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Abstract— In multi-agent systems engaged in cooperative
activities there is an apparent trade-off between the complex-
ity of the individual agents, their sensing capabilities and
communication required for accomplishment of particular
tasks. One of the main computationally intensive components
which affects the complexity of the overall system is the
acquisition and maintenance of the environment model where
the agents reside. In this paper, in the context of foraging and
coordinated traversal task, we will examine control strategies
that in the absence of the global model of the environment
can substantially improve the performance of the team using
additional sensing and communication capabilities. In one
case the coordinated strategy is motivated by an ant trail
following behavior while in another case the line of sight
information is used to constrain the movement of individual
agents guaranteeing shorter total traversal times.

I. I NTRODUCTION

The area of multi-agent robotic systems has been con-
sidered in recent years as a suitable platform for studying
design and analysis issues of distributed hybrid systems.
The applications varied in the type of environment con-
sidered, level of coordination between the agents as well
as complexity of the overall system. At the one end of the
spectrum, the researchers considered complex, typically
hierarchical, architectures, where the higher level planner
maintained the consistent model of the environment and
was responsible for determining higher level goals and
coordination strategies of individual agents [10]. On the
other hand, it has been demonstrated that a variety of
simple robotic tasks can be accomplished in a purely
distributed manner by using only local communication
and sensing and invoking appropriate feedback strategies
in different stages of the task completion. Within these
behavior based approaches, the (emergent) global qualita-
tive behavior was achieved through interactions between
individual agents and the environment. In the context
of multi-agent systems this approach has been applied
successfully to tasks such as dispersion, flocking, foraging,
and coverage [11], [2]. More quantitative statements about
properties and correctness of global strategies emerging
from local interactions have been given in [6], [3]. The
control laws of individual agents were designed to follow
a particular possibly time-varying vector field, computed
as a gradient of an appropriate potential function [2].
The use of potential functions for either global or local

navigation in dynamic and complex environments often
results in the failure to reach the desired destination, due
to the presence of local minima. In such cases either
random walk methods were used to escape from local
minima or global planner was used to select an alterna-
tive waypoint [13]. Global replanning however requires a
model of the particular environment and hence additional
computational overhead. In multi-agent systems maintain-
ing the consistent model of the environment is typically
accomplished in a centralized or distributed manner. In
both cases it requires additional communication overhead
either between individual agents and higher level planner
or among agents themselves. From the perspective of en-
vironment modelling, we will demonstrate two strategies
that in the presence of limited local information about
the environment substantially improve the performance
of multi-agent teams without a need for centralized co-
ordination unit or additional communication overhead.
With the advent of new technologies, such as mobile
sensor networks, the design of coordination strategies
which are of low computational/communication cost is of
importance [14].

The first strategy is examined in the context of the
foraging task and is motivated by an ant trail following
behavior. In the second, coordinated traversal task, we will
propose an alternative strategy where the lack of the global
view of the environment is complemented by coordination
between individual members of the team exploiting the
line of sight information. In the rest of the paper we will
describe the two tasks considered, and report the results of
simulations, which demonstrate the improvements in the
performance of the team.

II. FORAGING TASK

In the foraging task the team of mobile agents is tasked
to search the environment for resources and deliver them
to the home base. In the absence of the environment model
and the computational resources to build one and main-
tain it, individual agents typically resort to random walk
strategies. Our approach is motivated by strategies used
in biological systems whereby the collective behavior of
multiple unsophisticated agents interacting with their local
environment exhibits problem-solving capabilities. Using
this approach, certain types of problems can be solved



without the need for centralized control or a global model.
In the natural world, an ant colony must employ some
intelligent way to gather the resources so it can survive.
Simply wandering around looking for the resources is not
likely to lead to the long-term survival of the colony. One
of the methods that ant colonies use to improve on this
approach is to use the pheromone trail [1]. After an ant
locates a resource, it takes a piece of the resource and
delivers it back to the nest, emitting pheromones as it
goes. By doing so, it creates a pheromone trail between
the resource location and the nest. Other ants can sense
the pheromones and therefore be attracted to the trails,
and hence can discover the resources more efficiently.

The ant trail analogy as well as pheromones properties
have been exploited previously in the context traversal
problems in the discrete setting, where the environment
is represented as a graph. In [9] the authors demon-
strated that multi-robot exploration formulated as a graph
traversal can be successfully accomplished by a team of
agents despite the global knowledge of the graph. The
ant-inspired problem solving strategies have also been
analyzed theoretically using real-time heuristic search
methods and implemented on actual robots engaged in
traversal and coverage tasks [7]. Using the same compu-
tational paradigm, the so-called virtual pheromones were
introduced, where the actual sensing was replaced by
communication in the limited range [15]. Employing the
trail-following strategies in the foraging task requires to
resolve additional issues to make them effective.

We show how to incorporate the pheromones trails in
distributed foraging task and demonstrate that the trail
following behavior substantially improves the performance
and the survival of the ant colony. The Java Teambots [8]
simulator has been used to implement the simulation
environment (see Figure 3). We are currently extending the
simulator with an interface for visualizing the pheromone
trails. The Teambots simulator adopts the schema based
approach [2] for representing tasks of the individual agents
modelled in terms of finite state machines (FSM). Within
each state of FSM particular reactive feedback strategy is
applied and the transition between the states are triggered
by events, which typically correspond to a completion of
a strategy or an externally observed event.
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Fig. 1. Finite State Machine representing the Forage task.

The FSM for the foraging task as used in the Teambots
Simulator is in Figure 1. The agent in theExplore state

is engaged in random exploration strategy while avoiding
the obstacles and other agents. Upon encountering the re-
source the transition to theAcquire state is made and the
resource is taken. The resource acquisition is followed by
the delivery (stateDeliver ) of the resource to the home
base and continued search for the resources. InExplore
andDeliver states of the FSM, the navigation strategy
of each agent is governed by a commonly used control
law

U(x, t) = Ua(x, t)+Ur(x, t)

ẋg = −kg
∇U(x, t)

‖∇U(x, t)‖ , (1)

whereUa and Ur are the attractive and repulsive com-
ponents of the vector field,kg ∈ R and x = [x,y]T is
the current pose of the robot. Various choices ofU(x, t)
have been discussed previously in [16], [17], [18]. The
main modification we propose here is to augment the
exploration strategyExplore with a partial local model
of the environment, which can be sensed by the individual
agents. When the agent acquires the resource it lays down
a trail of pheromones as the food is delivered to the goal.
The pheromone trail can be sensed by other agents and
will affect their behavior in the exploration stage. The
presence of pheromone trail will cause an adjustment
of the robots heading to account for the pheromone
attraction.

A. Representation of the Pheromone Trails

For the purpose of simulation a global pheromone map
is maintained in terms of a discrete grid. Each location
in the pheromone map contains a value representing the
strength of the pheromone trail at that location in the real
world. An ant robot is only affected by the pheromone
trails if it is in the Explore state. The pheromone trail
attraction vectorup is used to adjust the heading and the
speed of the agent

ẋp = kpup.

The computation of the vectorup depends on the type of
function used to update the pheromone level. The direction
and magnitude of the attraction vectorup is computed
either as a linear combination of the directions of nearest
pheromones lying within the certain radius of agent, scaled
by the magnitude of the pheromone level or the direction
of the maximal pheromone level. Since the pheromone
map is represented as a grid, the nearest neighbors are
searched in the 8-neighborhood of agent’s location (in
directions N, NE, E etc.) depicted in Figure 2. Further
more we assume that the agent at each instance knows
what is the heading direction to the home base with
location xn = [xn,yn]T , denoted by unit vectorun. The
trail attraction is taken into effect only when the attraction
vectorup is pointing away from the nest. In such case the



inner product between theun and the attraction vectorup

satisfies following relationship(
ẋp

‖ẋp‖
)T (

x−xn

‖x−xn‖
)

< 0,

in another words the angleθ between the two vec-
tors θ ∈ (π

2 , 3π
2 ). This is especially important once sev-

eral pheromone trails have been laid down because
the strongest concentration of pheromones will be right
around the nest where all of the trails converge. If this
provision is not made, robots will congregate around
the nest. This condition also prevents the agent from
following the old pheromone trails, which lead towards
the depleted resource. The pheromone level is increased

Fig. 2. Pheromone Trail Attraction Computation.

only when the agent is laying down the trail while going
towards the home base and carrying the resource. We
have investigated two different methods for depositing the
pheromones, which yield similar performance. In one case
the grid location corresponding to the present discretized
position (i, j) of the agent map[i, j] = tk is assigned the
current value of the simulation clock, which represents
the pheromone level; in another case the pheromone level
is simply incremented by a constant amountc, map[i, j] =
map[i, j]+c. Another key decisions are that the pheromone
trails must evaporate over time. In the current simulation
the pheromone level decreases every 100 time steps by
the amount 0.1c; proportional to the constant depositing
factor. The world used in simulation subtends a rectangle
with dimensions 5000×5000 units. The size of the actual
map is reduced by factor of 10. The trail evaporation
assures that the robots over time are not attracted to
pheromone trails that head to locations in the world
where resources used to be. We are currently investigating
alternative choices for the pheromone evaporation function
as well as different strategies for following the pheromone
trails.

B. Simulations of the foraging task

To determine the effect of pheromones on the ability of
the ant colony to forage for resources several experiments
were carried out. A sample world is created, 10 simula-
tions are run without any pheromone trails, and 10 are run
with pheromone trails. The colony starts with a set number
of resources and each robot expends a constant amount of
resources every second that the simulation is running. If
the colony runs out of resources, it dies. Figure 4 shows

the number of additional resources the colony collects in
each of the trials with and without pheromones. Figure 5
illustrates the survival time of the colony in each of
the trials, again, both with and without pheromones. The
colony collects, on average, over 14 more resources and
survives over 50 seconds longer when pheromones are in
use.

Fig. 3. Simulation environment provided by Teambots simulator. The
nest (largest circle) is in the middle, while the five resources are scattered
around in the environment. The agents are denoted by the smallest
circles, with an arc representing the field of view of the agent.

Fig. 4. Number of resources collected by the colony with and without
the pheromone trails.

Fig. 5. Survival time of the colony with and without the pheromone
trails.

Not surprisingly the results of the initial simulations
clearly indicate that the use of pheromones presents us
with a better solution to the ant colony resource forag-
ing problem than the random wandering approach. The
effectiveness of the pheromone trail foraging strategy also
depends on the number of agents (see Figure 7). With



the small number of agents the collection of resources
proceeds more slowly, as it takes more time until the trails
are laid down. On the other hand when the number of
agents increases the total number of collected resources
does not increase proportionally. In this scenario the trail
following becomes less effective due to the fact that the
density of the agents in the trail vicinity increases and in-
dividual agents spend more time avoiding collisions, then
progressing towards the goal. In the current simulation
the ant-robots are only attracted to trail while searching
for the resource. In case there is no trail in the vicinity
of the agent, the agent is exploring the environment
randomly. The use of the trails left behind during the
exploration phase, combined with trail avoidance has been
used extensively in the coverage tasks [7].

Fig. 6. Pheromone trails for the environment in Figure 3; three out four
trails leading to resources have been laid out.
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Fig. 7. Total number of resources collected during fixed period of time
with two different mapping strategies and varying number of agents.

We are currently investigating the incorporation of both
types of trails as well as interference effects between the
two in order to be able to accomplish a bigger variety of
tasks. The realization of the trail-following strategy on the
physical robots requires additional trail sensing and trail
leaving capabilities, whose performance in real scenarios
differs significantly.

III. C OORDINATED TRAVERSAL TASK

The second coordination strategy between multiple
agents will be described in the context of the coordinated
traversal task. Initially the agents are dispersed randomly
in the complex environment and are tasked to reach a spec-
ified location. The navigation capabilities of the individual

agents are comprised of simple reactive strategies for
heading towards the goal and avoiding the obstacles given
by equation (1). Due to the complexity of the environment
and the absence of the global model, the local strategies
are clearly ineffective. In case the agent encounters a local
minimum random walk strategy is employed to escape
from the minima. In this scenario we will demonstrate
that using the line of sight information the agents can
coordinate and accomplish the task more effectively. The
premise of the approach is, that the at each instance
of time the agents locally compute so calledvisibility
graph. The nodes of an undirected graph correspond to
the robotic agentsai , i = 1, . . .n anda0 the goal. The edges
represent the visibility information; ifai andaj are visible
an edge(ai ,aj) is present. The graph in the context of
our simulation is represented by an adjacency matrixA.
At every time step, each agent determines the visibility
relationship with respect to the other agents and the goal.
Once the graph is constructed the shortest path to the goal
is computed for each agent using the standard Dijkstra’s
algorithm. The shortest path for each agent represented as
a sequence of verticesak, . . . ,a0 is then used to determine
leader-follower relationship between the team members.
In particular, if an agentai is a predecessor of agentaj
on the shortest path towards the goalai ≺ aj , the motion
of the agentai is suspended until agentaj approaches its
vicinity. This successor/predecessor relationship changes
over time as the team progresses towards the goal and the
visibility graph and shortest path are being recomputed.
In spite of this sequential chaining strategy for the team,
the overall performance of the team improves.

Agents that were initially not connected to the graph,
use the basic navigation strategy determined by vector
field ẋg given by equation (1).

A. Simulations of the coordinated traversal

The simulations were performed using the Teambots
simulator in two different environments shown in Figure 8
and 9. The goal was located in the middle of the right
boundary of the environment. The line of sight between
the agents, or the goal is depicted by a line segment
connecting the two. This information as well as the
shortest path computation is changing dynamically as the
agents negotiate the environment.

For the simpler environment the results of 20 runs with
12 mobile agents being randomly located at the start of
each run are reported in Table 1. The average distance
agents travelled in a run and the total time for all agents
to reach the goal has been computed for the uncoordinated
case (without using the line of sight information) and the
coordinated case. For each run, the agents began at the
same location for each of the control strategies. As was
expected, the use of the coordination strategies improves
the performance dramatically. In a more complex envi-



Fig. 8. Stages of the coordinated traversal task using the line of sight
information in the simple environment.

Uncoordinated Coordinated
mean 71.38 194.08
std 2.18 29.94

TABLE I

COMPARISON OF COORDINATED AND UNCOORDINATED STRATEGIES

FOR THE ENVIRONMENT INFIGURE 8.

ronment as in Figure 9 reaching the final destination in
the absence of the global environment model using purely
reactive strategies is more time consuming. Given a set of
random initial positions of the agents, larger percentage
of them is initially not connected to the goal. Once the
goal is encountered by at least one agent, the initial
visibility graph is formed and the coordinated traversal
becomes effective. The simulations are averaged over 20
runs, with 25 agents. The Table 2 shows the the number of
agents which completed the task (arrived within the largest
connected component), average task completion time and
the distance travelled. The traversal task was considered
completed once all the agents in the largest connected
component of the graph reached the goal. The comparison
with an uncoordinated strategy was not carried out due
to the fact, that in the absence of coordination the task
completion using purely local would be very ineffective.

The effect of number of agents on the completion time
was also examined in the context of this environment.
The dependency of the task completion and total distance

Fig. 9. Stages of the coordinated traversal task using line of sight
information in more complex environment.

# of agents time distance
mean 19.2 990.4 38.10
std 2.98 210.27 9.23

TABLE II

PERFORMANCE STATISTICS OF THE TRAVERSAL TASK FOR THE

ENVIRONMENT IN FIGURE 9.

travelled was tested in simulation for varying number of
agents and different environments. The results are reported
in Figures 10 and 11. As we can see, not surprisingly,
the total completion time increases with the complexity
of the environment, but the average completion time per
agent decreases as the number of agents grows and the
area/distance traversed by the agents also grows.
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Fig. 10. Traversal completion time averaged over 10 trials for two types
of environments and varying number of agents.
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Fig. 11. Total distance travelled for two types of environments and
varying number of agents.

IV. CONCLUSION

In this article we have presented two different coordina-
tion strategies for teams of mobile agents engaged in nav-
igation and foraging tasks. The strategies are purely local,
do not assume any model of the environment and either
utilize additional sensing or line of sight communication
between the individual team members. In the initial ex-
periments have shown that the tasks can be accomplished
more effectively in spite of the lack of global model of
the environment. We are currently investigating the scal-
ability properties of the approach, alternative properties
of the pheromone trails, as well as extensions to more
complex environments. The initial insights offer promising
avenue for providing more quantitative statements about
communication, sensing and complexity tradeoffs in the
multi-agent teams.
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