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Abstmcl-This paper presents a method for image based 
mhot navigation under the full perspective model. The 
robot navigates through unknown indoor environments. A 
target image is taken from an unconstrained position in 
the environment and given to the robot. The robot starts 
at an arbitrary position and navigates to the position at 
which the target image was taken. The approach is based 
on using images of the environment taken by the rohot at 
different positions along the path and comparing them with 
a target image. No extraction of 3D models of the scene 
is needed. The robot finds automatically an image which 
shows part of the environment shown in the target image. 
I t  then moves on the floor, lakes pictures with its camera, 
finds corresponding feature in the current and target image, 
and uses them to extract the motion parameten to the 
target location, All these steps are performed automatically. 
This paper describes experimental results performed with a 
Nomad XR4000 mobile robot. These experiments show the 
feasibility and the significant benefits of our approach. 

I. INTRODUCTION 
Various algorithms in the field of vision-based navi- 

gation of autonomous indoor vehicles were developed in 
recent years [9], [IS]. Indeed, in an industrial environment, 
the presence of autonomous mobile robots performing 
repetitive tasks is more and more predominant. Moving 
a robot to the desired position and orientation in such an 
environment is significant particularly in the context of a 
flexible environment. This task is usually performed by 
providing the robot with the model of the environment 
[21], [22], [19]. The main drawback of this technique in 
the context of flexible environments is its rigidity. Human 
intervention is needed in order to redefine the task as 
the environment changes. The second drawback of this 
approach is the loss of accuracy due to measurement 
error accumulation. Our system can be attributed to the 
relatively new View-Based approach, which utilizes the 
appearance of the scene [7], [ZO], [I51 and does not require 
map building. Consequently, it is much more flexible. 
Still, the huge memory requirements and computational 
cost associated with these algorithms constitute their major 
disadvantage. In [17], [16]. for example, the sequence of 
frontal views along the route has to be memorized which 
is particularly problematic if the starting position of the 
robot may viuy. 

This article describes a vision based navigation al- 
gorithm for a mobile robot, which constitutes a further 

investigation of the paradigm described in [I], [2]. Related 
work in the general field of visual servoing has also been 
performed in [141, [241, [3], [13]. The target pose is 
specified only by an image taken from that pose. This 
is the only input the robot gets. As the robot moves along 
its path, it takes pictures that together with the target 
image are used to estimate the direction of motion to 
the goal. In addition the robot is able to autonomously 
find the route to a desired object which appears in the 
target image, even when this object changes its position. 
In this paper the problem of a real mobile robot moving 
in indoor environment with three degrees of freedom is 
considered. No previous knowledge of the environment is 
necessary. One of the most important contributions of this 
project is the fully automated robust implementation of 
the algorithm. No human intervention is required at any 
stage of the navigation. 

The paper is structured as follows. In Section U we 
present an overview of the approach. Section IlI introduces 
the theoretical basis of the image-based robot navigation 
under the full perspective projection model. Section IV 
discusses the robust implementation of the algorithm. In 
Section V the results of the experiments performed with 
a Nomad XR4000 mobile platform are presented. We 
summarize the paper and discuss future research directions 
in Section VI. 

11. OVERVIEW 

The framework in which the proposed navigation al- 
gorithm works is as follows. A mobile robot is taken to 
a small number of positions in an indoor environment. 
At each target position an image is taken by the robot's 
onboard camera. The target positions and orientations are 
selected such that at each position in the environment there 
exists an orientation from which part of the scene shown 
in one of the target images is visible. At runtime the robot 
is placed in an unknown position in the environment. 
It then looks for the initial orientation for which there 
exists an overlap in scenes. This enables it to start the 
algorithm. Thus initially, it rotates on its place taking 
significantly overlapping pictures. Then, from the array of 
these pictures, it automatically finds the one that overlaps 
with the target image. This image is considered as the 
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starting image. This way, no constraints on the initial 
position are imposed. 

In the second pan of the algorithm the current and target 
images are compared. Features are extracted from both 
images and matched trying to find correspondences. The 
quality of these matches are usually very low. Even so the 
epipolar geometry relating the two images is estimated. 
From the recovered epipolar geometry the relative orien- 
tation of the two imaging positions and the direction to 
the target position is estimated. The robot starts moving 
towards the goal taking additional images on the way. 
These images are used to recover the distance to the 
goal and improve the quality of the estimate of the target 
position. Since the estimate is repeated at each image, 
localization errors do  not accumulate. The block diagram 
of the algorithm is shown in Fig. 1. 

lmages seen 
by robot 

Fig. 1. The block diagram of the multi-tuget MVigation algofithm. 

Two navigation strategies are possible. In the first strat- 
egy after the parameters for translation and rotation needed 
to arrive to the target have been estimated, the robot 
moves a small fraction of the distance to the goal. Then 
it takes another image. Before continuing in the proposed 
direction, it checks that it is now closer to the target than 
before the movement and updates its parameters. This 
process repeats until the goal is achieved. The second 
strategy works iteratively. After calculating the translation 
and rotation parameters, the robot moves to the estimated 
goal. Then it takes another image and mats it as the initial 
image, calculating the parameters again. The iteration 
process continues until the difference between the current 
position image and the target image is small enough. The 
second algorithm is faster requiring less images than the 
Grst algorithm. It is however less robust because errors in 
the estimation can yield images which do not overlap with 
the target scene which will require lo repeat the first step 
of the algorithm which is time consuming. 

Under this paradigm the robot does not have lo move 
directly to the goal. It can pas on the way through some 
intermediate targets. Consequently, the robot can navigate 

through these landmuks towards targets that it cannot see 
from the initial position. For example, the robot will be 
capable of finding targets that are situated in other rooms. 
Another use of intermediate targets is to enable the robot 
to pass through some tight spots such as doors by taking 
an intermediate target image at the door. 

In the following sections we will describe in detail the 
components of the algorithm and its implementation. 

111. FULL- PERSPECTIVE ROBOT NAVIGATION 

In this section, we consider the problem of image- 
based robot navigation when the full-perspective projec- 
tion model is assumed. Our goal is to move the robot to 
an unknown target position and orientation S, which is 
given in the form of an image I of the scene taken from 
that position. At any given step of the algorithm the robot 
is allowed to take an image I‘ of the scene and use it 
to determine the next move. Denote the current unknown 
position of the robot by S’, our goal then is to lead the 
robot to S. 

A. Extrinsic Camera parameters recovery 

Before running the algorithm the camera used in the 
experiments is calibrated and its intrinsic parameters r e p  
resented by the matrix K are recovered. We consider 
a camera that is rigidly positioned on the robot. The 
extrinsic parameters of the image with respect to the target 
image uniquely determine the position and orientation of 
the robot. To determine the motion of the robot we have to 
recover tbe relative position and orientation S’ of the robot 
relative to the target pose S from the corresponding images 
I’ and I .  By finding sufficiently many correspondences 
in the two images we can recover information about the 
motion parameters relating the two poses. These are the 
translation vector t = (t,,O,t,) which can be recovered 
only up to scaling factor along with the rotation angle 8. 
From the recovered information about the translation , we 
can deduce the direction to the target position. In order to 
obtain an estimate for the distance to the target we need 
an additional image which is taken by robot as it moves 
towards the goal. 

Fig. 2. Epipalar Geometry 

2737 



E. Epipolar geometry 

Epipolar geometry describes a geometric relationship 
between the positions of corresponding points in two im- 
ages. We examine the case where the intrinsic calibration 
parameters of the cameras have been estimated in advance. 
In our case the difference in the positions of the two 
cameras is due to motion in the plane parallel to the floor 
(the X o Z plane ) and rotation about the Y axis. 

Let p and p' be the projections of a 3D point P on 
the target and current image respectively. The calibrated 
points are: p = K-lp and ti' = K-'p'. where K is the 
calibration matrix. Since the robot can rotate only about 
the Y-axis, the rotation matrix is: 

R = (  0 1 0 ) .  
Let the translation of the robot in the plane X o Z be t = 
( t f ,  0 ,  t,)T . Thus the epipoles in the calibrated images 
are e = (t,/t,,O, 1) and e' = Re. The epipolar constraint 
relating corresponding points can be expressed as: 

. cos(6) 0 sin(6) 

-sin(e) o cos(e) 

6iTRt x 6; = 0. (1) 

pFFp; = 0. (4) 

E = KTFK.  (5) 

This matrix is related to the essential matrix by 

In order to solve the equation (4) linearly, eight corre- 
spondences are needed which constitute a major drawback 
compared to the method that takes advantage of the special 
simplified suuctnre of E in our this case which requires 
only three matches. 

C. Finding the distance to the target 
As the rotation angle and the moving direction have 

been recovered from two images, the only unknown pa- 
rameter that remains is the distance to the target which 
will require another image. After acquiring the f i s t  image 
computing the motion direction and rotation angle, the 
robot stans to move in the proposed direction. It moves 
a relatively small distance and acquires a second image. 
Now we have three images - the images from the first, 
second and target positions. Moreover, we have an esti- 
mate for the distance traveled between the first and the 
second position, as we know how far the robot moved. 
The obtkned images are denoted I ,  I!,  I", where I is the 
target image and I ,  and I,, are the and the previous 
images respectively. The robot made a step of size at and 

Here x denotes the vector product. Introducing a skew- 
symmetric matrix 

0 -t,  

0 t ,  

the remaining number of steps of size &t to the target 
position is U = l / n  which have to be recovered. 

First, we compensate for the rotation between the poses 
of the images by applying the inverse rotation matrices 
to the points recovered from the images. Now the image This constraint (1) can be rewritten in matrix form as : 

fiiTEp, = 0, (2) 

where E = R[t], is called the essential Matrix. This 
constraint limits the position of the corresponding point 
of p; 3 to lie on an epipolar line 1' = Ep; which goes 
through the epipole e' and for $i to lie on an epipolar line 
1 = ETpi which goes through e. 

In our case, the essential matrix is of the type: 

0 -cOs(S) +Sin(S)k 0 
E = (  1 0 -. t =  ) . (3) 

0 sin(@) + cos(6)& 0 

In order to recover E by solving equation (2) linearly, 
three correspondences are needed. This is a variation 
on the general eight-point algorithm [ I l l ,  151, [6]. The 
parameters e,  = t , / t ,  and 6 can be recovered from the 
essential matrix (3). 

In order to deal with the uncalibrated points in the 
images we substitute for p:,$; in (2) yielding: 

p ; T ~ - T ~ ~ - l p i  = 0 

We define the fundamental matrix F such that 

planes-are parallel. Thus the image poses are separated 
only by translation in the direction o f t  = ( t , , O ,  t s ) .  The 
epipoles of all images are at e = (t./t., 0,l). Given a 
point in the scene P = (X, Y, Z) the z coordinates of the 
calibrated projections of P to the three images are: 

As shown in [2], by eliminating X and Z the following 
expression can be received: 

(7) 
1 (z' - z)(z" - e , )  

U = - =  
a (2" - 2' - e=) 

The z coordinates can be replaced by the'position along 
the epipolar line. So Y is actually the cross ratio along the 
epipolar line. The geometric interpretation of (7) could be 
seen in Fig. 3. 

U indicates not only the distance but the direction as 
well. A positive U will indicate that the robot is moving 
towards the target position where as a negative v will mean 
that it is moving away from the target pose. Theoretically, 
only one point triplet is enough to recover U, but in 
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Fig. 3. The Geometric interpretation of Ule cmss-ratio 

practice, it is desirable to examine all the points in order 
to retrieve a reliable estimate, since the error can be quite 
significant for a single triplet. 

Iv. IMPLEMENTATION 
The main building block of our system is a module 

which recovers the essential mauix E from a pair of 
calibrated images. First, the SUSAN corner detector [23] 
is applied to both images. Then corresponding points are 
found based on local image similarity. The problem is 
however that many of the proposed matches are incorrect 
as can be seen in (Fig. 4). We will therefore have to 
employ a robust technique to recover the essential matrix. 

As the degrees of freedom of the motion of the robot 
are known, they yield constraints on the essential mauix. 
Two ways to calculate the essential matrix exploiting 
these constraints are explored. The first way is to estimate 
linearly the fundamental matrix first from 8 matching pairs 
of points, disregarding at this point the special structure of 
the essential matrix. Next the inuinsic calibration matrix 
K is applied to it to compute the essential matrix. In the 
final stage the closest essential matrix of type (3) is found 
and the motion parameters t./t, and 0 are extracted from 
it. The second method is to calculate an estimate for an 
essential matrix of the type we are searching from the sm 
from a match of three points only. This method is better 
because it requires less matches for the estimation stage 
and because it yields an essential matrix which satisfies 
the special constraints of our case from the beginning. 

A. RANSAC algorithm 
The last problem that we have to deal with is the large 

number of incorrect, matches. To solve this problem we 
apply the RANSAC paradigm [4]. The main steps of this 
algorithm for essential matrix calculation are as follows: 

0 Repeat for N samples: . Select a random sample of m correspondences 
from the initial set and compute E (3). In our 
case m = 3. 

Compute from E and K the fundamental matrix 
F. 
Calculate the distance d; for each putative corre- 
spondence p;,pi from its corresponding epipolar 
lines 1 and 1' respectively, where 

d; = dist@;,l;)2 + dist(pi,1i)2 (8)  
= @TFp;)2 

1 1 
((FP;): + (FPi); + (FT&)z + ( F  T P i ) ,  ! 2 )  

Compute: " 
d = min(d;, 6 )  (9) 

i=l 

a score for the current hypothesized E ,  where 
6 is a preset threshold estimating the maximal 
value a d; of an inlier pair can get for a correct 
E with high probability. 

0 Choose the E with the smallest value of d. 
The number of trials N has to chosen to ensure with 

high probability p that at least one of samples of m 
selected pairs is free from outliers. Following [lo], N is 
chosen to be at least as high as 

where e is the outlier proportion in the initial set. 
By examining this equation it is obvious in the first 

method which we considered in which m = 8, a much 
larger number of trials would be needed to find a correct 
match then in the second method. In addition in cases 
where the number of correct matches is small we might 
not have enough inliers at all to compute the essential 
matrix and verify its correctness. 

V. EXPERIMENTAL RESULTS 
The algorithms described above have been implemented 

and real world experiments were conducted in the lab on 
a Nomad xR4000 robot. The robot was equipped with a 
Canon VC-C3 Camera . The camera has been calibrated 
based on the method suggested by [25]. 

At the beginning, the robot was placed at two target 
positions and target images were taken. The XR4000 was 
then placed at an arbitrary position and orientation in the 
environment. 

In the first stage, the robot rotates about its central 
axis by 360" taking a picture every 18' and comparing 
it with the target image (Fig. 5(a)). For every current 
image-target image pair, the essential matrix and its score 
d is computed using the procedure described above. The 
image whose essential matrix yields the lowest score is 
chosen. In the refinement stage, the robot rotates * 5 O  

around the position found in the first stage with a 1' step 
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Fig. 4. Two images of L e  same scene are presented. The View captured by the mbot f" different positions. 7he extracted corresponding points have 
the same numben on the images. Not all the corresponding points are found correctly. 

figures, the hatched regions exhibit the fields of view from 
different points of view. When the hatched regions of two 
positions overlap, the shared region can be seen from both 
positions. 

In the first experiment the robot navigates from the 
starting position 7(d) to the first target position 7(e). The 
hatched region 7(a) shows that there is a large overlapping 

(4 (b) (4 region between the fields of view of the start and the target 
position. This means that the navigation algorithm can be 

~ i g ' s  9(a)-(f) show the image sequence taken by 
camera on the robot in the first experiment as well as the 
robot position sequence. The robot successfully navigates 
from the start wsition 9(a) to the target wsition 9k). 

Rg. 5. Finding the SM position for the navigation algorithm. Ant 
360' rotation (a), secnnd refinement murid the b e t  position (b) mi 
finally. positioning the mbm on the position calculated From the second 
stage (C). 

(Fig. 5(b)). Fig. 6 demonstrates the experimental results 
of the initial orientation finding stage showing for each 
image the number of p i n t  pairs whose distance di was 
less than 6 and are therefore assumed to be correct. 

(a) (b) 
Fig. 6. Number of wrrecdy associaled corresponding points vs. image 
number: The results of initial orientation (a) and refinement stage (b). 
Here the column that demonsvates L e  optimal result found from the 
initial orientation. is white. 

After the most suitable image is found, it begins the 
image-based navigation algorithm image (Fig. 5(c)). 

The results of two experiments, which constitute a 
two target path, are considered below. The approximate 
environment maps are presented in Fig. 7(a)-(c). In these 

1.1, \-, 

(d) (e) (f) 
Fig. 7. The Multi-Target case. (a)-@): the map of the uperimmt 
enviranmenl. The view from the initial position (d), the 1.' wet 
position (e) and the Znd target position (0. 

In the second experiment the robot navigates from the 
start position 7(d) to the first target position 7(f). The robot 
could not navigate directly to the second target position 
from the initial position (7(d)) since the second target 
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image scene (7(f)) could not be seen from the start position 
(Fig. 7(b)). However, the robot can navigate to the second 
target position from the first target position (Fig. 7(c)) 
and to the first target position from the start position 
(Fig. 7(a)). A route that consists of two targets has been 
defined. The first target position is identical to the one of 
the first experiment. The second target is demonstrated 
in Fig. 7(f). The results of this experiment are shown 
in Fig. 9(f)-(n). The graphs of the robot position and 
orientation relative to the target’s position and orientation 
for these two experiments are shown in Fig. 8. 

1 7 IO 1 * 1 1 1 1  -- P- 

(a) (b) 
fig. 8. Experimental resdts: The difference between the robot’s current 
position and orientation and the target’s pase at every step for (a)fint 
and (b) second part of the expriment 

VI. CONCLUSIONS 
In this paper we have described a new algorithm for 

image-based robot navigation. The implementation devel- 
oped in the framework of this project is robust and does 
not require human intervention at any navigation stage. 
Our approach does not require either a predetermined 
model of the environment nor information about the 3- 
D position of the robot. The main idea is to retrieve the 
essential matrix l i n g  the image taken by the camera 
mounted on the robot with the target image. The param- 
eters estimating the translation direction and the rotation 
between the current robot position and the target robot 
position can be retrieved from the essential matrix. An 
additional image is required to estimate the distance to 
the goal. 

The system is highly efficient since it only stores three 
images, namely the current image, the previous image and 
the target image, at any given time. Another advantage of 
this algorithm is that it is not restricted to a predetermined 
planar path. Once it receives the target image, the robot 
determines its path on-line. Finally, applying the multi- 
target algorithm, one can make the robot navigate to a 
target that was not initially in its field of view. 

In this paper, we have ignored the issue of possible ob- 
stacles on the path of the robot. However, this issue can be 
solved by combining of the navigation algorithm described 
in this article with an obstacle avoidance algorithm such 
as the Bug algorithms LIZ], [SI. 

There are a couple of issues that remain to be addressed. 
First, the navigation algorithm can be broadened to deal 
with more than three degrees of freedom as well as with 
the possibility of onboard camera movement and rotation. 
This could be extremely important in industrial environ- 
ments, where robots with degrees of freedom higher than 
three are common. 

Second, the system can be adapted to work in flexible 
environments. That means that the robot will be trained to 
find a path to the desired position relative to some object 
even though the object itself can change its location. For 
example, the navigation goal could be to find a cup in the 
room, although the cup itself can be on an arbitrary place 
on the table or under the table. 

Finally, the target images can be used as a flexible map 
of the environment where at each point in time the robot 
can know its position with respect to one or more of the 
target images and be  given commands to reach any place 
in the environment and not only one of the target positions. 
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