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Abstract 
The Trikebot is the result of a ground-up design effort 
chartered to develop an effective and low-cost educational 
robot for secondary level education and home use.  This 
paper describes all aspects of the Trikebot, including 
chassis and mechanism; control electronics; 
communication architecture; robot control server and 
student programming environment.  Notable innovations 
include a fast-build construction kit, indoor/outdoor 
terrainability, CMOS vision-centered sensing, back-EMF 
motor speed control and a Java  programming interface. 

1 Introduction 

In Summer 2002, the authors and others developed, 
taught and evaluated Robotic Autonomy, a seven-week 
introductory hands-on robotics course as part of 
Carnegie Mellon West’s NASA-Ames campus in 
Mountain View, California [1].  The research 
surrounding this effort included robot design, curriculum 
design and ongoing, long-term educational evaluation. 
Although these and other authors have recognized and 
study the role of robotics in education, this work is 
notable in that all aspects of the robot mechanism, 
electronics, software and educational curriculum were 
subject to ground-up, coordinated design [2,3,4,5,6,7].  
A total of 30 Trikebot robots were built and used during 
this program.  They continue to be used by graduates of 
the course at home.  This paper focuses on the robot 
mechanism, electronics and programming interface 
design processes.   

2 Goals 

The overall design goals are informed by the intended 
target audience for the educational course: high school 
students between their junior and senior year.  
Prerequisites are only basic mechanical dexterity (e.g. 
simple assembly and fabrication) and knowledge of a 
programming language (e.g. Introduction to 
Programming).  Each student would be slated to take a 
Trikebot home to program and use at will for a year.  
Thus, the Trikebot would need to be designed not only 
for the beginning robotics student but for the continuing, 
sophisticated user.  Following from the above 
overarching goal, particular requirements and concordant 
innovations at each level of robot design are in 
subsequent sections. 

3 Mechanism 

3.1 Physical Overview 
The Trikebot chassis is a three-wheeled mobile robot 
base in a tricycle-like configuration, with a single driven 
steerable wheel and two fixed passive wheels (Fig. 1).  
Its major physical features are a tall camera mast with a 
pan and tilt mechanism and two large payload areas.  
Altogether the Trikebot has 4 control degrees of 
freedom—drive motor, steering, camera pan and camera 
tilt. 
     The tread width, or distance between wheel 
centerlines as viewed from the front or back, is 15.8 
inches and the wheelbase, or distance between wheel 
axes as viewed from the side, is 10.9 inches.  The wheels 
of the Trikebot are 6 inches in diameter, supporting a 
ground clearance of 2.2 inches.  The nominal camera 
height is 18.3 inches and it can pan approximately ±90° 
and tilt +90°/-45°.  The mechanical chassis alone, 
including servos and drive motor, weighs approximately 
10.5 lbs. 
 
3.2 Mechanical Design Objectives 
The Trikebot chassis has three primary functions.  As a 
CMUcam platform [8], our goal was to place the camera 
at least 18 inches above the ground plane.  This was part 
of a decision to make the Trikebot a floor-based robot 
which students could interact with more dynamically 
than a smaller table-top size robot.  The pan and tilt 
mechanism is critical for diagnostic transparency and 
affection; it enables the robot to indicate direction of 
gaze and widens the field of view [9]. 
     We expect the Trikebot to operate indoors and on flat 
outdoor areas such as parking lots, sidewalks and lawns; 
it must be able to overcome obstacles such as electrical 
cables, door thresholds and gravel.  To facilitate mobility 
in closed quarters, we required Trikebot to turn in-place 
within a 24 inch circle.  To encourage student-robot 
interaction, the speed of the Trikebot was specified as 
comparable to a person’s medium speed walk, 30 in/sec. 
     As a worst-case payload requirement, the Trikebot is 
designed to carry a laptop computer, six 7.2V Remote 
Control (RC) car battery packs and various onboard 
electronics.   
     Being assembled and maintained by students in a 
general classroom environment required that the 
majority of the components of the Trikebot be assembled 



using simple hand tools and that they be robust enough 
to handle rough treatment.  Of course, cost is always an 
issue, so appropriate manufacturing techniques were 
chosen for the quantities of parts used.  

 
Figure 1: Trikebot Chassis Dimensions 

 
3.3 Design Features 
The Trikebot’s final design derives from the above 
design objectives.  The following describes how the 
various elements of the Trikebot chassis meet these 
objectives. 
Wheel Configuration.  A tricycle configuration with a 
single driven steering wheel gives the Trikebot very 
good agility using a single gearmotor as its drivemotor 
and a single high power servo for steering.  The servo 
can steer the driven wheel through 180° allowing the 
robot to turn nearly in place.   
     We chose the tricycle design in lieu of the other 
common three-wheeled differential drive configuration 
to avoid several problems.  One problem is that a trailing 
caster wheel can restrict the freedom of movement of the 
robot in certain situations.  Furthermore, two driven 
wheels must match their speed profiles exactly in order 
for the robot to travel in a straight line.  The tricycle 
design eliminates both issues. 
     The single wheel forward arrangement was chosen 
for agility over obstacles.  The driven wheel can more 
easily grip and climb over an obstacle at slow speeds, 
subsequently dragging the rear wheels over the obstacle.   
     One final advantage of a three-wheeled design is 
reduced torsional stress on the chassis.  In a four wheeled 
chassis, a single wheel can be raised above the others 
when traversing uneven terrain, twisting the chassis (and 
its payload).  A three wheeled chassis undergoes less 
twisting, meaning the chassis can be simpler and lighter. 
Wheels  With wheel diameters of 6 inches and a ground 
clearance of 2.2 inches, the Trikebot can drive over 
obstacles such as power cords, uneven sidewalks, and 
even gravel paths.  The traction element of the wheels 
consists of closed-cell foam rubber tires.  These tires 
provide adequate stiffness and traction, yet are still light 
and help absorb shocks.  The rear passive wheels and 
front wheel hub are stock RC model airplane parts and 
car parts, utilized to minimize costs. 

Drivetrain  The drivetrain consists of a 19.5:1 gearmotor 
directly coupled to the drive wheel.  The gearmotor’s 
output bearings are adequate for the loads expected to be 
delivered by the Trikebot and direct drive provided the 
simplest design (Fig. 2).   
     The drive wheel assembly turns about a kingpin 
which is centered above the contact patch of the drive 
wheel so that no steering torque is generated when the 
drive motor is engaged.  A high-torque RC servo directly 
drives the kingpin, providing steering control.  

 
Figure 2: The Drive Wheel Assembly 

 
Camera Mast and Pan and Tilt  The camera mast 
incorporates a pan and tilt mechanism and elevates the 
camera to above its desired 18 inch minimum height.  
The positioning of the mast to the front of the chassis 
allows the camera to scan slightly in front of the front 
wheel while looking down.  This facilitates activities 
such as line following or object-in-path detection.  The 
camera is centered above the camera’s pan axis and the 
camera’s centerline passes through the tilt axis.  This 
simplifies the analysis of the camera’s view relative to 
the robot.  Both the pan and tilt are directly controlled by 
stock RC servos.  
 

   
 

Figure 3: The unassembled components of one 
Trikebot; 30 assembled Trikebots (right) 

 
Payload Area  The Payload areas of the Trikebot are 
positioned low and to the rear of the camera mast in 
order to place the fully loaded robot’s center of gravity 
as low as possible and roughly 1/3 of the wheelbase 
behind the front wheel.  A low center of gravity 
maximizes the stability of the Trikebot and placing the 
center of gravity 1/3 of the way behind the front wheel 
helps provide traction to the front driven wheel.  The 
battery racks are located below the lower payload tray, 
again to lower the center of gravity and to provide 
access.  



General Construction  Most of the Trikebot chassis is 
constructed of lasercut acetal (Delrin) sheets (Fig. 3).  
Aluminum machined parts were used for a few items, 
such as the drive hubs and motor clamps, but machining 
was minimized as it is ten times the price of lasercutting.  
However lasercutting has its drawbacks, allowing only 
cuts perpendicular to flat sheets of material like paper or 
plastic.  To accommodate this, the Trikebot’s parts fit 
together with tabs and slots, not unlike paper or 
cardboard models.  Self-tapping screws wedged into 
slots hold the plastic parts together.  This system enabled 
most of the Trikebot to be assembled and repaired by the 
students using hand tools.  Using rapid manufacturing 
technologies such as lasercutting, combined with using 
stock parts such as RC servos and wheels, enables the 
Trikebot chassis to be produced economically 
(approximately $500 per chassis) and quickly in the 
required quantities. 

4 Control Electronics 

4.1 Overview 
The role of the control electronics was to create a clean 
interface between the physical robot layer and the high-
level Java programming interface the students would use 
to program the robot.  The electronics abstract away 
most of the communication overhead, interface control 
and motion control aspects of the Trikebot.  Our solution 
accomplished this abstraction while allowing flexibility 
for expansion, lower level control and design modularity. 
     Fig. 4 depicts the connectivity of the Trikebot’s 
control electronics.  An iPAQ 3650 serves as the 802.11b 
wireless link between the robot electronics and the 
students’ laptops.  Laptop to iPAQ communication is 
achieved over TCP/IP, with the resulting serial stream 
multiplexed between the CMUcam, which provides 
visual perception services, and the Brainstem network, 
which provides motion and sensing control.  Note that 
the iPAQ is a very expensive 802.11-serial router in this 
application.  In time, we hope to replace this costly 
choice with a PIC-based 802.11b controller. 
 
4.2 Brainstem™ Architecture 
In the Trikebot, the BrainStem network is primarily a 
slave controller. The student’s laptop performs high-
level decision making and sequencing, in turn requesting 
control outputs and inputs from the Brainstem network 
using a Java API.  The BrainStem architecture offers rich 
I/O capabilities in slave mode but can also function 
independently via TEA (tiny embedded application) 
programs which use ANSI C syntax to run on small 
virtual machines located within the BrainStem module's 
controller [10].  

     The Trikebot's steering and camera pan/tilt servos are 
driven by the BrainStem GP 1.0 module. This board also 
supports the GP2D02 IR distance ranger. Both of these 
tasks are managed by the GP 1.0 module which 
encapsulates the serial clocking of data from the digital 
IR sensor, dampens the motion input to the servos, and 
manages the servo ranges and offsets.  
  

 
Figure 4: The Trikebot control electronics’ connectivity 

  
The GP 1.0 module also acts as a serial to I2C router to 
communicate with the other BrainStem Module, the 
Moto 1.0 board. This approach allows all commands to 
be sent to the BrainStem I2C network via a single serial 
connection.  The Moto 1.0 module handles the closed-
loop motion control of the Trikebot's motor using an H-
Bridge daughterboard.   
 
4.3 Back-EMF based speed control 
One unique ability of the H-Bridge and Moto 1.0 module 
used in the Trikebot is Back-EMF speed measurement. 
This approach uses the natural characteristics of a 
spinning motor to derive a feedback voltage that is 
linearly proportional to the speed of the motor. 
     Most precision robotics applications use motors with 
encoders offering quadrature position sensing.  This 
approach is effective but the combination of the 
precision encoders and quadrature decoding chips on the 
motion controller makes this approach costly.  Using 



Back-EMF control allows feedback-based PID speed 
control while using a simple gearmotor with no encoder.   
     The basic idea behind Back-EMF speed control is that 
while a motor is being driven, the H-Bridge windings 
that actually offer the connection to the drive current for 
the motor can be "floated" or left disconnected. When 
this occurs, the induction developed in the windings of 
the motors quickly collapses and the motor transitions to 
a generator of current due to the residual inertia in the 
mechanical drive system. Once this transition has 
occurred, the output voltage from the motor is directly 
related to the speed of the motor.  

 
Figure 5: A single back-EMF speed measurement  

 
The Back-EMF circuit built into the 3A H-Bridge used 
in the Trikebot's Moto 1.0 board measures the voltage 
from the motor and converts it to a logic voltage 
centered at 2.5 volts. When the motor is running full 
speed in one direction, the voltage drops to ~0.0 volts 
and,  in the other direction, the voltage rises to ~5.0 
volts. This is read by a 10-bit analog input on the Moto 
1.0 module and used as the feedback for the PID loop. 
After the A/D measurement, the motor is again driven 
via PWM.  As shown in Fig. 5 , the motor winding 
initially dives as the induction developed in the motor 
collapses. This inductive drop is rapid and thereafter the 
motor begins generating a current and a voltage 
proportional to the speed of the spinning motor.  The 
Back-EMF circuit can then measure voltage to infer 
motor speed.  This concludes the measurement gap in the 
PWM signal and then the Moto 1.0 resumes driving the 
motor via PWM. 
     Note that these diagrams show one side of the motor 
winding that we are measuring for a given direction.  In 
a typical H-Bridge arrangement, one side of the motor is 
grounded while the other is rapidly switched from 
floating to powered.  Changing direction reverses the 
roles of these two sides of the motor connections in this 
arrangement.  Also note that the motor can maximally be 
driven at only 95% duty cycle as some dead time is 
always required for the Back-EMF measurement gap.   
     As with any PID system, proper tuning of the 
parameters is required and expanded to include the 

frequency of the Back-EMF reading, the delay in the 
measurement gap for the measurement, and the DC 
offset of the feedback signal.  These parameters are 
exposed (Fig. 6) on the Moto board and are adjusted with 
a user-interface available for numerous host computers. 
Once configured, the settings are saved to an EEPROM 
on the Moto module.  As a fail-safe precaution, the 
EEPROM can be actively locked (write protected) with a 
jumper.   
 

 
 

Figure 6: Back-EMF PID tunable parameters 
 
4.4 iPAQ Robot Server 
The iPAQ ARM-based processor serves as both an 
802.11b to serial bridge and a real-time controller on-
board the robot.  There are a number of reasons to avoid 
placing the student laptop directly onboard the Trikebot.  
First, reducing the payload requirements enables a longer 
running time for the robot and reduces the chances of 
damage in the case of collisions.  Second, the laptop 
provides direct diagnostic feedback to the student during 
program execution.  Finally, an off-board laptop can 
serve as a teleoperation input device.   
 
 
 
 
 
 
 
 
 
 
 
    Figure 7: Functional layers of the iPAQ firmware 
 
The fundamental problem of removing the laptop and 
thus the high-level control program from the Trikebot 
concerns communication latency.  Even in the best of 
cases, roundtrip communication latency via 802.11b can 
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easily exceed 150 ms.  This is too slow for fast-feedback 
control loops such as visual pan-tilt tracking of moving 
objects using the Trikebot’s CMUcam.   
     In addition to providing communication services to 
each downstream electronic device (Fig. 7), the iPAQ 
serves three other functions.  When the laptop requests 
an image dump, the iPAQ acts as an intermediate image 
buffer to collect and send that information via a 
dedicated image socket.  Second, the iPAQ can serve as 
a pan-tilt feedback controller, utilizing CMUcam to 
measure the visual displacement of a tracked object, then 
commanding the pan and tilt servos to visually center the 
object.  Feedback to the laptop regarding the tracked 
object and the Trikebot’s neck position uses a separate 
TCP/IP socket.  Third, the iPAQ uses a timer for each 
servo to power down the servo once it has reached the 
commanded position, saving power. 

5 Robot Control and Programming  

5.1 Goals 
As the interface between student and robot, the laptop 
environment is critical for students to learn successfully 
and enjoyably.  One objective is that the interface enable 
students to directly control the robot’s motion as easily 
and quickly as possible.  Second, assuming basic 
programming skills a student should be able to program 
the Trikebot for autonomous motion with as shallow a 
learning curve as possible.  The goal is to rapidly 
surmount the obstacles of learning machine-specific 
programming and compilation details, instead devoting 
the intellectual effort to exploring the space of 
autonomous and interactive robot behaviors.  Finally the 
third objective is that the interface should provide 
maximal diagnostic transparency during program 
execution so that the student is empowered to improve 
the performance of the Trikebot (Nourbakhsh 2000a). 
      
5.2 Control and Diagnostic UI 
The Trikebot UI, shown in Fig. 9, enables direct 
teleoperation of the Trikebot.  This is critical to the 
ongoing diagnostic process for students.  By dumping 
images from the Trikebot’s CMUcam, for example, 
students can visually inspect the quality of the video 
signal on which they are attempting computer vision 
operations.   
     At the control level, the UI enables the student to 
drive the Trikebot directly, control the head’s pan/tilt 
position and dump images from CMUcam.  During each 
of these control operations, the interface displays and 
continuously updates the same sensor values that 
students use during programming: motor speed, current 
and rangefinder distance.     
     The Trikebot UI was implemented outside of any 
high-overhead IDE, ensuring that the finished product 

can be compiled and executed using simple command-
level calls in Java 1.4 or beyond.  This ease of 
compilation is key to the User Controls window that is 
also part of the UI (Fig. 9).  This window provides the 
student with a series of buttons and input/output 
textfields so that, without spending time on GUI 
development, the students can launch their programs, 
observe Trikebot state during program execution and halt 
their programs from the UI.  This coupling of the 
teleoperation and control UI to the buttons and fields 
used to interact with student code is a critical aspect of 
the success of the Trikebot as an educational, 
programmable robot.  The complete JAVA source file-
set is available at [12]. 
 
5.3 Programming Interface 
Although the JAVA client for the Trikebot UI spans a 
large number of source files, the User Controls panel is 
implemented as a separate source file.  In order to write 
the JAVA functions that are triggered when those 
buttons are pressed, the students modify a second 
contiguous block in one other file (Fig. 8).  Students are 
thus able to program the Trikebot by making direct 
modifications to two files using a text editor such as 
JEXT [13], then compiling and executing from a 
command line using javac and java.  This programming 
process removes the complexity of teaching students to 
use an all-purpose IDE such as FORTE. 
 
private void Action1() //dumb wander 
 { 
  int refreshes = 0; 
  String Debugging; 
  theWindow.quit = false; 
  while (theWindow.quit == false) 
  {   
   trikebot.RefreshState(); 
    //get the state variables 
   if(trikebot.state.Range() <= 150) { 
     trikebot.Drive(20,0);  
    //wander forward at a slow speed 
   } else {         
     trikebot.KillMotor(); 
   } 
  } 
 } 

Figure 8: An example of a student code fragment 
from the summer 2002 course. 

 
In previous work the authors have taught robot 
programming using LISP, C, C++ and JAVA.  The most 
effective language was LISP because of its functional 
nature, similar in spirit to recent robot languages such as 
GRL [14], and because of the Listener Window 
interactivity.  This ability to execute a portion of robot 
code in order to diagnose surprising robot behavior is 
extremely important in robotics, and the Trikebot’s UI 
serves this purpose.     
 
  



 
Figure 9: The Trikebot laptop UI 

 

6 Conclusions 

The Trikebot was designed, fabricated and tested with 
thirty students in an ongoing project to inspire youth 
with regards to science and engineering and provide an 
ongoing creative outlet for robotic exploration.  Physical 
and electronic robot innovations enabled an affordable 
price point while achieving necessary robustness for 
daily use.  The simple JAVA programming environment 
has demonstrated sufficient richness for challenge-based 
curriculum assignments.  We hope that this effort will 
prove useful for future educational robotics endeavours. 
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