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Abstract— This paper presents a first detailed case study
of collaborative exploration of a substantial environment.We
use a pair of cooperating robots to test multi-robot envi-
ronment mapping algorithms based on triangulation of free
space (see video). The robots observe one another using a
robot tracking sensor based on laser range sensing (LIDAR).
The environment mapping itself is accomplished using sonar
sensing. The results of this mapping are compared to
those obtained using scanning laser range sensing and the
scan matching algorithm. We show that with appropriate
outlier rejection policies, the sonar-based map obtained using
collaborative localization can be as good or, in fact, better
than that obtained using what is typically considered to be
a superior sensing technology.

I. INTRODUCTION

Fig. 1. The two robots exploring a laboratory. In the lower-left one
robot carries a three plane target, on the upper-right a second robot is

mapping.

In this paper we will present a case study that illus-
trates the particular trade-offs necessary to achieve both
acceptable speed and good accuracy in the context of
collaborative exploration [13]. Specifically, we provide de-
tailed specifications of how collaborative implementation
can be carried out in practice and we compare the results
from laser-based scan matching to those from sonar-based
mapping with collaborative exploration. In prior work we
have defined collaborative exploration and associated al-
gorithms in which a team of two or more robots coordinate
their motion through a potentially unknown environment
to jointly estimate one another’s position and, in so doing,
estimate the layout in the environment of any spatial

parameter of interest. This prior work has dealt, primarily,
with the theoretical properties of the methods as opposed
to actual performance issues.

The key to collaborative exploration, as we define it,
is to have at least one *“tracker” sensor that allows a
robot to estimate the positions of other robots in the
team. This allows inter-robot sensing to compensate for
arbitrarily large odometry errors, as well as presenting
other advantages [13], [15]. Our specific strategy for
collaborative exploration as applied to a pair of robots
is to have them take turns moving so that at any time
one is stationary and can act as a fixed reference point.
In this paper we consider the experimental validation
of collaborative exploration, statistically robust modeling
of error and map synthesis using (otherwise) uncertain
sensing.

We estimate the positions of the robots using a particle
filter that combines an open-loop estimate of odometry er-
ror with sensor data collected from the tracker, a LIDAR-
based laser range finder on one robot and a three-plane
target mounted on top of the second robot (alternative
implementations have been used in prior work). Figure 1
shows the two robots during the exploration of a labora-
tory. The three-plane target is visible from any orientation
as can be seen in Figures 2 and 6 where the sensor data
from the laser range finder are recorded over time. Parts of
the walls are also mapped by the laser and provide ground
truth for the cooperative exploration.
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Fig. 2. The trajectories of the two robots with the laser data also marked.
Note the target pattern detected.




A. Background

As noted above, we use the collaborative-exploration-
based triangulation algorithm developed earlier to build a
map [14], [13]. To very briefly recapitulate the principle
of this approach, the robots follow the walls of the
environment while maintaining visual contact with one
another. The wall following robustly traces the environ-
ment boundaries, while the line of visual contact between
the robots both facilitates localization and also assures
no (opaque) obstacles fail to be detected, no matter how
good their camouflage (or how bad sensors are). In this
algorithm, the robots take turns exploring an environment,
such that one remains stationary while the other moves.
When a reflex vertex is encountered (i.e. a vertex that
hides one robot from the other), the moving robot backs
up until the line of sight is reestablished, and then the
previously stationary robot starts following the wall it is
beside. This algorithm is assured to produce a complete
map of the environment with a triangulation of free space
as well as a dual graph of the triangulation that can be
used for subsequent tasks such as path planning. The
pose estimate during exploration is maintained using a
particle filter (described in detail elsewhere [12]), a Monte-
Carlo Simulation technique [2], that has gained popularity
recently under different names in different fields. The
technique we use was introduced as patrticle filtering by
Gordonet al. [5]. In mobile robotics particle filtering has
been applied successfully by different groups [1], [8],
[17] as an alternative to the traditional Kalman Filter
estimator [16]. Many other researchers have employed
different methods to combine information from multiple
robots in order to improve positional accuracy [9], [7], [4].

B. Wall Following and Mapping

The utility of surface following is often underestimated;
its successful achievement is important to the success of
this approach. As such, we will discuss its implementation
in uncharacteristic detail. When the line of sight between
the two robots is uninterrupted, the moving robot explores
the environment one triangle at a time by following the
closest wall from one corner (end point) to the other. In
our implementation of the algorithm the robots follow the
walls at a distancé\ using a sonar range finder in order
to sense the wall. Lines are fit to the sonar points using
recursive split and merge fitting [3], [11], and then the
newly sensed lines are merged with the existing map.

An outline of the mapping procedure follows. We
presuppose that the environment is a polygon (within some
linearization error). The robot follows each wall so long
as it remains straight (see Figure 3a, robots drawn with

dashed lines represent past positions) and the robot has

not moved past its end (the robot’s position projects within
the line segment of the wall). If a new wall is detected
at distance less thad = 60cm (see Figure 3b) then a
non-reflex vertex must have been reached and the old wall
has been fully mapped.

If the closest wall is unchanged but the robot has moved
past the end of it (see Figure 3c) then this indicates that the
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Fig. 3. lllustration of the wall following behavior, where the robot is
shown by a circle and its past position is shown by a dashed circle.
(a) So long as only one wall is visible, follow it at a nominal 60cm
distance. (b) When new wall is discovered approach it until it is closer
than the one being followed. If it is connected by a non-reflex vertex (an
angle under 180 degrees) map the corner and continue the exploration
of the new wall. (c) If the wall being followed ends, it must be a reflex
vertex (as we assume the world is composed of bounded objects); find
the adjacent wall as in (d). (d) Map the reflex vertex by moving around
the end-point of the old closest wall. Move by interval9adt a distance
less than 60cm and more than 30cm from the end-point.

robot has reached a reflex vertex. In order to map the reflex
corner the following procedure is used (see Figure 3d).
The robot moves in a circular path at a distafice 0.75A
from the end point of the closest wall until it finds a new
closest wall. The circular motion is done in steps defined
by an anglé, see Figure 3d (in the current implementation
# = 15°). The old closest wall becomes fully mapped
and then, if the reflex vertex does not interrupt the line of
visual contact between the two robots, the moving robot
continues the exploration by mapping the new closest wall.
Otherwise the line of visual contact is interrupted and the
robots follow the triangulation algorithrh.

One limitation of the wall-following algorithm is the
mapping of small walls; especially when the robot goes
around a reflex corner, the adjacent walls should be
minimum 50cm long. This limitation results from our
choice of A (set distance between robot and wall).

Il. EXPERIMENTAL RESULTS
The exploration algorithm used for the mapping of an
indoor environment is based on the triangulation of free
space by two robots. The line of visual contact is used
to “sweep” the space; in other words, if the two robots

1The complete description of the algorithm is outside the scope of this
paper (please refer to previous work[14], [13]).
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Fig. 4. (a) The cc()%?oerative localization estimates (+) versus trgg)trajectory resulting from the motion comman&%) (*) given to robot RO during the

exploration. (b) The same for robot R1. (c) The triangulation map produced using only the sonar for mapping. The trajectory of Robot 0 is marked in

magenta and the trajectory of Robot 1 is marked black. The walls are displayed in red and their lengths (in cm) is marked next to them. The internal
diagonals that define the triangulation are marked as dashed lines (shown as blue on color renditions).
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Fig. 5. The two robots exploring a convex area. Both sub-figures show a composite representation of the succession of particle clouds modeled along
the course of the trajectory. Note that the height of each peak represents accuracy (high peak more accurate estimate) (a) The trajectory gf Robot 0. (b

The trajectory of Robot 1.

can observe each other then the space in between them Figure 5 presents experimental results from an indoor

is empty. When one robot is stationary at a corner of

the environment and the other robot moves along a wall
(without losing visual contact) then a triangle of free space

is mapped. By constructing an on-line triangulation of the

free space the two robots map the environment completely
without any overlaps. Figure 1 presents the two robots at
the early stages of the exploration.

The positional error is maintained low throughout the
exploration by the use of cooperative localization. Figure
4a,b presents the pose estimates during the exploration
when cooperative localization was used (marked as green
“+” 2) together with the position of the robot estimated
using the recorded motion commands (marked as blue
“*7); the map of the environment is drawn in red. The
left figure presents the trajectory of Robot 0 and the
right figure presents the trajectory of Robot 1. Even
though the actual trajectory of each robot was kept in
an almost straight line and closely corresponds with the
cooperative localization estimates, the motmmmands
show a systematic bias (illustrated with ‘blue *” in Figure
4a,b). The observed drift corresponds to the odometry
error during the exploration.

2We include the colour for the readers of colour reproductions of this
paper

environment in the corridors of our building using two
SuperScout mobile robots from Nomadic Technologies,
Inc. The probability density functiorpdf) of the pose of
each robot is plotted for the entire trajectory. At each step
the set of particles has been spatially integrated and then
added to the plot (the higher the peak the more accurate
the pose estimate). Figure 5a presents the trajectory of
Robot 0 which is equipped with the laser range finder.
Robot 1 is equipped with the three-plane target. The
robot’s posepdf can be seen in Figure 5b. The final map
is presented in Figure 4c.

A. Sonar vs Laser

In this section we discuss the strengths and weaknesses
of the two sensors used (sonar and laser range finders)
and how they affected the resulting map.

The laser range finder was used during the exploration
only for tracking the other robot; thus the map produced
from the triangulation algorithm is constructed solely
by the sonar sensor data calculated using the corrected
poses of the two robots. To further validate our approach,
the laser data were collected and processed off-line and
compared with the resulting map from the sonar data of
the wall following in the triangulation algorithm. We fused
the recorded laser data using the scan matching algorithm



of Lu and Milios, a technique based on least-squared min-
imization of the distance among all observations aligned
based on robot motions [10]. The scan matching was
accomplished using Gutmann’s Scanstudio [6] implemen-
tation. Figure 6a presents the laser data that were observed
and Figure 6b presents the same data after scan matching.

Figure 6 also illustrates a weakness of the laser sensor:
the robot observes inconsistent object locations, even after
the alignment of scans. In particular, the upper wall on
the corridor appears to have a (fictitious) opening in it
(see section lll for further discussion). Because the laser
range finder senses in a plane parallel to the wheels, in
a perfectly flat terrain it would map all the obstacles at
its height. It practice, even office floors are not perfectly
flat and measurements out of the horizontal plane are a
serious issue, especially for distant objects.

A weakness of the sonar sensor can be seen in Figure
7. The sonar data used for wall following were collected
during the exploration. Figure 7 presents the sonar points
(in blue): the left column presents the data gathered by
Robot 0 while the right column presents the data gathered
by Robot 1; the trajectories of the two robots are marked
in red, and the positions from where the sonar scans were
taken are marked with “*”. During the exploration the
robots follow the walls at distancA = 60cm. Figures
7a,b and 7c,d present the sonar points detected in less
than65c¢m and120cm respectively. Figure 7c¢,d is the data
actually used during the exploration. As we saw in section

]

""-'%’"i'z“«f(fee«a&a'«,%
==
5y

e

(b)

Fig. 6. (a) The laser data collected during the exploration. (b) Map

obtained after correcting data using scan matching. In both cases,
compare the data from this “almost ideal” sensor to that obtained using
sonar (Fig. 4c).

B. Map Quality
The resulting map of the exploration can be seen in

I-B, the sonar points are fit with line segments and then Figure 4c. The trajectory of Robot 0 is marked in magenta
the lines are merged together; Figure 7c,d show that the and the trajectory of Robot 1 is marked black. The walls
sonar data filtered at20cm are aligned with the walls.  are displayed in red and their length (in cm) is indicated.
Figures 7e,f and 7g,h present the sonar scans filtered at The internal diagonals that define the triangulation are

250cm and 400cm.

Clearly, the sonar data obtained are very noisy and, if
the robots believed the occupancy of space from them,
navigation would be impossible. It is worth noting some
straight lines formed inside open space (see Figure 7Q).

marked as blue dashed lines. Moreover the lengths of
the walls were measured manually (by measuring tape)
and the results are presented in table | together with
the estimated length from the triangulation map and the
difference between the two measurements. The mean error

Such lines correspond to small anomalies on the floor at \was 4.6¢m per wall. The perimeter of the environment

the borders of the tiles in our laboratory (see Figure 1 for
the appearance of the floors). As can be seen in Figures
7a-d there is virtually no distortion of the data. Such
distortions are common on sonar maps due to accumulated
odometry error. Due to our cooperative localization ap-
proach which maintains an accurate position for the robots
such distortions are eliminated.

Finally, Figure 4c presents the map created by the multi-
robot triangulation algorithm using only sonar data to
measure the walls. Most significantly the map obtained
from cooperative localization and sonar sensing has cor-

mapped was measured 48.71m while the perimeter of
the resulting map wa$2.63m. The angle of the two walls
of the upper right corner was measure®8& and the map
estimate i97°.

[1l. DiIScussiON ANDCONCLUSIONS
In this paper we demonstrated the practical feasibility of
collaborative exploration in mapping an unknown environ-
ment. The practical realization of this theoretical algorithm
involved several design choices upon which its feasibility
depended. These include the mechanism for wall follow-

rect measurements that are as good as those from the scaning, the use of a heuristic wall-synthesis mechanism and

matching with laser data, but with fewer discrepancies
and outliers. This is illustrated in the maps of Figures
6b and 4c, in which the non-outlier data is consistent.
Of course, the tracker sensor used for the collaborative
mapping is based on the same LIDAR sensor used to
obtain the scan matching data, but, as noted earlier (and

an outlier rejection policy. Statistical estimation of the
robot pose using particle filtering (described in [12]) was
also an important ingredient.

The experimental results verify the improvement in the
map accuracy over what could be obtained without coop-
erative localization. Areas af3m x 5m and12m x 9m

demonstrated in prior work) this is just one of many were mapped completely, with a mean error less tam.

possible implementations of the tracker.

The perimeters of the environments mapped were of the



Sonar from Robot 0 (range less than 65cm)

Sonar from Robot 1 (range less than 65cm)
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Sonar data collected from Robot 0 (on the left) and Robot 1 (on the right), filtered at different ranges: (a,b) 65cm; (c,d) 120cm; (e,f) 250cm;

(g,h) 400cm. The sonar points are marked blue (color reproductions) and the path of the robot is marked red.




Manual | Map | Error || Manual | Map | Error
588 | 577.5 0.5 179 | 178.0 1.0
305 | 296.5 8.5 341 | 3334 7.6
99 96.0 3.0 545 | 548.0 3.0
102 | 102.6 0.6 343 | 343.5 0.5
410 | 403.1 6.9 241 | 249.9 8.9

99 | 1144 | 154 432 | 4279 4.1 [1]
419 | 419.7 0.7 168 | 173.0 5.0

TABLE |

(2]

THE LENGTH OF THE WALLS MEASURED WITH TAPE AND FROM THE
TRIANGULATION MAP (FIRST TWO COLUMNS TOGETHER WITH THE
ERROR(THE UNIT IS CM). SEE FIGURE 4C FOR THE
CORRESPONDENCE BETWEEN WALLS AND LENGTHS

(3]
(4]

(5]
order of42 —44m. These results demonstrate the practical
feasibility of the algorithms used, and illustrate some of g
the performance characteristics that had been predicted.

In these experiments a general-purpose laser-based sen-
sor was used, but in an application context a special pur-
pose laser-based tracker could be made substantially more
economically. Further, several alternative implementations
of the tracker are possible using vision, “active” sonar or
other technologies. The insight is that the collaborative
approach allows robustness and accuracy to be focused (9]
on the design of a suitable tracker, which is a con-
strained measurement problem between two controllable [10]
environment-independent devices, as opposed to having to
design a robust and accurate sensor for arbitrary environ- [17)
mental structures and surface properties.

The laser sensor was valuable as part of the robot
tracker sensor but, since it has a planar scanning sensor,
it was not possible to utilize it at its full range because
of the floor inclination and, perhaps, the conjecture that
the robot itself was not perfectly level. During one series
of experiments the target was not detected at a distance
of 7m. Moreover, the laser range finder would miss any
obstacle above or below the scanning plane and thus [14]
has limitations when used alone for navigation. While
true volume scanning would be attractive, it remains a
prohibitive option for many applications. To compensate
for the shortcomings of the laser sensor, a hybrid system
of vision and laser could be used to first locate the other
robot, after which the laser sensor would be used to
accurately estimate the pose.

The most striking result of this study was the obser-
vation that the map constructed from sonar data in the
context of collaborative exploration was not only highly
accurate, but was apparently even better and more useful
than a map of the same environment obtained from laser
range (LIDAR) data and scan matching. The above ob-

(7]

(8]

(18]

[16]

[17]

] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige.

servation does not mean that the laser data is particularly
errorful, but rather that we fully utilized the strengths of
sonar and laser sensors while we used each sensor to com-
pensate for the weaknesses of the other. These experiments
demonstrate that cooperative localization via laser robot
tracker allows for dense accurate pose estimation while
sonar sensing in close proximity to obstacle boundaries
along with a very conservative outlier rejection policy
provides a highly robust sensing methodology.
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