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Abstracf 

We describe a new paradigm for exploration of unknown 
spaces based on maximizing the understanding of 
obstacles rather than the exposure offree space. We look 
at the interaction beiween multiple sensor readings and 
how fhpy combine to resolve obstacles. Taking a nerf besf 
view approach, we generate an inverse sensor model that 
identifies regions in space where a new sensor reading 
has maximal uriliy with respect to increasing the 
resolution of that reading. Fusion of multiple models is 
exploited to generate regions of interest fhar direct 
exploration in such a way as to maximize the robots 
understanding of its space. These techniques are applied 
to a team of small robots called Millibots. 

1 Introduction 

In order to operate independently and effectively, a robot 
must be able to autonomously explore its own space. 
Autonomous exploration is a recursive process that 
utilizes the relationship between sensing and movement 
of the robots through a map. Features of the map such as 
polylines, frontiers, openings and edges are extracted and 
processed to direct the movements of the robot to further 
generate new information. Ultimately, the success of 
exploration depends on the quality of the coupling 
between sensing, map building and navigation. 

2 FreeSpace Approach 

Researchers have posed many variants to the exploration 
process [1][3][8][9]. Most are based on developing a 
global map and assessing the free-space of that map to 
generate plans for moving the robots. That is, robots are 
directed to new places in the map that will clear the most 
open area. A commonly employed technique is frontier 
exploration where the robot utilizes an occupancy map 
generated by fusing a collection of range readings 
obtained throughout motion. A threshold function is then 
applied to the occupancy map to separate the map into 
two classes - obstacles and frontiers. Points between 
open, explored space (low occupancy) and closed, 
explored space (high occupancy) represent the edges of 
obstacle. Regions between open explored space (low 
occupancy) and unexplored space represent frontier 
points. The collection of adjacent frontier points is 
dubbed a frontier. 

Yamauchi achieves exploration by selecting one of the 
existing eontiers and directs the robot towards it. In doing 
so, the frontier is expanded [9]. Simmons extends this 
notion to robot teams by developing an arbitration method 
for splitting frontiers among multiple members of a 
cooperating team to minimize search overlap [SI. 
Similarly, Burgard applies a cost metric for maximizing 
free space exposure for a team of robots 131. 

A team of small robots dubbed Millibots 
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Banos provides the first hint as to the importance of 
obstacles in the exploration process. He utilizes map 
information to define the contours of both free space and 
existing obstacles. He then guides his exploration in such 
a way as to maximize free space exposure while 
maintaining a minimum degree of contact with these 
obstacles for the purpose of localization [l]. However, 
this approach does little to ensure the quality of the 
definition of the obstacles being utilized and fails to 
improve that quality during exploration. 

The fundamental shortcoming of the free-space approach 
is that it fails to account for the importance of obstacle 
definition in the exploration process. First, obstacle 
definition is important in the navigation sense. In 
autonomous exploration, local features such as polylines, 
walls, doors and edges are derived from obstacles to 
generate the next actions of the robot. Consequently, if 
the representation of local obstacles is poor, any actions 
derived from that representation are equally flawed. 
Critical targets (with respect to a given mission) and even 
viable search areas may be missed during the exploration 
process due to choices based on poor map information. 
Second, robots are increasingly utilizing map features to 
correct for inherent errors in odometry. A robot can 
exploit the differences in position and orientation with 
respect to common references before and after local 
moves to correct for these errors. Such an approach 
depends on the'comparison between the extracted features 
before and after each move. If the obstacles are not 
defined well, the features are less discernable and the 
correlation is weaker. In the free-space approach, there is 
no emphasis on gaining a clear understanding of the 
obstacles that make up the world. Obstacle definition is 
oppottunistic and relies on the assumption that the robot 

will gain the necessary information as it moves. 

3 OeCupancyMaps 

A critical step to obstacle-based exploration is the ability 
to assess the current quality of the map representation and 
subsequently the ability to extract relevant features from 
it. That is, how much confidence can we place in the 
definition of the features extracted from the map. The 
most common map representation for robots utilizing 
range sensors is the occupancy map [5] .  The environment 
is divided into a grid of homogeneous cells where each 
cell represents the probability that the corresponding 
region in the world is occupied. Occupancy values range 
from zero to one. An occupancy value near zero 
corresponds to an open cell and indicates with highest 
probability that the corresponding region is free of any 
obstruction. An occupancy value near one indicates the 
opposite or that the region is occupied. When no previous 
knowledge is available the occupancy value of each grid 
is initialized at 0.5 (equally likely to be occupied or free). 

Given a range reading and its position in space, a sensor 
model is used to infer the occupancy of that region. In the 
case of sonar sensors, the sensor model takes on the shape 
of an arc with the distance to the end of the arc equal to 
the range value for that reading (Figure Ib). The area 
witbin the arc represents low probabilities of occupancy 
while readings near the outer edge of the arc represent 
high probabilities of occupancy. Areas outside the arc are 
not changed. Each time a range reading comes in, the 
model is applied and the occupancy map is updated. The 
occupancy map is updated by fusing the local sensor's 
notion of occupancy with the existing global notion of 
occupancy via a Bayesian update rule [SI. 

Figure 1: Specular Reflection 

(a) A sonar reading taken of an obstacle beyond range. It updates only the free spaee hypothesis. (b) A 
sensor reading from an adjacent obstacle. I t  updates both free space and the likely position of the obstacle 
(e) A sonar reading experiencing specular reflection. The map is updated as  if no.obstaele is present (d) 
Multiple readings build a global occupancy map (left). Dark areas represent obstacles. Light areas indicate 
free space. Specular reflection produced phantom frontiers that project beyond existing obstacles. 
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4 Occupancy Map and Specular Reneetion 

One major shortcoming of employing the occupancy map 
for exploration is specular reflection and its effect on the 
boundary definitions o f  the map. Specular reflection is a 
phenomenon where the energy being emitted by the 
sensor strikes an adjacent object but the incidence angle is 
sufficiently shallow that is causes the retum echo to be 
reflected away from the detector. Even though the 
obstacle is close, the sensor retums a maximum range 
reading erroneously indicating the space is open (Figure 
IC). Specular reflection has the adverse effect of sweeping 
out large areas of the map beyond adjacent obstacles. 
However, a similar case arises when there is no obstacle 
within range of the sensor. In this case, no obstacle is 
present so no echo is returned. Consequently, the sensor 
times out and returns a value indicating maximum range 
(Figure la). The sensor model is adjusted to update only 
the areas inside the arc and ignores its edges. Given the 
limited sensor range of most sensors and the potentially 
vast spaces of the environment, maximum range readings 
account for a large portion of the makeup of the map. 

Unfortunately, without additional information, it is 
impossible to disambiguate between range readings that 
derive from no reflection and those that are the result of 
specular reflection. While additional local sensor 
readings, taken from different poses, may resolve the 
closed space, it does nothing to resolve the erroneously 
reported open space. This can have significant 
implications when utilized in the free-space approach. 
Without some means for discriminating between the b o ,  
specular reflection can result in the generation of phantom 

I &r~~or model 

frontiers. Phantom frontiers are regions that extend 
beyond the sensed side of an obstacle and erroneously 
indicate viable frontiers of exploration (Figure Id). If a 
robot bases its exploration strategy on a map with 
phantom frontiers, it will generate ill-posed search 
solutions such as directing the robot around obstacles to 
regions that are ultimately inaccessible. Conversely, in an 
obstacle-based approach, exploration is conducted with 
respect to local obstacle definition. Therefore the robot is 
not guided by the generation of free space and does not 
suffer from the effects of specular reflection on the 
occupancy map. 

5 NextMView 

We seek a method that not only generates new 
information about the unexplored space of the map but 
also ensures an adequate level of quality of the 
representation o f  existing obstacles. To accomplish this, 
we take a next best view approach to sensing. That is, 
where can we take the next sensor readings as to improve 
the resolution of existing obstacles? The next best view 
(NBV) philosophy is not new to robotics. However, the 
majority of NBV approaches resides in the vision domain 
and is primarily based on assessing the geometric 
properties of occlusion [2][7]. Banos is one of the few to 
have applied the next best view approach to navigation. 
He chooses positions that seek to maximize exposure to 
free space while maintaining a minimum degree of 
contact with existing obstacles [I]. However, none o f  
these described techniques seek to improve the resolution 
of existing obstacles or takes into account for the 

Figure 2: Developing an Inverse Sensor Model 

(a) Geometric representation of sensnr occupancy model impinging on an obstacle at the origin. (b) Inverse 
sensor model developed by determining regions where a second measurement would be sufficiently separate 
in bearing from the first. Regions close to original bearing would be more coupled so are suppressed. 
Regions away from original bearing add greater independent information and are desirable. (c) The next 
hest view with respect to the current point can be found by choosing a reading inside the inverse sensor 
model. 
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interaction, between sensor and obstacle 

6 Inverse Sensor Model 

Our main contribution to this paper is the way we develop 
the next best view approach. We can be more efficient in 
our movement and sensing if we take advantage of the 
interaction between obstacles and sensors. In 
conventional map building, we are given a range reading 
and its position and utilize a sensor model to derive a 
notion of occupancy (Figure 2a). We apply this model for 
each cell in the occupancy map that the sonar model 
impinges. Then via an update rule, the derived occupancy 
from the sensor model is fused with the existing notion of 
occupancy in the map. Geometrically the occupancy 
model for a sonar sensor takes on the appearance of a 
wedge (Figure 2a). Points that lie inside the wedge are 
less in range than the reading and consequently low in 
probability of occupancy. Points that lie on the outer edge 
of the wedge indicate a high probability to occupancy. 
However, due to the poor angular resolution of sonar, 
there is an equally likely chance of an obstacle being 
present anywhere along the arc of the segment. 
Consequently, the ability for that occupancy cell to 
represent an underlying obstacle is reduced. 

However, with respect to resolving ability, we can turn 
this around to develop an inverse sensor model. We start 
with an existing obstacle point in the occupancy map and 
derive respective positions. where a new sensor reading 
would better resolve the underlying obstacle. We develop 
the parameters of the inverse model based on the effect of 
fusing together two (or more) sensor readings impinging 
on the same point. First, we define a metric for assessing 
the resolution ability of multiple sensor readings in an 
occupancy map as a function of separation in pose (Figure 
3). If we consider the readings to be conditionally 

independent, then the combined result is the product of 
the individual probabilities. We assert that the relationship 
between the geometrical overlap (common area) of two or 
more sensor models is directly related to the dependence 
in’ their readings with respect to defining that point. In 
terms of resolution ability, the tighter the combined 
distribution (or overlap in distribution), the better the 
definition of that point in space with respect to the 
underlying obstacle. For example, Figure 3b shows the 
definition of a point developed from fusing two sensor 
readings. When the overlap is large (small separation 
angle), the distribution of the fusion is widely distributed. 
As a result, the resolution of the underlying point is poor. 
Conversely, when the-overlap is small (large separation 
angle), the distribution is tight. The result of a tight 
distribution is that the resolution of the point is higher. 
Figure 3c shows a plot of the overlap of two sonar 
readings as a function of separation angle. In this test, one 
sensor reading is fixed while the other is rotated about the 
point under test (Figure 3a). The combined distribution of 
two sensor readings is measured via a Monte Carlo 
method and counts only points above the obstacle 
threshold used in feature extraction. For sonar sensors, the 
overlap is greatest at 0 degrees and quickly falls off after 
15 degrees. Consequently, we assign a higher utility to 
readings that come from bearings that exceed I5  degrees. 

Choset reaches a similar conclusion in developing the 
Arc-Transversal Median (ATM) algorithm [4]. In this 
work, Choset describes a robust method for indicating the 
location of an obstacle by looking at the intersecting 
points of adjacent sonar arcs. He makes this method 
robust by only considering readings that “stably” 
intersect. A stable intersection is a pair of readings whose 
intersection does not significantly change with small 
perturbations in either of the readings. The ATh4 work 
derives a critical intersection angle of 30 degrees. The 

I I I I 
Figure 3: Assessing Pose Separation 

(a) A separation test is conducted by looking a t  the fusion of two sonar readings impinging on the same 
point. One reading is fixed; the other is rotated about the point under test. (b) The resulting obstacle 
definition of a point from two overlapping sensors, one at  10 degrees, the other at 90. (c) A plot of the 
overlap of distributions between the two sensor arcs as a function of angle. The overlap is greatest a t  0 
degrees and quickly falls of after 15 deg. 
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derivation is based on evaluating the increase in effective 
azimuth resolution for a sonar sensor. These results are 
consistent with our work. 

update of the map tractable. Our future work will examine 
the optimum coverage of the model. Furthermore, it 
recognizes the limitations in pose separation imposed by 

Frontier Expmsion 

However, our work goes beyond developing a critical 
angle. We expose the sensitivity of dependence as a 
function of angle. For example, OUT tests show the utility 
of pose separation for readings that are separated by 30 
degrees is on the same order as poses separated by 90 
degrees. Furthermore, whereas we currently only exploit 
the critical angle, work is underway to develop a 
continuous utility function that better captures the 
dependence on angle. 

Utilizing this relationship, we develop an inverse sensor 
model that is composed of three regions (Figure 2b). The 
region along the same bearing as the original reading 
represents measurements that would be strongly coupled 
to each other. As such, this region hamegative utility and 
make up the suppression part of the model. Given a 
choice, we would not take new readings in this area. 
Regions to either side that differ in bearing from the 
original are more independent in terms of uniquely 
defming an obstacle. These regions have a positive utility 
and make up the separability part of the model. New 
sensor readings from these areas are desirable. Together, 
these two readings define the inverse sensor model that 
represents the next best view with respect to increasing 
the resolution of that obstacle point (Figure 2c). 

Merginghladels 

the incident angle of specular reflection. Third, since the 
same inverse model applies equally to all the obstacle 
points for each sensor reading, we can reduce the 
calculations by defining a composite, inverse sensor 
model that batch processes all the corresponding cells for 
a given sensor reading (Figure 4b). 

7 Regions of Interest 

The inverse sensor model defines a next best view 
methodology for defining optimum places for new sensor 
readings with respect to individual readings. However, we 
can extend this methodology to generate a composite map 
that represents the overall utility for moving the robot to 
new positions with respect to map resolution. We take 
multiple inverse sensor models and fuse them together in 
much the same fashion as the occupancy map (Figure 4b). 
The result of this fusion is the development of a Regions 
of Merest map (Figure 4c). Areas where multiple 
separability regions of individual sensor models overlap 
have a higher utility than areas derived from a single 
occurrence. The result of fusion produces regions of 
interest that are not only on the frontiers of exploration 
but are also designed to improve local obstacle definition 
in the process. 

We can see the utility of this approach if we compare the In practice, we make a few adjustments to the model. 
we limit the range Of the Inode] to equal the range Of exploration potential against an instance of the free space 

approach. The standard free-space approach is based on 
extracting frontiers from an occupancy map by evaluating 

the sensor. Second, we limit the width Of the 
model to be On the Order Of 90 degrees On either 

side. Limiting the angular range of the model makes the 

Regions of,Interest 

Figure 4: Developing an Inverse Sensor Model 

(a) The standard method for exploration is based on extracting frontiers from an occupancy map (boundary 
between open and unexplored). Specular reflection erroneously exposes regions beyond local obstacles. In 
this case, there is essentially one frontier that extends around the entire parameter of the map. @) Multiple 
inverse sensor models can be fused together in much the same fashion as an occupancy map to build higher 
utility for measurement. (e) Merging multiple regions of interest into a common map provide an alternate 
means for generating exploration plans. Unexplored regions are gray. Light areas are open space. Dark 
regions are regions of interest. The darker the value, the more utility it has for resolving local obstacles. 
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boundaries between open and unexplored space. 
However, the effects of specular reflection generate 
phantom frontiers that can erroneously expose large 
regions beyond local obstacles. The result of this 
experiment was severe enough to produce a single frontier 
that extends around the entire parameter of the map as 
several phantom frontiers overlap (Figure 4a). From a 
navigation perspective, this hulk frontier does little to 
guide the robot. Certainly given such a large frontier, the 
robot could simply select the closest part of the frontier 
and move towards it. However, since the frontier is 
actually based on false readings, this is not an effective 
means for navigation. 

Conversely, the same sensor readings where utilized to 
generate the Regions of Interest map in Figure 4c. Again, 
the map was produced by merging each of the individual 
inverse sensor models into a global map. Regions in white 
indicate low utility for new sensing. Regions in black 
have a higher utility for new sensing and indicate the best 
regions to explore. In this case, guiding the robot towards 
the regions of interest produces a more efficient plan for 
exploration that is not susceptible to the effects of 
specular reflection. 

8 Exploration and Future work 

Currently we adopt a simple method for generating the 
next best view for the robot based on the Regions of 
Interest map. We attempt to find the closest region of 
interest with the highest utility for sensing. Utilizing the 
pose map, we generate a number of random exploration 
positions about the robot and keep only those that fall in a 
region of interest. From there, we select the closest region 
of interest and plan a path through the occupancy map to 
guide the robot. 

Given the metrics developed for the inverse sensor model 
that indicate the utility of sensing from a new position, we 
are working on developing a recursive, maximum 
likelihood estimator for exploration. We hope to develop 
a system that optimizes on both sensing and movement 
during exploration. Our goal is to execute the most 
efficient plan that minimizes the movement and sensing 
of the robots while maximizing their impact. This is 
essential for our work. We are targeting our research 
towards a team of small, heterogeneous, resource-limited 
robots called Millibots [6]. Small robots by their very 
nature are more limited in sensing, processing and 
mobility. As such, efticient and effective exploration is a 
key to their success. 

9 Conclusion 

In this paper we have presented a new approach to 
exploration based on the perspective of the obstacles that 

make up the world. To support this approach, we have 
developed a means for measuring the quality of a robot’s 
map with respect to obstacle resolution by assessing the 
degree of pose separation of the readings used to define 
that cell. We have applied this information to build an 
inverse sensor model that identifies regions in space 
where a new sensor reading has maximal utility with 
respect to increasing the resolution of that reading. We 
exploited the fusion of multiple models to generate a 
Regions of Interest map that direct exploration in such a 
way as to maximize the robots understanding of the entire 
space. 
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