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Abstract

In this paper, we present in detail our approach to con-
structing a world model in a multi-robot team. We in-
troduce two separate world models, namely anindividual
world modelthat stores one robot’s state, and ashared
world modelthat stores the state of the team. We present
procedures to effectively merge information in these two
world models in real-time. We overcome the problem of
high communication latency by using shared information
on an as-needed basis. The success of our world model
approach is validated by experimentation in the robot soc-
cer domain. The results show that a team using a world
model that incorporates shared information is more suc-
cessful at tracking a dynamic object in its environment
than a team that does not use shared information.

1 Introduction

The need to operate under partial observability and inter-
act with objects in the environment makes the creation of
a world model a necessity for most robotic systems. In a
multi-robot system, where several agents interact simul-
taneously with each other and also with shared portions
of the environment, the need for a consistent view of the
world is even greater. For systems where the primary goal
of the system is to cooperatively map an area using sev-
eral robots, the challenge is to merge information from
several agents coherently. (e.g. [7, 8]) However, these
observations do not need to be merged in real-time, as
the environment tends to be static.

In adversarial domains, such as robot soccer, the envi-
ronment is dynamic. In addition to knowing the posi-
tions of its teammates to facilitate cooperation, the robot
must be able to quickly locate the ball and avoid adver-
sarial agents. When using local vision as the primary
sensor, soccer-playing agents are usually unable to ob-
serve their entire environment. Unless communication
between teammates is available, each robot must model
its environment without input from other agents. Until re-
cently, it was common for teams competing in RoboCup

to build their world models without using shared informa-
tion. The 1999 RoboCup Agilo RoboCuppers mid-sized
robot team provides an example of world model design
without communication [1]. In the Sony legged-robot
league, the hardware for communication was not avail-
able on the robots until 2002. In the absence of commu-
nication, teams relied on local sensing to build their world
models, and fixed roles for team behavior. (e.g. [11])

The advantages of utilizing communication when it be-
comes available are obvious. In the RoboCup middle-
sized robot competition, each team is able to design their
own hardware platform. From the beginning, teams have
taken advantage of this freedom by incorporating com-
munication hardware into their team design. For ex-
ample, the Agilo RoboCuppers added communication to
their system for the RoboCup 2000 competition. By us-
ing a Kalman filter to fuse information about the locations
of objects in the environment, they enabled each robot on
their team to use a global world model as if it were its
own local model [5]. In another highly successful mid-
sized robot team, CS Freiburg, each robot maintains a lo-
cal world model, but contributes information to a global
world model on a single off-board server. This server
then sends global world model information back to the
individual teammates, allowing them to update their state
of the world [4, 3]. However, the presence of commu-
nication presents additional challenges. High communi-
cation latency can easily prevent teammate agents from
forming a synchronized world-view in real-time. Trust-
ing delayed information can introduce more error into
an agent’s world model than is removed by integrating
shared information.

The focus of this paper is to present our solution to the
problem of building a real-time world model for a multi-
robot team with high-latency communication within the
context of the RoboCup Sony AIBO competition. We as-
sume for the purposes of this paper that the robots are
able to sense task-relevant objects such as the soccer ball,
teammate robots, and opponent robots. The techniques
that we describe are applicable to any domain where a
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Figure 1: This is one the Sony AIBO robots for which this
world model was implemented. The round aperture at the
tip of the robot’s nose is the CCD camera that is used to
capture visual sensor data.

robot interacts with a combination of passive objects that
can be sensed and manipulated, intelligent agents that can
be detected but with whom the robot cannot communi-
cate, and intelligent agents that can communicate with
the robot for the purpose of sharing information.

2 Sources of Knowledge for Building State

The 2002 AIBO robots perform all computation and sens-
ing on-board, with the team forming a fully distributed
system. The robots have two sources of information that
are used to build state: vision and communication. Each
robot is equipped with a CCD camera located at the front
of its head. (See Figure 1) All relevant objects in the
world are color-coded, allowing the identification of an
object by its color. The camera information is processed
to produce output in the form of (x, y, θ), oriented in the
robot’s local coordinate system, for all of the objects in
the current field of view [11]. The objects that the vision
is able to recognize are six color-coded markers at known
locations around the field, two goals at either end of the
field, the orange ball, and the other robots, which are ei-
ther blue or red. Figure 2 shows an image of the field.

The robots have an a priori map of the field that gives
locations for each of the markers. The locations of the
markers as observed by vision are compared to the map
and are used by each robot to compute its own location
on the field [6, 10]. The output of the localization is two
2-dimensional Gaussian distributions, one for the robot’s
position and one for the robot’s heading. Each Gaussian
distribution is characterized by:

• µ, the mean, a 2-d vector of (x, y) position

• σ, the standard deviation, a 2-d vector of (σx, σy)

This year, wireless communication, in the form of 802.11
Ethernet, was available on the AIBO robots. This com-

Figure 2: This image shows two AIBO robots on a
regulation-sized field. The vertical cylinders in the cor-
ners of the field are the color-coded markers that are used
by the robots for localization.

munication, although it has low bandwidth and high la-
tency, allows the sharing of state information between
teammates. This paper presents our solution to utiliz-
ing communicated information effectively, despite being
unable to synchronize data streams from different robots
due to high latency, and without relying on an external
server for centralized information processing.

Using the information acquired by each robot through
its own vision and integrating the information commu-
nicated between teammates on an as-needed basis, we in-
troduce an approach for representing the world with two
separate world models: an individual world model that
describes the state of one robot, and a shared world model
that describes the state of the team.

3 Individual World Model

Each robot maintains for itself an individual world model
that contains its perception of the state of the world. The
individual world model is a vector containing the posi-
tions of all the task-relevant objects in the robot’s envi-
ronment. In our robot soccer task, it is comprised of:

• wm position, the robot’s position

• wm heading, the robot’s heading

• wm ball, the location of the ball

• wm teammate, a vector ofn teammate positions

• wm opponent, a vector ofmopponent positions

Each element of the individual world model contains two
components: a 2-dimensional position stored in global
coordinates, and a timestamp,τ . The position is stored as
a Gaussian structured to contain the same format of infor-
mation as the Gaussian parametric distributions described
in Section 2.



We identify three distinct classes of objects that are stored
in a world model. These are objects that are updated ei-
ther entirely from vision information, entirely from com-
municated information, or by using a combination of the
two. It is necessary to choose among these three poli-
cies to determine an appropriate update procedure for
each component of the world model. In our task, a
vision-only update is used for the robot’s own position
wm positionandwm heading, and for the opponent posi-
tion vector,wm opponent. The teammate position vector,
wm teammate, relies entirely upon shared information
broadcast by each robot. Only the ball position,wm ball,
relies on both sources of information, combining its posi-
tion as returned by vision with information that is shared
between teammates.

The updates to the robot’s location,wm position and
wm heading, come directly from localization, which in
turn relies entirely on vision and the robot’s internal map
of the field. Although the vision returns positions for
robots of both colors, making it theoretically possible for
teammates to observe each other, the robots are physi-
cally identical, making it impossible to distinguish visu-
ally between robots on the same team. Therefore, a robot
will not be able to improve its own localization estimate
by integrating estimates of its position broadcasted by its
teammates. For this same reason, it is difficult to accu-
rately update the opponent position vector,wm opponent.
The vision module returns a vector of the positions of all
opponent robots that were observed. Again, there are no
visual characteristics that distinguish one opponent from
another. In solving this data association problem, we uti-
lize a greedy approach. The world model attempts to
match a new observation of an opponent to a previous ob-
servation already stored in the world model by updating
the stored position that is physically closest to the newly
observed position.

For the reasons detailed above that indicate that a robot’s
own localization is more accurate than estimates of its
position broadcasted by teammates, it is preferable to
use the position provided shared by each robot to its
teammates when updating the teammate position vector,
wm teammate, rather than attempting to integrate both
sources of information. When updating, the position of
each teammate is requested from the shared world model
and stored directly inwm teammate.

The position of the ball,wm ball, is the only element of
our world model that benefits from combining sensing
information returned by vision with shared information
transmitted between teammate. The procedure to update
ball position can be broken down into two steps: an up-
date from vision and an update from shared information.

3.1 Update from Vision

The most accurate estimate of ball position,wm ball, is
extracted from the information returned by vision and up-

dated as described in Table 1. Because vision returns
the locations of objects in coordinates local to the robot,
whereas the positions are stored in global coordinates in
the world model, it is necessary to convert all object po-
sitions into global coordinates. If vision reports that the
ball has been seen, it is merged with the old ball position
[9, 2]. The merge method takes advantage of the prop-
erty of Gaussian distributions that states that the product
of two Gaussians is also a Gaussian. By multiplying the
two position estimates, taking into account their standard
deviations, we end up with an estimate that is a weighted
average of the old position and the new observation. Be-
cause we grow uncertainty with time, old information is
given less weight than new information that starts with
the default small standard deviation,SMALL ERROR, al-
lowing us to converge to the correct ball position with
relatively few observations. However, by not discarding
the old ball position out of hand, we are able to maintain
a smoother estimate of ball position that does not fluc-
tuate drastically as a result of spurious sensor readings.
When merging the ball positions, it is important to limit
the standard deviation,σwm ball, to no less than the de-
fault minimum confidence value,SMALL ERROR, to pre-
vent it from becoming vanishingly small.

ProcedureUPDATEV ISION(ball pos, op pos, τcurrent)
Update the ball position.

if ball pos 6= NIL

µglobal = µwm position+
ROTATE(µball pos, µwm heading)

σglobal = SMALL ERROR

MERGE(wm ball, {µglobal, σglobal})
τwm ball = τcurrent

Table 1: Procedure to Update from Vision

3.2 Update from Shared Information

When vision has failed for a certain period of time to pro-
vide information about the position of the ball, the ball
position is updated, as in Table 2, from information stored
in the shared world model. The format of the shared
world model is described in Section 4.

As explained in Section 2, the communication latency be-
tween robots is extremely high. Each robot receives in-
formation from its teammates, on average, every .5 sec-
onds, but the latency was occasionally observed to be as
high as 5 seconds. Additionally, because timestamps as-
sociated with the data are local to each robot and can-
not be matched between robots, it is impossible to inte-
grate shared information via a Kalman filter, unlike other
implementations that did allow this approach [5]. Be-
cause of these restrictions, we use the shared ball infor-
mation sparsely, and only when the ball cannot be easily
located by an individual robot. If the ball has not been
observed by the robot for a period of time greater than



τthreshold, the best available ball location is requested
from the shared world model, using theGETBALL LO-
CATION function. (See Table 4 and the accompanying
description in Section 4.)

ProcedureUPDATESHAREDINFORMATION(τcurrent)
if τcurrent − τwm ball > τthreshold

sharedball = GETBALL LOCATION(τcurrent, robot id)
if sharedball 6= NIL

wm ball = MERGE(wm ball, sharedball)
τwm ball = τcurrent

Table 2: Procedure to Update from Shared Information

3.3 Accounting for Aging Information and Localiza-
tion Changes

Because the robot soccer environment is dynamic, we
expect objects to move over time from where the robot
last observed them. Although we intend to investigate
velocity-tracking in the future, we present here a position-
only world model that does not attempt to track veloci-
ties. To account for unobserved motion of objects with-
out knowing their velocities, we grow our uncertainty for
any object in the individual world model that was not ob-
served in the last time step by addingSMALL ERROR to
each object’s standard deviation.

The localization module and the individual world model
are updated at different times during the system execu-
tion, making it necessary to correct the world model to
account for changes in localization information. When
the robot executes a localization update due to seeing a
marker, its estimate of its own position changes, even
though its physical position has not changed. To en-
sure consistency between the individual and the shared
world models, objects in both world models are stored in
global coordinates. However, this means that changes in
the robot’s knowledge of its position caused by seeing a
marker also make it appear to the robot as if the other
objects in its environment have suddenly changed posi-
tion with respect to itself. Because we need to know the
position of the ball with high accuracy at all times, it is
necessary to correct the position of the ball to account
for this shift immediately. The procedure in Table 3 was
implemented to correct for this source of error.

4 Shared World Model

The shared world model is a fully distributed data struc-
ture, with each robot maintaining its own on-board copy.
The contents of each robot’s shared world model are:

• swmposition, a vector ofn teammate positions

• swmball, a vector containing each teammate’s esti-
mate of the ball position

ProcedureSHIFTBALL ()
Getrobot positionandrobot angle
Shift the ball position into local coordinates:

µto local = ROTATE(µrobot position,−µrobot angle)
µwm ball = µwm ball − µto local

Do the localization update from the sensor reading.
Get the updated robot position and heading.
Shift the ball back into global coordinates:

µto global = ROTATE(µwm ball, µrobot angle)
µwm ball = µrobot position− µto local

Table 3: Correction for Localization Shift

• swmgoalie, a vector containing a flag for each
teammate, indicating whether or not that robot is the
goal keeper

• swmsawball, a vector containing a flag for each
teammate, indicating whether or not that robot saw
the ball in the last time step

The last flag,swmsawball is important because it pre-
vents other robots from incorporating old or second-
hand information into their individual world models
when they receive an update from this robot. Each ele-
ment inswmpositionandswmball is made up of a 2-
dimensional Gaussian and a timestamp,τ , as in the indi-
vidual world model.

Updates to the shared world model occur asynchronously,
with each robot updating its model whenever it receives
a broadcast from a teammate. This means that com-
munication latency or dropped messages may cause the
shared world model contents to differ among robots. By
not requiring synchronization between teammates, we
avoid the communication overhead required to synchro-
nize. Each robot broadcasts its own shared information at
a rate of 2 Hz. Although this seems slow, it is due in part
to bandwidth limitations. Additionally, because the high
and variable latency prevents us from using the shared
information for fine-grained control, there is no reason to
broadcast at a higher rate.

Table 4 shows the procedure that is used by the indi-
vidual world model to access information stored in the
shared world model. TheGETBALL LOCATION proce-
dure determines which, among all the ball positions es-
timates reported by the team members, is the ’best’ esti-
mate of the true ball position. In the future, we may find
it worthwhile to attempt to merge ball estimates as they
are reported by different teammates. However, in the cur-
rent implementation, we attempt to select the ball esti-
mate that has the lowest uncertainty, and which has been
observed within a reasonable period of time,τthreshold.
We do not allow a robot to retrieve its own reported es-
timate from the shared world model, as this would only
reinforce the robot’s belief without adding new informa-



tion. Additionally, we require the uncertainty to be below
σthreshold, a maximum allowable uncertainty.

ProcedureGETBALL LOCATION(τcurrent, robot id)
ball = NIL

bestconfidence= σthreshold

for i = 1 . . . n
if i 6= robot id

if ISVALID (i, τcurrent)
if σswm balli < bestconfidence

bestconfidence= σswm balli

ball = swm balli
return ball

Procedure ISVALID (i, τcurrent)
if i < 0 or i > n

return FALSE

if τcurrent − τswm balli > τthreshold

return FALSE

if σswm balli > σthreshold

return FALSE

if swm sawballi 6= false
return FALSE

return TRUE

Table 4: Procedure to Get the Best Ball Location

5 Experimental Results

The shared and individual world models contributed in
this paper are fully implemented and were used by the
CM-Pack’02 legged-robot team in the 2002 RoboCup
competition. The team performed extremely well, win-
ning the competition to become the world champion.

In order to experimentally verify the efficacy of the world
model separate from the overall performance of the team
in competition, we designed a controlled experiment in
the lab. We compare the behavior of a robot team using
our world model, constructed with both sensor and shared
information, to an identical robot team using only local
sensor information for determining ball location.

The robot behaviors are comprised of many behavior
states, some of which can execute simultaneously. Each
robot transitions between states as a function of its in-
dividual world model, its localization, and some team-
work objective functions [12]. A new behavior is chosen
20 times per second. During the execution of most be-
haviors, such as positioning itself on the field or walking
towards the ball, the robot opportunistically observes the
world, updating its world model and localization as it sees
markers or objects. As the robot’s uncertainty about the
position of the ball grows, it transitions between the states
illustrated in Figure 3.

The robot’s certainty about the position of the ball is
highest in State 1, when the ball has been seen within
the last time step. If the ball has been seen recently,
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Figure 3: Different degrees of certainty about ball posi-
tion through which the robot transitions during execution.

the robot operates in State 2, using the position of the
ball saved in its individual world model. State 3 is trig-
gered when the robot chooses to request information from
its shared world model, as described in Section 3, and
valid shared information is returned. If there is no valid
shared information available, and the age of the ball po-
sition information in the individual world model grows
beyond a threshold,τsearch, the ball is considered “lost”,
and the robot transitions into State 4, where the behav-
ior SEARCHSPIN is executed. The threshold of time
without knowing the position of the ball that triggers a
transition into the SEARCHSPIN behavior was chosen
to be approximately 5 seconds. In this behavior, which
interrupts the robot’s previous behavior, the robot spins
in place, attempting to locate the ball on the field. Be-
cause this behavior interrupts other behaviors, we seek to
minimize its occurrence.

In the experiment that we conducted, we ran two teams,
each comprised of three robots, in two soccer games
against each other. The teams are identical, with three at-
tacker robots each. However, in one team, the robots were
not permitted to use shared information to update the ball
position. This is equivalent to forbidding transitions into
State 3 as it is depicted in Figure 3. Each game lasted
around 10 minutes, during which the ball was replaced in
the center of the field whenever a goal was scored, but
the robots were not moved back to their starting posi-
tions. Each attacker robot wrote to an on-board log file
every frame, and indicated whether or not it was currently
executing the SEARCHSPIN behavior, and if this cycle
was a new transition into the SEARCHSPIN behavior.
Table 5 shows the results of our experiment. In this table,
SHARED refers to the teams that used shared informa-
tion and NOSHARED refers to the teams that did not
share ball information. The “# starts” column indicates
the number of times that the robots transitioned into the
SEARCHSPIN behavior. The “cycles in search” column
gives the total number of behavior cycles in which the
SEARCHSPIN behavior was executed.



total cycles in % cycles #
cycles search searching starts

SHARED 95437 1754 1.84 % 74
NO SHARED 101076 19683 19.47 % 330

Table 5: Comparing how often the ball is lost by count-
ing behavior cycles spent in the SEARCHSPIN behavior,
with and without shared information

The robots use the confidence and timestamp values
stored in the individual world model to determine when to
transition into the SEARCHSPIN behavior. Therefore,
we consider the SEARCHSPIN behavior to provide an
accurate estimate of how frequently the individual world
model considers the ball to be lost. Without shared in-
formation from their teammates, the robots considered
the ball to be lost for 19.47% of the game time, over 10
times more than the robots that did incorporate shared
information. They were forced to interrupt their game-
playing behavior to search for the ball on average every
306 frames, 4.2 times more often than the team incor-
porating shared information. By effectively integrating
information that is shared between cooperative agents, as
demonstrated by these results and the results shown in
[12], we are able to minimize the instances in which the
robots are unable to locate the ball, thus improving the
performance of our robots over what they would be able
to achieve without cooperation.

6 Conclusion

In this paper, we presented our approach for building a
real-time world model for a fully distributed multi-robot
team. Communication between teammates on our hard-
ware platform had high and variable latency, making it
impossible to synchronize with sensor data that arrived
predictably at 20 Hz. Despite this challenge, we were
able to utilize shared information effectively by build-
ing both an individual and a shared world model for each
agent, and using shared information only when appropri-
ate and on an as-needed basis.

Our experimental results clearly show that sharing infor-
mation about the state of the world with teammates helps
robots to overcome the problem of partial observability
when locating relevant objects in their environment. By
using both the individual and the shared world models,
the robots were more aware of the position of the task
relevant dynamic object (e.g the ball), and needed to in-
terrupt their goal-directed behaviors to re-acquire its po-
sition with lower frequency.

Communication, even with lower latency, and the need
to merge state information gathered by local sensing with
collaborative information shared between robots on the
same team, are ongoing challenges for the multi-robot
domain. Our approach, detailed in this paper, contributes
a step towards meeting this challenge by providing a
method that is applicable to any multi-robot team that op-

erates under equivalent real-time and high latency com-
munication conditions.
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