
Designing a Low-cost, Expressive Educational Robot

Thomas Hsiu, Steve Richards, Ajinkya Bhave§, Andres Perez-Bergquist§, Illah Nourbakhsh§
§The Robotics Institute, Carnegie Mellon University

Pittsburgh, PA 15213, illah@ri.cmu.edu

Abstract
The Trikebot is the result of a ground-up design effort
chartered to develop an effective and low-cost educational
robot for secondary level education and home use. This
paper describes all aspects of the Trikebot, including
chassis and mechanism; control electronics;
communication architecture; robot control server and
student programming environment. Notable innovations
include a fast-build construction kit, indoor/outdoor
terrainability, CMOS vision-centered sensing, back-EMF
motor speed control and a Java programming interface.

1 Introduction

In Summer 2002, the authors and others developed,
taught and evaluated Robotic Autonomy, a seven-week
introductory hands-on robotics course as part of
Carnegie Mellon West’s NASA-Ames campus in
Mountain View, California [1]. The research
surrounding this effort included robot design, curriculum
design and ongoing, long-term educational evaluation.
Although these and other authors have recognized and
study the role of robotics in education, this work is
notable in that all aspects of the robot mechanism,
electronics, software and educational curriculum were
subject to ground-up, coordinated design [2,3,4,5,6,7].
A total of 30 Trikebot robots were built and used during
this program. They continue to be used by graduates of
the course at home. This paper focuses on the robot
mechanism, electronics and programming interface
design processes.

2 Goals

The overall design goals are informed by the intended
target audience for the educational course: high school
students between their junior and senior year.
Prerequisites are only basic mechanical dexterity (e.g.
simple assembly and fabrication) and knowledge of a
programming language (e.g. Introduction to
Programming). Each student would be slated to take a
Trikebot home to program and use at will for a year.
Thus, the Trikebot would need to be designed not only
for the beginning robotics student but for the continuing,
sophisticated user. Following from the above
overarching goal, particular requirements and concordant
innovations at each level of robot design are in
subsequent sections.

3 Mechanism

3.1 Physical Overview
The Trikebot chassis is a three-wheeled mobile robot
base in a tricycle-like configuration, with a single driven
steerable wheel and two fixed passive wheels (Fig. 1).
Its major physical features are a tall camera mast with a
pan and tilt mechanism and two large payload areas.
Altogether the Trikebot has 4 control degrees of
freedom—drive motor, steering, camera pan and camera
tilt.
 The tread width, or distance between wheel
centerlines as viewed from the front or back, is 15.8
inches and the wheelbase, or distance between wheel
axes as viewed from the side, is 10.9 inches. The wheels
of the Trikebot are 6 inches in diameter, supporting a
ground clearance of 2.2 inches. The nominal camera
height is 18.3 inches and it can pan approximately ±90°
and tilt +90°/-45°. The mechanical chassis alone,
including servos and drive motor, weighs approximately
10.5 lbs.

3.2 Mechanical Design Objectives
The Trikebot chassis has three primary functions. As a
CMUcam platform [8], our goal was to place the camera
at least 18 inches above the ground plane. This was part
of a decision to make the Trikebot a floor-based robot
which students could interact with more dynamically
than a smaller table-top size robot. The pan and tilt
mechanism is critical for diagnostic transparency and
affection; it enables the robot to indicate direction of
gaze and widens the field of view [9].
 We expect the Trikebot to operate indoors and on flat
outdoor areas such as parking lots, sidewalks and lawns;
it must be able to overcome obstacles such as electrical
cables, door thresholds and gravel. To facilitate mobility
in closed quarters, we required Trikebot to turn in-place
within a 24 inch circle. To encourage student-robot
interaction, the speed of the Trikebot was specified as
comparable to a person’s medium speed walk, 30 in/sec.
 As a worst-case payload requirement, the Trikebot is
designed to carry a laptop computer, six 7.2V Remote
Control (RC) car battery packs and various onboard
electronics.
 Being assembled and maintained by students in a
general classroom environment required that the
majority of the components of the Trikebot be assembled

using simple hand tools and that they be robust enough
to handle rough treatment. Of course, cost is always an
issue, so appropriate manufacturing techniques were
chosen for the quantities of parts used.

Figure 1: Trikebot Chassis Dimensions

3.3 Design Features
The Trikebot’s final design derives from the above
design objectives. The following describes how the
various elements of the Trikebot chassis meet these
objectives.
Wheel Configuration. A tricycle configuration with a
single driven steering wheel gives the Trikebot very
good agility using a single gearmotor as its drivemotor
and a single high power servo for steering. The servo
can steer the driven wheel through 180° allowing the
robot to turn nearly in place.
 We chose the tricycle design in lieu of the other
common three-wheeled differential drive configuration
to avoid several problems. One problem is that a trailing
caster wheel can restrict the freedom of movement of the
robot in certain situations. Furthermore, two driven
wheels must match their speed profiles exactly in order
for the robot to travel in a straight line. The tricycle
design eliminates both issues.
 The single wheel forward arrangement was chosen
for agility over obstacles. The driven wheel can more
easily grip and climb over an obstacle at slow speeds,
subsequently dragging the rear wheels over the obstacle.
 One final advantage of a three-wheeled design is
reduced torsional stress on the chassis. In a four wheeled
chassis, a single wheel can be raised above the others
when traversing uneven terrain, twisting the chassis (and
its payload). A three wheeled chassis undergoes less
twisting, meaning the chassis can be simpler and lighter.
Wheels With wheel diameters of 6 inches and a ground
clearance of 2.2 inches, the Trikebot can drive over
obstacles such as power cords, uneven sidewalks, and
even gravel paths. The traction element of the wheels
consists of closed-cell foam rubber tires. These tires
provide adequate stiffness and traction, yet are still light
and help absorb shocks. The rear passive wheels and
front wheel hub are stock RC model airplane parts and
car parts, utilized to minimize costs.

Drivetrain The drivetrain consists of a 19.5:1 gearmotor
directly coupled to the drive wheel. The gearmotor’s
output bearings are adequate for the loads expected to be
delivered by the Trikebot and direct drive provided the
simplest design (Fig. 2).
 The drive wheel assembly turns about a kingpin
which is centered above the contact patch of the drive
wheel so that no steering torque is generated when the
drive motor is engaged. A high-torque RC servo directly
drives the kingpin, providing steering control.

Figure 2: The Drive Wheel Assembly

Camera Mast and Pan and Tilt The camera mast
incorporates a pan and tilt mechanism and elevates the
camera to above its desired 18 inch minimum height.
The positioning of the mast to the front of the chassis
allows the camera to scan slightly in front of the front
wheel while looking down. This facilitates activities
such as line following or object-in-path detection. The
camera is centered above the camera’s pan axis and the
camera’s centerline passes through the tilt axis. This
simplifies the analysis of the camera’s view relative to
the robot. Both the pan and tilt are directly controlled by
stock RC servos.

Figure 3: The unassembled components of one
Trikebot; 30 assembled Trikebots (right)

Payload Area The Payload areas of the Trikebot are
positioned low and to the rear of the camera mast in
order to place the fully loaded robot’s center of gravity
as low as possible and roughly 1/3 of the wheelbase
behind the front wheel. A low center of gravity
maximizes the stability of the Trikebot and placing the
center of gravity 1/3 of the way behind the front wheel
helps provide traction to the front driven wheel. The
battery racks are located below the lower payload tray,
again to lower the center of gravity and to provide
access.

General Construction Most of the Trikebot chassis is
constructed of lasercut acetal (Delrin) sheets (Fig. 3).
Aluminum machined parts were used for a few items,
such as the drive hubs and motor clamps, but machining
was minimized as it is ten times the price of lasercutting.
However lasercutting has its drawbacks, allowing only
cuts perpendicular to flat sheets of material like paper or
plastic. To accommodate this, the Trikebot’s parts fit
together with tabs and slots, not unlike paper or
cardboard models. Self-tapping screws wedged into
slots hold the plastic parts together. This system enabled
most of the Trikebot to be assembled and repaired by the
students using hand tools. Using rapid manufacturing
technologies such as lasercutting, combined with using
stock parts such as RC servos and wheels, enables the
Trikebot chassis to be produced economically
(approximately $500 per chassis) and quickly in the
required quantities.

4 Control Electronics

4.1 Overview
The role of the control electronics was to create a clean
interface between the physical robot layer and the high-
level Java programming interface the students would use
to program the robot. The electronics abstract away
most of the communication overhead, interface control
and motion control aspects of the Trikebot. Our solution
accomplished this abstraction while allowing flexibility
for expansion, lower level control and design modularity.
 Fig. 4 depicts the connectivity of the Trikebot’s
control electronics. An iPAQ 3650 serves as the 802.11b
wireless link between the robot electronics and the
students’ laptops. Laptop to iPAQ communication is
achieved over TCP/IP, with the resulting serial stream
multiplexed between the CMUcam, which provides
visual perception services, and the Brainstem network,
which provides motion and sensing control. Note that
the iPAQ is a very expensive 802.11-serial router in this
application. In time, we hope to replace this costly
choice with a PIC-based 802.11b controller.

4.2 Brainstem™ Architecture
In the Trikebot, the BrainStem network is primarily a
slave controller. The student’s laptop performs high-
level decision making and sequencing, in turn requesting
control outputs and inputs from the Brainstem network
using a Java API. The BrainStem architecture offers rich
I/O capabilities in slave mode but can also function
independently via TEA (tiny embedded application)
programs which use ANSI C syntax to run on small
virtual machines located within the BrainStem module's
controller [10].

 The Trikebot's steering and camera pan/tilt servos are
driven by the BrainStem GP 1.0 module. This board also
supports the GP2D02 IR distance ranger. Both of these
tasks are managed by the GP 1.0 module which
encapsulates the serial clocking of data from the digital
IR sensor, dampens the motion input to the servos, and
manages the servo ranges and offsets.

Figure 4: The Trikebot control electronics’ connectivity

The GP 1.0 module also acts as a serial to I2C router to
communicate with the other BrainStem Module, the
Moto 1.0 board. This approach allows all commands to
be sent to the BrainStem I2C network via a single serial
connection. The Moto 1.0 module handles the closed-
loop motion control of the Trikebot's motor using an H-
Bridge daughterboard.

4.3 Back-EMF based speed control
One unique ability of the H-Bridge and Moto 1.0 module
used in the Trikebot is Back-EMF speed measurement.
This approach uses the natural characteristics of a
spinning motor to derive a feedback voltage that is
linearly proportional to the speed of the motor.
 Most precision robotics applications use motors with
encoders offering quadrature position sensing. This
approach is effective but the combination of the
precision encoders and quadrature decoding chips on the
motion controller makes this approach costly. Using

Back-EMF control allows feedback-based PID speed
control while using a simple gearmotor with no encoder.
 The basic idea behind Back-EMF speed control is that
while a motor is being driven, the H-Bridge windings
that actually offer the connection to the drive current for
the motor can be "floated" or left disconnected. When
this occurs, the induction developed in the windings of
the motors quickly collapses and the motor transitions to
a generator of current due to the residual inertia in the
mechanical drive system. Once this transition has
occurred, the output voltage from the motor is directly
related to the speed of the motor.

Figure 5: A single back-EMF speed measurement

The Back-EMF circuit built into the 3A H-Bridge used
in the Trikebot's Moto 1.0 board measures the voltage
from the motor and converts it to a logic voltage
centered at 2.5 volts. When the motor is running full
speed in one direction, the voltage drops to ~0.0 volts
and, in the other direction, the voltage rises to ~5.0
volts. This is read by a 10-bit analog input on the Moto
1.0 module and used as the feedback for the PID loop.
After the A/D measurement, the motor is again driven
via PWM. As shown in Fig. 5 , the motor winding
initially dives as the induction developed in the motor
collapses. This inductive drop is rapid and thereafter the
motor begins generating a current and a voltage
proportional to the speed of the spinning motor. The
Back-EMF circuit can then measure voltage to infer
motor speed. This concludes the measurement gap in the
PWM signal and then the Moto 1.0 resumes driving the
motor via PWM.
 Note that these diagrams show one side of the motor
winding that we are measuring for a given direction. In
a typical H-Bridge arrangement, one side of the motor is
grounded while the other is rapidly switched from
floating to powered. Changing direction reverses the
roles of these two sides of the motor connections in this
arrangement. Also note that the motor can maximally be
driven at only 95% duty cycle as some dead time is
always required for the Back-EMF measurement gap.
 As with any PID system, proper tuning of the
parameters is required and expanded to include the

frequency of the Back-EMF reading, the delay in the
measurement gap for the measurement, and the DC
offset of the feedback signal. These parameters are
exposed (Fig. 6) on the Moto board and are adjusted with
a user-interface available for numerous host computers.
Once configured, the settings are saved to an EEPROM
on the Moto module. As a fail-safe precaution, the
EEPROM can be actively locked (write protected) with a
jumper.

Figure 6: Back-EMF PID tunable parameters

4.4 iPAQ Robot Server
The iPAQ ARM-based processor serves as both an
802.11b to serial bridge and a real-time controller on-
board the robot. There are a number of reasons to avoid
placing the student laptop directly onboard the Trikebot.
First, reducing the payload requirements enables a longer
running time for the robot and reduces the chances of
damage in the case of collisions. Second, the laptop
provides direct diagnostic feedback to the student during
program execution. Finally, an off-board laptop can
serve as a teleoperation input device.

 Figure 7: Functional layers of the iPAQ firmware

The fundamental problem of removing the laptop and
thus the high-level control program from the Trikebot
concerns communication latency. Even in the best of
cases, roundtrip communication latency via 802.11b can

Socket Management

Tracking Loop Laptop Cmd Sock. Frame Dump

Brainstem
I/O

CMUcam
I/O

Command Visual Track Frame Buffer

easily exceed 150 ms. This is too slow for fast-feedback
control loops such as visual pan-tilt tracking of moving
objects using the Trikebot’s CMUcam.
 In addition to providing communication services to
each downstream electronic device (Fig. 7), the iPAQ
serves three other functions. When the laptop requests
an image dump, the iPAQ acts as an intermediate image
buffer to collect and send that information via a
dedicated image socket. Second, the iPAQ can serve as
a pan-tilt feedback controller, utilizing CMUcam to
measure the visual displacement of a tracked object, then
commanding the pan and tilt servos to visually center the
object. Feedback to the laptop regarding the tracked
object and the Trikebot’s neck position uses a separate
TCP/IP socket. Third, the iPAQ uses a timer for each
servo to power down the servo once it has reached the
commanded position, saving power.

5 Robot Control and Programming

5.1 Goals
As the interface between student and robot, the laptop
environment is critical for students to learn successfully
and enjoyably. One objective is that the interface enable
students to directly control the robot’s motion as easily
and quickly as possible. Second, assuming basic
programming skills a student should be able to program
the Trikebot for autonomous motion with as shallow a
learning curve as possible. The goal is to rapidly
surmount the obstacles of learning machine-specific
programming and compilation details, instead devoting
the intellectual effort to exploring the space of
autonomous and interactive robot behaviors. Finally the
third objective is that the interface should provide
maximal diagnostic transparency during program
execution so that the student is empowered to improve
the performance of the Trikebot (Nourbakhsh 2000a).

5.2 Control and Diagnostic UI
The Trikebot UI, shown in Fig. 9, enables direct
teleoperation of the Trikebot. This is critical to the
ongoing diagnostic process for students. By dumping
images from the Trikebot’s CMUcam, for example,
students can visually inspect the quality of the video
signal on which they are attempting computer vision
operations.
 At the control level, the UI enables the student to
drive the Trikebot directly, control the head’s pan/tilt
position and dump images from CMUcam. During each
of these control operations, the interface displays and
continuously updates the same sensor values that
students use during programming: motor speed, current
and rangefinder distance.
 The Trikebot UI was implemented outside of any
high-overhead IDE, ensuring that the finished product

can be compiled and executed using simple command-
level calls in Java 1.4 or beyond. This ease of
compilation is key to the User Controls window that is
also part of the UI (Fig. 9). This window provides the
student with a series of buttons and input/output
textfields so that, without spending time on GUI
development, the students can launch their programs,
observe Trikebot state during program execution and halt
their programs from the UI. This coupling of the
teleoperation and control UI to the buttons and fields
used to interact with student code is a critical aspect of
the success of the Trikebot as an educational,
programmable robot. The complete JAVA source file-
set is available at [12].

5.3 Programming Interface
Although the JAVA client for the Trikebot UI spans a
large number of source files, the User Controls panel is
implemented as a separate source file. In order to write
the JAVA functions that are triggered when those
buttons are pressed, the students modify a second
contiguous block in one other file (Fig. 8). Students are
thus able to program the Trikebot by making direct
modifications to two files using a text editor such as
JEXT [13], then compiling and executing from a
command line using javac and java. This programming
process removes the complexity of teaching students to
use an all-purpose IDE such as FORTE.

private void Action1() //dumb wander
 {
 int refreshes = 0;
 String Debugging;
 theWindow.quit = false;
 while (theWindow.quit == false)
 {
 trikebot.RefreshState();
 //get the state variables
 if(trikebot.state.Range() <= 150) {
 trikebot.Drive(20,0);
 //wander forward at a slow speed
 } else {
 trikebot.KillMotor();
 }
 }
 }

Figure 8: An example of a student code fragment
from the summer 2002 course.

In previous work the authors have taught robot
programming using LISP, C, C++ and JAVA. The most
effective language was LISP because of its functional
nature, similar in spirit to recent robot languages such as
GRL [14], and because of the Listener Window
interactivity. This ability to execute a portion of robot
code in order to diagnose surprising robot behavior is
extremely important in robotics, and the Trikebot’s UI
serves this purpose.

Figure 9: The Trikebot laptop UI

6 Conclusions

The Trikebot was designed, fabricated and tested with
thirty students in an ongoing project to inspire youth
with regards to science and engineering and provide an
ongoing creative outlet for robotic exploration. Physical
and electronic robot innovations enabled an affordable
price point while achieving necessary robustness for
daily use. The simple JAVA programming environment
has demonstrated sufficient richness for challenge-based
curriculum assignments. We hope that this effort will
prove useful for future educational robotics endeavours.

Acknowledgements

The back-EMF speed control solution was first proposed
by Randy Sargent and demonstrated at EPFL AMR-
DST. Funding was provided by NASA-Ames Research
Center. Thanks to Adriana Cardenas, Maylene Duenas,
John D’Ignazio, Neeti Malhotra, Raj Reddy and Peter
Zhang.

References
[1] RASC 2003. Web reference: http://www.cs.cmu.edu/~rasc
[2] Beer, R., Chiel, H., Drushel, R. Using autonomous robots

to teach science and engineering. Communications of the
ACM, June 1999.

[3] Kumar, D. & Meeden, L. A robot laboratory for teaching
artificial intelligence. In Proc. of 29th SIGCSE Symposium
on Computer Science Education, 1998.

[4] Murphy, R. Introduction to AI Robotics. MIT Press, 2000.
[5] Nourbakhsh, I. When students meet robots. Essay in IEEE

Intelligent Systems and Their Applications, 15(6), p15.
2000.

[6] Nourbakhsh, I. Robotics and education in the classroom
and in the museum: On the study of robots, and robots for
study. In Proceedings Workshop for Personal Robotics for
Education. IEEE ICRA 2000.

[7] Wolz, U. Teaching design and project management with
Lego RCX robots. In Proc. SIGCSE Conference 2000.

[8] Rowe, A., Rosenberg, C. and Nourbakhsh, I. A low cost
embedded color vision system. In Proceedings of IROS
2002. August 2002.

[9] Fong, T., Nourbakhsh, I., Dautenhahn, K. A survey of
socially interactive robots. Robotics and Autonomous
Systems 42 (3-4), pp. 143-166, 2003.

[10] Acroname. Web reference: http://www.acroname.com
[11] Nourbakhsh, I. Property Mapping: A simple technique for

mobile robot programming. In Proceedings of AAAI 2000.
July 2000.

[12] TRIKEBOT. Source code download site. Web reference:
http://www.cs.cmu.edu/~rasc/RA/TrikeBackg.htm

[13] JEXT. Web reference: http://www.jext.org

[14] Horswill, I. Functional programming of behavior-based

systems. In Proceedings IEEE International Symposium
on Computational Intelligence in Robotics and
Automation. 1999.

