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Abstract— This paper presents a method for image based
robot navigation under the full perspective model. The
robot navigates through unknown indoor environments. A
target image is taken from an unconstrained position in
the environment and given to the robot. The robot starts
at an arbitrary position and navigates to the position at
which the target image was taken. The approach is based
on using images of the environment taken by the robot at
different positions along the path and comparing them with
a target image, No extraction of 3D models of the scene
is needed. The robot finds automatically an image which
shows part of the environment shown in the target image.
It then moves on the floor, takes pictures with its camera,
finds corresponding features in the current and target image,
and uses them to extract the motion parameters to the
target location. All these steps are performed antomatically.
This paper describes experimental resulis performed with a
Nomad XR4000 mobile robot. These experiments show the
feasibility and the significant benefits of our approach.

I. INTRODUCTION

Various algorithms in the field of vision-based navi-
gation of autonomous indoor vehicles were developed in
recent years {9}, [18]. Indeed, in an industrial environment,
the presence of autonomous mobile robots performing
repetitive tasks is more and more predominant. Moving
a robot to the desired position and orientation in such an
environment is significant particularly in the context of a
flexible environment. This task is usually performed by
providing the robot with the model of the environment
{211, [22], [19]. The main drawback of this technique in
the context of flexible environments is its rigidity. Human
intervention is needed in order to redefine the task as
the environment changes. The second drawback of this
approach is the loss of accuracy due to measurement
error accumulation. Our system can be attributed to the
relatively new View-Based approach, which utilizes the
appearance of the scene [7], [20], {15] and does not require
map building. Consequently, it is much more flexible.
Still, the huge memory requirements and computational
cost associated with these algorithms constitute their major
disadvantage. In [17], [16], for example, the sequence of
frontal views along the route has to be memorized which
is particularly problematic if the starting position of the
robot may vary,

This article describes a vision based navigation al-
gorithm for a mobile robot, which constitutes a further
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investigation of the paradigm described in [1], [2]. Related
work in the general field of visual servoing has also been
performed in [14], [24], [3], [13]). The target pose is
specified only by an image iaken from that pose. This
is the only input the robot gets. As the robot moves along
its path, it takes pictures that together with the target
image are used to estimate the direction of motion to
the goal. In addition the robot is able to autonomously
find the route to a desired object which appears in the
target image, even when this object changes its position.
In this paper the problem of a real mobile robot moving
in indoor environment with three degrees of freedom is
considered. No previous knowledge of the environment is
necessary. One of the most important contributions of this
project is the fully automated robust implementation of
the algorithm. No human intervention is required at any
stage of the navigation.

The paper is structured as follows. In Section I we
present an overview of the approach. Section III introduces
the theoretical basis of the image-based robot navigation
under the full perspective projection model. Section IV
discusses the robust implementation of the algorithm. In
Section V the results of the experiments performed with
a Nomad XR4000 mobile platform are presented. We
summarize the paper and discuss future research directions
in Section VL

II. OVERVIEW

The framework in which the proposed navigation al-
gorithm works is as follows. A mobile robot is taken to
a small number of positions in an indoor environment.
At each target position an image is taken by the robot’s
onboard camera. The target positions and orientations are
selected such that at each position in the environment there
exists an orientation from which part of the scene shown
in one of the target images is visible. At runtime the robot
is placed in an unknown position in the environment.
It then looks for the initial orientation for which there
exists an overlap in scenes. This enables it to start the
algorithm. Thus initially, it rotates on its place taking
significantly overlapping pictures. Then, from the array of
these pictures, it automatically finds the one that overlaps
with the target image. This image is considered as the



starting image. This way, no conastraints on the initial
position are imposed.

In the second part of the algorithm the current and target
images are compared. Features are extracted from both
images and matched trying to find correspondences. The
quality of these matches are usually very low. Even so the
epipolar geometry relating the two images is estimated.
From the recovered epipolar geometry the relative orien-
tation of the two imaging positions and the direction to
the target position is estimated. The robot starts moving
towards the goal taking additional images on the way.
These images are used to recover the distance to the
goal and improve the quality of the estimate of the target
position. Since the estimate is repeated at each image,
localization errors do not accumulate. The block diagram
of the algorithm is shown in Fig, 1.

!m;ges ;een
by robot

Fig. 1. The block diagram of the multi-target navigation algorithm.

Two navigation strategies are possible. In the first strat-
egy after the parameters for translation and rotation needed
to arrive to the target have been estimated, the robot
moves a small fraction of the distance to the goal. Then
it takes another image. Before continuing in the proposed
direction, it checks that it is now cleser to the target than
before the movement and updates its parameters. This
process repeats until the goal is achieved. The second
strategy works iteratively. After calculating the translation
and rotation parameters, the robot moves to the estimated
goal. Then it takes another image and treats it as the initial
image, calculating the parameters again. The iteration
process continues until the difference between the current
position image and the target image is small enough. The
second algorithm is faster requiring less images than the
first algorithm. It is however less robust because errors in
the estimation can yield images which do not overlap with
the target scene which will require to repeat the first step
of the algorithm which is time consuming,

Under this paradigm the robot does not have 10 move
directly to the goal. It can pas on the way through some
intermediate targets. Consequently, the robot can navigate
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through these landmarks towards targets that it cannot see
from the initial position. For example, the robot will be
capable of finding targets that are situated in other rooms.
Another use of intermediate targets is to enable the robot
to pass through some tight spots such as doers by taking
an intermediate target image at the deor.

In the foilowing sections we will describe in detail the
components of the algorithm and its implementation.

I1I. FULL- PERSPECTIVE ROBOT NAVIGATION

In this section, we consider the problem of image-
based robot navigation when the full-perspective projec-
tion model is assumed. Our goal is to move the robot to
an unknown target position and orientaticn S, which is
given in the form of an image I of the scene taken from
that position. At any given step of the algorithm the robot
is allowed to take an image I' of the scene and use it
to determine the next move. Denote the current unknown
position of the robot by S’, our goal then is to lead the
robot to S.

A. Extrinsic Camera parameters recovery

Before running the algorithm the camera used in the
experiments is calibrated and its intrinsic parameters rep-
resented by the matrix K are recovered. We consider
a camera that is rigidly positioned on the robot. The
extrinsic parameters of the image with respect to the target
image uniquely determine the position and orientation of
the robot. To determine the motion of the robot we have 1o
recover the relative position and orientation S” of the robot
relative to the target pose S from the corresponding images
I’ and I. By finding sufficiently many correspondences
in the two images we can recover information about the
motion parameters relating the two poses. These are the
translation vector ¢ = {t;,0,t,) which can be recovered
only up to scaling factor along with the rotation angle 6.
From the recovered information about the translation , we
can deduce the direction to the target position. In order to
obtain an estimate for the distance to the target we need
an additional image which is taken by robot as it moves
towards the goal.

Fig. 2. Epipolar Geometry.



B. Epipolar geometry

Epipolar geometry describes a geometric relationship
between the positions of corresponding points in two im-
ages. We examine the case where the intrinsic calibration
parameters of the cameras have been estimated in advance.
In our case the difference in the positions of the two
cameras is due to motion in the plane parallel] to the floor
(the X o Z plane ) and rotation about the Y™ axis,

Let p and p' be the projections of a 3D point P on
the target and current image respectively. The calibrated
points are: p = K~'p and §' = K™/, where K is the
calibration matrix. Since the robot can rotate only about
the Y'-axis, the rotation matrix is:

.cos(d) 0 sin(@)
¢ 1 0

—sin(®) 0 cos(9)

Let the translation of the robot in the plane X o Z be ¢ =
{£z,0,2.)T . Thus the epipoles in the calibrated images
are e = (£ /t,,0,1) and ¢’ = Re. The epipolar constraint
relating corresponding points can be expressed as:

R =

PRt % p; = 0. (1)

Here x denotes the vector product. Introducing a skew-
symmetric matrix

0 ¢, 0
[t] x = ts 0 —tz
0 t 0

This constraint (1) can be rewritten in matrix form as :

@

where E = R[t]; is called the essential Matrix, This
constraint limits the position of the corresponding point
of fi; p} 1 lie on an epipolar line I' = Ep; which goes
through the epipole ¢’ and for ; to lie on an epipolar line
l= ETﬁ; which goes through e.

In our case, the essential matrix is of the type:

T Ep; = 0,

0 —cos(d) +sin(f)x 0
E=|1 0 —b 3)
0 sin(@) + cos(8) %j- 0

In order to recover E by solving equation (2) linearly,
three correspondences are needed. This is a variation
on the generai eight-point algorithm [11], [5], [6]). The
parameters e; = ¢, /¢, and 8 can be recovered from the
essential matrix {3).

In order to deal with the uncalibrated points in the
images we substitute for #}, §; in (2) yielding;

?TKTEK 'p; =0

‘We define the fundamental matrix F such that
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P Fp; =0 Q)
This matrix is related to the essential matrix by
E=KTFK. 5)

In order to solve the equation (4} linearly, eight corre-
spondences are needed which constitute a major drawback
compared to the method that takes advantage of the special
simplified structure of E in our this case which requires
only three matches.

C. Finding the distance to the target

As the rotation angle and the moving direction have
been recovered from two images, the only unknown pa-
rameter that remains is the distance to the target which
will regnire another irnage. After acquiring the first image
computing the motion direction and rotation angle, the
robot starts to move in the proposed direction. It moves
a relatively small distance and acquires a second image.
Now we have three images - the images from the first,
second and target positions. Moreover, we have an esti-
mate for the distance traveled between the first and the
second position, as we know how far the rohot moved.
The obtained images are denoted I, I', I'", where I is the
target image and I' and 1" are the current and the previous
images respectively. The robot made a step of size at and
the remaining number of steps of size at to the target
position is # = 1/« which have to be recovered.

First, we compensate for the rotation between the poses
of the images by applying the inverse rotation matrices
to the points recovered from the images. Now the image
planes are parallel. Thus the image poses are separated
only by translation in the direction of ¢ = (£;,0,¢;). The
epipoles of all images are at e = (¢;/t,,0,1). Given a
point in the scene P = (X, Y, Z) the x coordinates of the
calibrated projections of P to the three images are:

X X+t , _X+(+a)t,
Z7 T Z4t,T T Z+(l+al,

As shown in [2], by eliminating X and Z the following
expression can be received:

1 _ (2" —2)(z" —ea)
T (2" - 2)(z —es)

&

The z coordinates can be replaced by theposition along
the epipolar line. So v is actually the cross ratio along the
epipolar line. The geometric interpretation of (7) could be
seen in Fig. 3.

v indicates not only the distance but the direction as
well. A positive # will indicate that the robot is moving
towards the target position where as a negative  will mean
that it is moving away from the target pose. Theoretically,
only one point triplet is enough to recover u, but in

=

(6)

N



Fig. 3. The Geometric interpretation of the cross-ratio.

practice, it is desirable to examine all the points in order
to retrieve a reliable estimate, since the error can be quite
significant for a single triplet.

IV. IMPLEMENTATION

The main building block of our system is a module
which recovers the essential matrix E from a pair of
calibrated images. First, the SUSAN corner detector [23]
is applied to both images. Then corresponding points are
found based on local image similarity. The problem is
however that many of the proposed matches are incorrect
as can be seen in (Fig. 4). We will therefore have to
employ a robust technique to recover the essential matrix.

As the degrees of freedom of the motion of the robot
are known, they yield constraints on the essential matrix.
Two ways to calculate the essential matrix exploiting
these constraints are explored. The first way is to estimate
linearly the fundamental matrix first from 8 matching pairs
of points, disregarding at this point the special structure of
the essential matrix. Next the intrinsic calibration matrix
K is applied to it to compute the essential matrix. In the
final stage the closest essential matrix of type (3) is found
and the motion parameters ¢; /. and § are extracted from
it. The second method is to calculate an estimate for an
essential matrix of the type we are searching from the start
from a match of three points only. This method is better
because it requires less matches for the estimation stage
and because it yields an essential matrix which satisfies
the special constraints of our case from the beginning.

A. RANSAC algorithm

The last problem that we have to deal with is the large
number of incorrect matches, To solve this problem we
apply the RANSAC paradigm [4]. The main steps of this
algorithm for essential matrix calculation are as follows:

& Repeat for N samples:
« Select a random sample of m correspendences
from the initial set and compute E (3). In our
case m = 3.
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» Compute from E and K the fundamental matrix
F.

« Calculate the distance d; for each putative corre-
spondence p;, p; from its corresponding epipolar
lines [ and I’ respectively, where

di = dist(pi, 1;)? + dist(pl, 1)) (8)
= (o' Fp)?
1 1
((Fpi)a TR T ETEE T :);)
» Compute:

bid

d="" min(d;,d)

i=1

®

a score for the current hypothesized E, where
4 is a preset threshold estimating the maximal
value a d; of an inlier pair can get for a correct
E with high probability.

{ Choose the E with the smallest value of d.

The number of trials IV has to chosen to ensure with
high probability p that at least one of samples of m
selected pairs is free from outliers. Following [10], N is
chosen to be at least as high as

__ log(1-p)
" log(l-(T-e)m)’
where ¢ is the outlier proportion in the initial set.

By examining this equation it is obvious in the first
method which we considered in which m = 8, a much
larger number of trials would be needed te find a correct
match then in the second method. In addition in cases
where the number of correct matches is small we might
not have enough inliers at all to compute the essential
matrix and verify its comrectness.

V. EXPERIMENTAL RESULTS

The algorithms described above have been implemented
and real world experiments were conducted in the lab on
a Nomad XR4000 robot. The robot was equipped with a
Canon VC-C3 Camera . The camera has been calibrated
based on the method suggested by [25].

At the beginning, the robot was placed at two target
positions and target images were taken. The XR4000 was
then placed at an arbitrary position and orientation in the
environment.

In the first stage, the robot rotates about its central
axis by 360° taking a picture every 18° and comparing
it with the target image (Fig. 5(a)). For every current
image-target image pair, the essential matrix and its score
d is computed using the procedure described above. The
image whose essential matrix yields the lowest score is
chosen. In the refinement stage, the robot rotates +£5°
around the position found in the first stage with a 1° step



Fig. 4. Two images of the same scene are presented, The View captured by the robot from different positions. The extracted corresponding points have
the same numbers on the images. Not all the corresponding peoints are found comectly.

The Best
position

)
«/ Refinement
I\,‘

result i
I j’?
(a) (c)

Fig. 5. Finding the start position for the navigation algorithm. First
360° rotation (a), second refinement around the best position (b} and-
finally, positioning the robot on the position calculated from the second
stage (c).

Z-Axis

{b)

(Fig. 5(b)). Fig. 6 demonstrates the experimental results
of the initial orientation finding stage showing for each
image the number of point pairs whose distance d; was
less than & and are therefore assumed to be correct.

»
= »
*° »
o
1 ‘. " S °
. . 1 . H "
hind Imga pmb.

(a) (b}

Fig. 6. Number of correctly associated corresponding peinls vs. image
number: The results of initial orientation (2) and refinemem siage (D).
Here the column that demenstrates the opiimal result, found from the
initial orientation, is white.

After the most suitable image is found, it begins the
image-based navigation algorithm image (Fig. 5(c)).

The results of two experiments, which constitute a
two target path, are considered below. The approximate
environment maps are presented in Fig. 7(a)-(c). In these
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figures, the hatched regions exhibit the fields of view from
different points of view. When the hatched regions of two
positions overlap, the shared region can be seen from both
positions.

In the first experiment the robot navigates from the
starting position 7(d} to the first target position 7(e). The
hatched region 7(a) shows that there is a large overlapping
region between the fields of view of the start and the target
position. This means that the navigation algorithm can be
applied. Fig's %a)-(f) show the image sequence taken by
camera on the robot in the first experiment as well as the
robot position sequence. The robot successfully navigates
from the start position 9(a) to the target position 9(g).

(d)

(e ®

Fig. 7. The Muls-Target case. (a)-(c): the map of the experiment
environment. The view from the initial position (d), the 1%¢ 1arget
position {¢) and the gnd target position (f).

In the second experiment the robot navigates from the
start position 7(d) to the first target pesition 7(f). The robot
could not navigate directly to the second target position
from the initial position (7(d)} since the second target



image scene (7(f)) could not be seen from the start position
(Fig. 7(b)). However, the robot can navigate to the second
target position from the first target position (Fig. 7(c))
and to the first target position from the start position
(Fig. 7(a)). A route that consists of two targets has been
defined. The first target position is identical to the one of
the first experiment. The second target is demonstrated
in Fig. 7(f). The results of this experiment are shown
in Fig. 9(f)-(n). The graphs of the robot position and
orientation relative to the target’s position and orientation
for these two experiments are shown in Fig. 8.

= disiante in om. -+ distance in cm.
% +angle . indegrees 1% @ +angle diff. in degrees. |
1" i
xo ia
* mé ®
w ®
L
0 v
1 4 H © y 2 3 . R f
poition rred, pontion .
@ (b)

Fig. 8. Experimental results: The difference between the robot’s current
position and oriemation and the target’s pose at every step for (a)irst
and (b} second part of the experiment.

VI. CONCLUSIONS

In this paper we have described a new algorithm for
image-based robot navigation. The implementation devel-
oped in the framework of this project is robust and does
not require human intervention at any navigation stage.
Our approach does not require either a predetermined
mode! of the environment nor information about the 3-
D position of the robot. The main idea is to retrieve the
essential matrix linking the image taken by the camera
mounted on the robot with the target image. The param-
eters estimating the translation direction and the rotation
between the current robot position and the target robot
position can be retrieved from the essential matrix. An
additional image is required to estimate the distance to
the goal.

The system is highly efficient since it only stores three
images, namely the current image, the previous image and
the target image, at any given time. Another advantage of
this algorithm is that it is not restricted to a predetermined
planar path. Once it receives the target image, the robot
determines its path on-line. Finally, applying the multi-
target algorithm, one can make the robot navigate to a
target that was not initially in its field of view.

In this paper, we have ignored the issue of possible ob-
stacles on the path of the robot. However, this issue can be
solved by combining of the navigation algorithm described
in this article with an obstacle avoidance algorithm such
as the Bug algorithms {12], [8].
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There are a couple of issues that remain to be addressed.
First, the navigation algorithm can be broadened to deal
with more than three degrees of freedom as well as with
the possibility of onboard camera movement and rotation.
This could be extremely important in industrial environ-
ments, where robots with degrees of freedom higher than
three are common.

Second, the system can be adapted to work in flexible
environments, That means that the robot will be trained to
find a path to the desired position relative to some object
even though the object itself can change its location. For
example, the navigation goal could be to find a cup in the
room, although the cup itself can be on an arbitrary place
on the table or under the table.

Finally, the target images can be used as a flexible map
of the environment where at each point in time the robot
can know its position with respect to one or more of the
target images and be given commands to reach any place
in the environment and not enly one of the target positions.
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