hull algorithm in -
0 (n h d n)) . P(h.1 > P (L d

DiSt (Lj , Lk) < DiSt (Lj , Ll)
(3) When the number of nodes in the exploration tree

has reached order O(n), choose the best leaf accord-

1156

Fig. 3. Exploration algorithm

ing to the heuristic in (2), discard the current tree
and start over with the best node as root.

This has to be repeated several times to generate a com-
plete route, therefore the total complexity of the algorithm

Of course, this result depends on the number of dom-
inating locations being significantly smaller than n on
average. Which may be difficult to determine for a specific
problem. We know, for exampk'ihat the expected number
of points on the convex hull of a set sampled uniformly
from a convex polygon is of order 0 (k l o g (n)) for a k-
sided polygon [7]. In the worst case, when the branching
factor is not reduced at all, our algorithm only explores
one step at a time and has a running time of

O (n . n Iog(n) . n) = O (n3 Iog (n))

This analysis only considers the time complexity of
the search algorithm itself. I t does not include the time
coniplexio of performing polygon clipping operations.
These are needed every step of the algorithm because they
are used to calculate the probability of finding the object at
any given location (which depends on the route followed
up to that point).

-IV. SIMULATION RESULTS

For our simulations, we implemented routines for com-
puting visibility polygons, the reduced visibility graph
and shortest paths (Dijkstra's Algorithm). For calculating
the union of visibility regions, we used the gpc library
developed by Alan Mum [14].

This section presents the simulation results for the
polygonal world shown in Fig. 4. The black regions
correspond to the obstacles, the small circles to the sensing
locations(gnards) given as input and the grey region is the
visibility polygon of the starting location.

Fig. 4. Test plygonal world

For this instance, we generated the sensing locations
manually. While we tried to find as few as possible, they
do not correspond to any kind of optimal criteria.

For the following routes, we show the expected value
of the time it takes to find the object following that
particular route, and its total length. These values are given
in arbitrary units, what really.matters in the relative value
differences between the routes. The execution times are in
seconds for a regular PC workstation.

For this polygonal world, we computed three routes.
The first one is the route that minimizes the expected value
of the time to find the object (the optimal solution). For
purposes of comparison, we also computed the route that
minimizes the distance traveled, and finally, we show the
route generated by our heuristic algorithm.

We were able to solve thie optimal cases because the
number of sensing locations is relatively small (10).

Fig. 5 shows the route that minimizes the expected value
of the time to find the object - the optimal solution to our
problem. For this route the expected value is 943.21 with a
total distance traveled of 2783.20. This result took 892.82
seconds to compute.

Fig. 6 shows the route that minimizes the distance trav-
eled from the starting location. In this case, the expected
value of the time to find the object is 994.79 with a total
distance of 2273.09. This route was computed in 488.87
seconds. This result further shows that the best strategy
to find an object as quickly as possible on average, is not

Fig. 5. Route that minimizes lhe expened time to find the object

1157

Fig. 6. Route that minimizes the dismce baveled

Fig. 7. Route generated by the utility heuristic algorithm

the one that minimizes the distance traveled.
Fig. 7 shows the route generated by our heuristic

algorithm. The expected value along this route is 982.21
with a total distance traveled of 2970.43. This result was
obtained in only 0.44 seconds.

For this particular example, the expected value of the
time to find the object along the route obtained by our
heuristic algorithm is slightly smaller (by 1.2%) than along
the route that minimizes the distance traveled. Of course,
the length of the route is larger (by about 30%).

With respect to the optimal solution, the route generated
by our algorithm is worse in both expected value of the
time to find the object (by 4.1%) and distance travelled
(by 6.7%). However, in execution time, our algorithm is
more than 2000 times faster.

V. CONCLUSIONS

In this paper we proposed an efficient approach to
solve the problem of searching an object in a polygonal
environment. We defined an optimal solution as the route
that minimizes the expected time it takes to find the object.

The problem itself was shown to be NP-hard by re-
duction, therefore, we proposed the heuristic of an utility
function, defined as the ratio of a gain (increase in a
cumulative distribution function) over a cost (travel time).

We also proposed an greedy algorithm in a reduced
search space that is able to explore several steps ahead
without incurring in too high a computational cost.

1158

We showed experiments in simulation that suggest that
the quality of the routes generated by our algorithm is
close to the optimal solutions.

Future work will consist in the development of an ap-
proach to generate a set of sensing locations automatically.
The set should be “helpful” to the problem of minimizing
the expected time to find an object. It seems that desirable
properties include low cardinality and low dispersion. A
formal definition of these properties is a major part of the
solution to the problem.

VI. REFERENCES

[l] Garey, M.R. and D.S. Johnson, Computers and In-
tractabilify, W. H. Freeman and Company, 1979.

[Z] Gonzilez-Ba3os, H.H. and J.C. Latamhe, “Naviga-
tion Strategies for Exploring Indoor Environments,”
to appear in Int. Journal of Robotics Research.

[3] Lacroix, S., P. Grandjean and M. Ghallab, “Per-
ception Planning for a Multi-Sensory Interpretation
Machine,” in Proc. IEEE Int. Conj on Robotics and
Autonlntion 1992.

[4] LaValle, S.M. et al, “Finding an Unpredictable Target
in a Workspace with Obstacles,” in Pmc. IEEE Int.
Conj on Robotics and Automation 1997.

[5] LaValle S.M. et 01, “Motion Strategies for Maintain-
ing Visibility of a Moving Target,” in Pmc. IEEE Int.
Con$ on Robotics and Automation 1997.

[6] Mumeta-Cid, R., H.H. Gonzdez-Ba3os and B. To-
var, “A Reactive Motion Planner to Maintain Visi-
bility of Unpredictable Targets,” in Proc. IEEE Int.
Con$ on Robotics and Automation 2002.

[7] Preparata, F.P. and M.I. Shamos, Computational Ge-
ometry: an Intmduction, Springer-Verlag New York,
1985.

[SI O’Rourke, J., A n Gallery Theorems and Algorithms,
Oxford University Press, 1987.

[9] Rohnert, H., “Shortest Paths in the Plane with Con-
vex Polygonal Obstacles,” Information Processing
Letters, 23:71-76, 1986.

[IO] Ross, S.M., Introduction to Probabiliry and Statistics
for Engineers and Scientists, Wiley, 1987.

[l l] S d e n t o , A., R. Murrieta and S.A. Hutchinson,
“A Strategy for Searching an Object with a Mobile
Robot,” accepted in Int. Conj on Advanced Robotics
2003.

[12] Shermer, T.C., “Recent Results in Art Galleries,”
Pmc. of the IEEE, Vol. 80, issue 9, September 1992.

[I31 Tovar, B., S.M. LaValle and R. Mumeta-Cid, “Op-
timal Navigation and Object Finding without Geo-
memc Maps or Localization,” accepted in IEEE Int.
Con$ on Robotics and Automation 2003.

[14] Vatti, B.R., “A Generic Solution to Polygon Clip-
ping,” Communications of the ACM, 35(7), pp.56-63,
July 1992.

