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Abstract— This paper presents a new robotic concept,
called SWARM-BOT, based on a swarm of autonomous mo-
bile robots with self-assembling capabilities. SWARM-BOT
takes advantage from collective and distributed approaches
to ensure robustness to failures and to hard environment
conditions in tasks such as navigation, search and trans-
portation in rough terrain. One SWARM-BOT is composed
of a number of simpler robots, called s-bots, physically
interconnected. The SWARM-BOT is provided with self-
assembling and self-reconfiguring capabilities whereby s-bots
can connect and disconnect forming large flexible structures.
This paper introduces the SWARM-BOT concept and de-
scribes its implementation from a mechatronic perspective.

. INTRODUCTION

Robust, al terrain, flexible operation is interesting in
applications like semi-automatic space exploration [17],
rescue [6] or underwater exploration [3]. Despite interna-
tional research effort in rover design [9], [17], [15], [4]
and self-reconfigurable robots (overview in [11], [18]),
the combination of flexibility, robustness and al-terrain
navigation, even if semi-autonomous, is till difficult to
achieve.

Biological systems, on the other hand, combine very
well these features and show interesting examples of
self-organizing structures able to deal with very different
complex tasks. Social insects, in particular, show ability
to self-organize in colonies which can solve problems
of navigation and transportation unfeasible for a single
individual [12]. This is the case of ants building bridges
between branches of a tree, building rafts to survive
inundations or bridges over rivers (see overview in [2]).

The goal of the SWARM-BOTS project? is to take inspi-
ration from ant self-assembling mechanisms and structures
and trandlate some features into a robotic system. The
project includes design, hardware implementation, test
and use of this type of self-assembling, self-organizing,
metamorphic robotic systems. An important part of the
project consists in the physical construction of at least
one SWARM-BOT, that is, a self-assembling and self-
organizing robot colony composed of a number (30-35) of
smaller devices, called s-bots, physically interconnected.

Lhttp://www.swarm- r

Fig. 1. One of the s-bot prototypes. The diameter of the main body is
116 mm. A SWARM-BOT is composed by a colony of approximately
30 s-bots.

The next section describes the SWARM-BOT concept,
showing the particular features of this system. Section
3 focuses on the prototype implementation, illustrating
design choices and original solutions. A conclusion is
given in the last section.

Il. SWARM-BOT CONCEPT

A SWARM-BOT entity is composed of many (2 to
35) single raobots (s-bots) physically interconnected. Each
s-bot is a fully autonomous mobile robot capable of
performing basic tasks such as autonomous navigation,
perception of the environment and grasping of objects. In
addition to these features, an s-bot is able to communicate
with other s-bots and physically connect to themin flexible
ways, thus forming a SWARM-BOT. The SWARM-BOT
is able to perform exploration, navigation and transport
of heavy objects in very rough terrain, where a single s-
bot has major problems to achieve the task. This hard-
ware structure is combined with a distributed adaptive
control architecture (general approach see [10], applied to
SWARM-BOT see [8]) inspired upon ant colony behaviors
[12]. Figure 2 shows some views of an s-bot prototype.
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Fig. 2. Top and bottom view of the s-bot prototype. The bottom view
shows the treels© drive mechanism rotating in respect to the main body.

A. Mohility

The mobility of the system is ensured by a combination
of tracks and wheels. We call this type of structure
Differential Treels© Drive?. Each side of the treels© (one
track and one wheel) is controlled by a motor so that
the s-bot can freely move in the environment and easily
rotate on the spot. This structure enable a very good
mobility thanks to the position of the wheel and their
diameter larger than the tracks height. The treels© driving
system alow each s-bot to move in moderately rough
terrain, with more complex situations being addressed
by SWARM-BOT configurations. This kind of modularity
and flexibility to pass large obstacles is very similar to
the one developed by self-reconfigurable robots [11]. The
main difference consists in the fact that the SWARM-BOT
has less 3D capabilities than self-reconfigurable robots,
an s-bot being able to lift only one s-bot. This aspect is
compensated by exploiting the mobility of each module,
which is not present in self-reconfigurable robots.

The treels© base can rotate with respect to the main
body by means of a motorized axis, as illustrated in
figure 2.

2Treels© comes from TRacks and WhEELS

Fig. 3. The front gripper is used to connect in a secure way to other
b-bots and form chains to pass large obstacles or holes (see video).

B. Interconnections

S-bots have two types of possible physical interconnec-
tions: rigid and semi-flexible.

Rigid connections (figure 3) between s-bots are imple-
mented by a gripper mounted on a horizontal active axis.
The gripper can connect to other s-bots on a T-shaped
ring around the main s-bot body. If not completely closed,
the connection leaves some degrees of freedom, which
are very important for positioning and physical interaction
between robots. If completely closed, the gripper ensures
arigid connection and can be used to lift other s-bots.

The shape of the gripper enables a very large acceptance
area necessary to securely grasp at any angle and lift (if
necessary) another s-bot. This is a very important aspect
for connections that take place in rough terrain between
autonomous robots. It has to be considered that intercon-
necting robots to build a self-assembling SWARM-BOT
is a very different action than interconnecting modules
in a self-reconfigurable robot. Self-reconfigurable robots
can compute the exact position of each module in order
to ensure precise positioning during interconnection [1].
This is not the case in self-assembling robots like the
SWARM-BOT where one needs freedom to connect at
severa angles and in less controlled situations. This fea-
ture overcomes the problem of precise position matching
that self-reconfigurable robots face.

Semi-flexible connections (figure 4) are implemented by
aflexible parallel® arm actuated by three motors positioned
at the point of attachment on the main body. The three
degrees of freedom allow the arm to extend, move laterally
and vertically. The arm ends with a gripper similar to the
one used for rigid connections. It connects on the same

3The term parallel applies to the structure of the arm. See [7] for
more details.
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Fig. 4. Lateral semi-flexible connections are used to keep relative
mobility between s-bots while they are in a SWARM-BOT configuration.
This flexible structure can help for instance to assist another s-bot in
unstable situations.

ring as the rigid connection.

Rigid and semi-flexible connections have complemen-
tary roles in the functioning of the SWARM-BOT. The
rigid connection is mainly used to form rigid chains
that have to pass large gaps or obstacles, as illustrated
in figure 3. The semi-flexible connection is adapted for
configurations where each robot can till have its own
mobility inside the structure. An example is illustrated in
figure 4. The SWARM-BOT can of course aso have mixed
configurations, including both rigid and semi-flexible con-
nections. This dual mode of connection is another main
characteristics of the SWARM-BOT concept in respect to
other self-reconfigurable robots [11].

Both the rigid and flexible grippers can also be used
to grasp objects, which is another main difference with
self-reconfigurable robots.

C. Sensors

Each s-bot is a fully autonomous mobile robot and is
equipped with al the sensors necessary for navigation,
such as a color omnidirectional camera, 16 lateral and
4 bottom infra-red proximity sensors, 24 light sensors,
a 3 axis accelerometer, two humidity sensors as well as
incremental encoders and torque sensors on each of the
nine degree of freedom. In addition to these basic features,
each robot is equipped with sensors and communication
devices to detect and communicate with other s-bots.
Typical devices implementing these features are again the
omnidirectional camera combined with 24 color LEDs all
around the raobot (inside the transparent T-shaped ring, to
express “state” of the robot) and in the grippers, 8 local
color detectors al around the body and inside the grippers
as well as one speaker and three microphones. Despite the
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Fig. 5. Electronics structure. Eleven processors share the management
of about 50 sensors and 9 actuators.

availability on the robot of a wireless LAN, images and
sound will be the only communication channels between
s-bots used in our experiments. Radio LAN will be used
exclusively for debugging and monitoring of experiments.

In addition to multiple perception modes implemented
by severa sensors, we made a careful differentiation
on range of perception. Research on collective insects
[5] shows that collective behaviors are often based on
multi-range and multi-modal sensing in order to perceive
and exchange signals at multiple levels and in severa
circumstances. For this reason, as well as for more prac-
tical reasons of interferences, infra-red proximity (active)
sensors have been limited to a very short range. Sound
covers a much longer range and the camera is used both
for long and short range sensing, depending on the features
extracted from the image.

Placing an autonomous robot as basic component for the
modular system is aradically different choice than in self-
reconfigurable robots, where the basic element includes
only one or two degrees of freedom and very few sensors.
This different choice is motivated by the clear goa of
distributed autonomous control in the SWARM-BOTS
project. In most self-reconfigurable robots the control is
implemented in a centralized way or by remote control
[11]. Only few groups working on self-reconfigurable
robots have presented experiments on distributed control
[16], [14].



Fig. 6. Man ARM board prototype running LINUX. The processor
can run at 400MHz, has 64M of RAM and 32M of FLASH, USB, I°C,
RS232 and two CompactFlash slots. The power consumption is 500mwW
a 100MHz and 700mW at 400MHz.

D. CPU and control electronics

The control strategy of the SWARM-BOT consists of
distributed agorithms based on local information and
simple self-organization rules inspired upon ant colony
behaviors. Although this type of control agorithm does
not need much computational power, the large number
of sensors and degrees of freedom requires fast pre-
processing and efficient control. The type of experiment
that will be conducted on this system, very similar to bio-
logical experiments, will also need very good monitoring
and collection of large quantity of data for software de-
velopment and experiment analysis. For all these reasons
the s-bots have been equipped with a network of eleven
processors (see figure 5), each of them responsible for a
sub-task in the system. The most powerful processor, an
ARM based processor running LINUX, isin charge of the
management of the system, of the processing of the most
complex sensors and of the communication with a base
station for monitoring purposes.

I11. S-BOT IMPLEMENTATION

As illustrated in figure 1, a prototype has been imple-
mented including all electronics parts excepted the ARM
main board and the connected camera and sound system,
which have been prototyped separately (see figure 6). This
sections describes aspects of the implementation that make
the s-bot suitable for swarm configurations and different
from existing robots.

A. Complex miniature mechanics

Each s-bot is composed of about 100 major parts (see
figure 7) and has nine degrees of freedom, most of them
equipped with position encoder and torque sensor.

Fig. 7. Mechanica structure. Each s-bot is composed by about 100
major parts.

The main issues addressed here are miniaturization
and complexity. Combined, these two factors generate a
very dense design, where each half millimeter is used
carefully. To correctly address this challenge we have
made extensive use of 3D CAD tools, as seen in figures
2 and 7. All details have been designed in 3D, included
critical components on the printed circuits. In parald to
CAD design, partial prototyping has been used to verify
critical parts or concepts, such as the parallel arm or some
aspects of the mechanical torque sensors. Continuous
interaction between CAD models and prototyping resulted



Fig. 8. Some examples of color ring configuration that can be used for
sub-symbolic communication among s-bots.

in the design of the first full prototype, which was working
perfectly two hours after the first final assembling.

The prototype, which includes most of the electronics,
weights only 660 grams. The integration of the main ARM
board, camera and sound system will add only some tens
of grams, the printed circuits and the connectors being
already included in the prototype. We should therefore
not exceed 750 grams, which is, for the complexity of the
system, very light. This result has been achieved using
mainly plastic parts, very thin printed boards and high-
efficiency miniature motors (15x16mm, 0.5W).

B. Distributed €lectronics

To control the mechanical system described above, each
s-bot needs an efficient electronics, described in figure 5.
All ten PIC processors and the related electronics have
been included inside the prototype. Only the ARM main
board, the video and sound system have been prototyped
separately. This last sub-system has the size of a credit
card and will be integrated on a printed board already
placed within the s-bot. All functionalities of the electron-
ics inside the prototype have been tested and work well.
The main elements of the ARM board have been tested
and LINUX is running on it.

From the architecture point of view, the system com-
plexity has been addressed using a multi-processor multi-
printed circuit structure. The whole electronics has been
distributed over 15 printed circuits placed al around in
the robot where they are necessary. Cables have been
minimized by using print-to-print connectors and having
only aserial busthat goeson al main printed circuits, each
of them hosting one or several processors. This structure
is very similar to the one found on the Khepera robot,
developed by Edoardo Franzi in collaboration with some
of the authors [13].

C. High computational power

The vision and sound sub-systems generate a large
amount of data that has to be processed in rea time.

Images are processed by color extraction, color position
detection and similar simple feature extractions to de-
tect robot states and allow sub-symbolic communication
among s-bots (figure 8) . Sound is used for simple com-
munication and source orientation extraction. The combi-
nation of image and sound processing needs therefore a
powerful, but very low power processor. We decided to
use the XScale processor from Intel running at 400MHz
and LINUX as operating system. The XScale processor
is equipped with 64M of RAM, 32M of FLASH, USB
master and slave interfaces, serial interface, 1°C bus and
two CompactFlash dlots. This provides low power con-
sumption (less than 1W) and very good flexibility, both
in the choice of extension devices (CompactFlash, USB)
and in the choice of programming tool. Figure 6 shows
the first XScale board prototype.

D. Autonomy in energy

Miniaturization, complex mechanics and powerful elec-
tronics impose strong constraints on energy consumption
and battery capacity. The s-bot design has been made
considering carefully power consumption and battery ca-
pacity. At the power consumption level we managed to
keep it low by using low power processors and electronics
tricks* to limit as much as possible power dissipation. The
resultsis a power consumption between 2.5 and 5 Watts in
standard operation, including the main ARM board. This
power consumption can be reduced putting the processors
in sleep mode when unused. The batteries, placed between
the two tracks, have a capacity of 10Wh, ensuring an
minimal autonomy of two hours. To achieve this capacity
in the small available space we use two Lithium-lon cells.

IV. CONCLUSION

This paper presents the SWARM-BOT concept and
its implementation in a very compact size. This concept
brings innovative elements to bio-inspired and collec-
tive robotics, opening new research directions in swarm
robotics, collective robotics and distributed intelligence.

Despite the similarity with self-reconfigurable robotics
due to the physical connection between s-bots, several key
aspects of the SWARM-BOTS approach have shown to be
complementary to self-reconfigurable robots. Particularly
different are the mobility of each SWARM-BOTS module
and their high autonomy, from the point of view of the
sensors and the computational power.

Future work will include redesign of the ARM main
board to be fitted inside the rabot, production of 35 s-bots
and experiments of adaptive algorithms in the SWARM-
BOT configuration.

4Two examples: the power supply voltage is adapted to the LED
voltage to reduce power dissipation, some LEDs are connected in series
to better exploit the direct battery voltage.
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