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Absfracf- We address the problem of controlling a team of 
rohots subject to constraints on relative positions. We adopt 
the general framework of leader-follower wntrol in [l], [Z] in 
which a network of controllers is used to control the position 
and orientation of the team and its shape. We propose two 
improvements to this scheme. First, we introduce cooperative 
leader-following where the motion of a robot is determined 
not only by its leader, hut also by other rohots including their 
followers Second, we allow constraints that are induced by 
limitations on ranges of sensors and wireless network cards. 
Our approach is based on potential field controllers for each 
robot and the on-line modification of these controllen to 
accommodate motion constraints induced by other robots in 
the group. We present experimental results with a team of 
three car-like robots quipped with omnidirectional cameras 
and SO2.llh network cards. 

I .  INTRODUCTION 

Many approaches for motion coordination of large 
scale multi-robot systems use the leader-following frame- 
work [I], [31, [4]. In this framework, each robot has at 
least one designated leader. Leaders can be other robots 
in the group or vinual robots that represent pre-computed 
trajectory supplied by a higher level planner. Thus, each 
robot is a follower that tries to maintain a specified relative 
configuration (a fixed separation and bearing for example) 
to its leader($. 

One disadvantage with this framework is that there is 
a explicit dependence of the motion of followers on their 
leaders, but the leaders’ motion is independent of their 
followers. If, for example, a robot fails or slows down, 
its followers’ motion will be directly affected by this 
behavior, while its leaders will continue their task without 
modifying their plans. In situations where it is important 
to maintain a sensing or communication network, a single 
failure could result in the failure of the task. 

In this paper we modify the notion of leader-following 
and present a framework where rohots change their motion 
plans in real time in order to satisfy constraints related to 
other robots. These constraints may have to do with a task 
of maintaining a pre-specified formation. Alternatively, 
robots may have constraints because of limited ranges or 
fields of view of sensors, or of communication radios and 
antenna. Thus we introduce cooperative leader-following, 
a modification of the standard leader-following approach, 
where the motion of the robots can be dependent not only 
on their leaders hut also on other robots including their 
followers. 

In our previous work [5 ] ,  [6] ,  we solved a similar 
problem assuming that all robots had prior knowledge of 
the motion plan for the group in the form of a navigation 
function. Further, all the robot velocities derived from 
the gradients of the navigation function were assumed 
to be equal or close to each other. Each robot could 
deviate from this motion plan in order to satisfy formation 
constraints, inequality constraints on individual robots 
induced by the other robots in the team. This approach 
was used for cooperative manipulation [5], and to maintain 
communication and sensing constraints [6] .  In this paper 
we use a similar approach for formation control. We still 
use the same definition of formation constraint, but now 
we consider formation setpoints as in [I], [Z], leading to 
equality constraints. Thus, our constraints are divided into 
two types: (i) equality constraints that specify the relative 
position between a robot and its leader, and (ii) inequalities 
constraints that characterize a configuration space between 
a robot and other robots in the group. The equality 
constraints (i) are standard constraints in formation control 
[I], [21, (31, [41. Constraints of type (ii) are used to 
maintain communication and sensor constraints allowing 
the group to deviate from the prescribed formation in (i). 
This allows, for example, a leader to wait for a possibly 
slow follower, allowing the team to adapt to failures. This 
kind of behavior can be found in centralized formation 
control approaches such as the one presented in [7], but 
are not explored in any decentralized control policies [I], 
131. Our goal in this paper, is to address both types 
of specifications (i) and (ii) with decentralized control 
policies. 

Our framework uses potential field controllers [XI, [9], 
[IO]. For a single robot navigating an obstacle field, a 
potential function with a single minimum in the goal 
position provide a Lyapunov function that guarantees the 
robot’s convergence to the goal [91. Potential functions 
can be locally modified to accommodate unmodeled ob- 
stacles or dynamic constraints [ I l l .  When the domain is 
convex, these modifications lead to guarantees on global 
performance. In order to leverage these results, we design 
potential functions for a robot to enable it to follow a 
leader. Each potential function is a function of the leader’s 
and follower’s position. We change the potential functions 
in real time to accommodate dynamic constraints while 
providing results on convergence for a team of holonomic, 
fully-actuated robots. We also point to extensions to 

47803-7860-1/03/$17.00 0 2003 IEEE 2755 

mailto:kumar}@grasp.cis.upenn.edu


Rg. 1. Graph modeling for a p u p  of 5 robots: (a) -formation conmd 
graph: @) - constmint graph. 

non-holonomic robots and present experiments with our 
team of car-like robots with omnidirectional cameras and 
wireless network cards. 

11. PROBLEM DEFINITION 

Consider a planar world, W = W2, occupied by a group 
R = {RI ,  R z , .  . I Rn} of n robots. The ith robot R; is 
represented by the configuration q; in the configuration 
space C. A formation of n robots is represented by a 
directed graph called formation contml graph', Gf = 
(R,Ef). and a second directed graph called constraint 
graph, G, = @,Ec), where R is the set of nodes and 
C, and E, are edge sets. 

For the formation control graph, G f ,  each edge e,j = 
(a, R j )  E Er is associated with a specification for R j  
following R,. For each edge, R, is the leader and Rj  is the 
follower. The robot that does not have any leaders and is 
responsible for guiding the others through the environment 
is called the lead mbot [I]. Only one lead robot is allowed 
in our approach. Also, the robots that do not have any 
followers are called tenninalfollowers. Figure I (a) shows 
an example of a formation control graph where R3 is the 
lead robot and Rz. & and R5 are terminal followers. 
Robot RI follows R3 and is followed by R:! and R4. 

The edges e;, = (R, ,  Ri) E E, of G, are associated 
with constraints on relative position and orientation. While 
Ef describes leader-following relationships and set-points 
for the shape of the formation, E, describes inequalities 
that reflect constraints such as communication and sensing 
constraints. Figure I(h) shows an example of a constraint 
graph. In this figure R3, for example, needs to maintain 
constraints with respect to RI and Rs. The bidirectional 
edge between R2 and R4 indicates that these robots need 
to maintain constraints with each other. 

With the previous model, the control problem can be di- 
vided in two parts namely graph assignment and rontmller 
design. The first problem involves designing GI and G, 
and is not the main focus of this paper. Measures of 
performance that depend on G f  are discussed in [I21 and 
heuristics for selecting edges are described in [13]. This 
paper is concerned with the problem of maintaining the 
formation described by Gf and the constraints described 

'The term control graph is used in [ I ] ,  I21 io describe what we arc 
calling a formation control gaph. 

by G,. We assume that graphs themselves are preassigned 
and focus our attention on controlling the robots to satisfy 
the edge specifications. For G f ,  the specification for each 
edge is a configuration for robot Ri with respect to its 
leader R,. On the other hand, the specification for each 
edge in G, is a convex function g(q; ,  q,) that represents 
the allowable configuration space for Rj parameterized by 
the configuration of Ri. While G/ specifies, for each robot 
(except the lead), a unique point in configuration space, 
G, specifies the allowable subset of configuration space. 

Although G f  and G, are apparently independent, in 
order to allow robot R; to reach its set-point qp(qj) 
specified by Gf and still satisfy the constraints speci- 
fied by G,, we need to guaranlee that, except for the 
lead robot, qp is inside the allowable configuration space. 
C f ( q l , .  . . , q i -1 ,  qi+ l , .  . . , qn) defined by all constraints in 
G,. Thus, the edge definition for the two graphs must 
satisfy the following condition: 

(q;',qi ,_. . ,  q:, EC? xc; x ... xc:. (1)  

Moreover, since each Ca is an intersection of convex sets, 
the right hand side of (1) is also a convex set. Therefore, 
if the robots are initially inside this set, they can always 
reach their goal configurations without going out of the 
set. 

Our goal in this paper is to design control laws that 
take in account the formation set-points and the allowable 
configuration spaces. Before continuing any further we 
will make three assumptions: 

Assumption 1 All robots are identical in terms of geome- 
try, and in terms of capabilities and constraints related to 
sensing, communication, control, and mobility. 

Assumption 2 The robots are fully-actuated, holonomic, 
point robots. For the iih robot, the dynamical model is 
then given by: q; = U;, where qi = (x;, y;). 

Assumption 3 G f  is acyclic and the in-degree at each 
node is 1. In other words, every follower has only one 
leade?. 

111. POTENTIAL FUNCTIONS 
In this paper, we use d f i c i a l  potential fields to plan and 

control the robots' motion. Potential field methods yield 
closed loop controllers that allow convergence to the goal 
in the presence of actuator and sensor noise and other 
disturbances [SI. Thus, for a potential function, $;, robot 
Ri's input is given by U; = -kV4,(q;) where V4;(q;) is 
the gradient of 6; computed in the configuration qi. The 
integral curves of the vector field formed by -V$;(q;), 
define implicity paths from every start configuration in C 
to the goal configuration Q:. As pointed out in [ I l l ,  a 

inpuu can be up to two [I], [Z]. 
%sis somewhat restrictive since the indc- for systems wiul two 
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potential function with a single minimum in qp can be 
thought of as a Lyapunov function for the system q i  = 
u,(q;), u;(qi) = -V&(qi), because &(q; )  is positive 
definite and its value is, by definition, always decreasing 
along system trajectories. 

In the leader-following problem, we chose a navigation 
function [9] as a potential function for the lead robot. 
Navigation functions are constructed as the functions that 
solve the non-cooperative problem of steering a individual 
robot towards the goal while avoiding the static obstacles 
in the environment. The methodology presented in [91 can 
he directly applied for designing the function. While these 
functions can he very complicated, we limit the class of 
functions to quadratic functions in this paper. 

For the robots that have at least one leader, the potential 
function is constructed as a function of the leaders’ 
position. In the case that R, follows Rj, we can describe 
the follower’s relative configuration in local coordinates as 
p = (qj - p i ) .  We consider a quadratic Lyapunov function 
candidate of the form: 

If 4; is a Lyapunov function we can use it as a leader- 
following potential function. The input for the follower 
robot Q is then given by the negative of the gradient of 
bi (q i ,q j )  as: 

U; = -kVd, = -k($ - g) ,  
where k is a positive constant and V+, = a$,/aq,. The 
derivative of the potential function for this input is given 
by: 
4. I -  ~ -v+, .!j = -V$; . ( q j  - 4;) = -V$, . (qj - .() 

= -04 ,  . (qj + kV4,) = -kllV4;l/2 - V& . qj . 

Observe that & decreases along the system trajectory i f  

kllVOill2 > - V h  ’ q5 . 
In the worst case, Qj and -V& are parallel and the pre- 
vious condition can be written as the following sufficient 
condition: 

kllV4iII > llqjll . (2) 

Because a real robot is subject to dynamics, there is 
a practical limit on its velocities. We assume each robot 
(i.e., all leaders) have a maximum velocity of qm,,. From 
Equation (2), it is clear that if we exclude the region given 
by the ball: 

4 Qmoz 
119 - BII < Y = k, 

4; decreases along the trajectories of the system. Thus we 
can show that trajectories that start outside the hall (i.e., 
when - 011 > y), will converge to the hall. In other 
words, $$ < 0 for - q11 2 y. The constant y is the 
maximum allowable steady state error in q. 

We note that it is possible to make y arbitrarily small 
by allowing for feedforward control. If the follower input 
is given by: 

U, = -kV& + q j  = -k($ - p) + qj , 
where Qj is feedforward information, the controller ex- 
ponentially converges to r j  = 0. The feedfonvard velocity 
requires estimation of the leader’s velocity by the follower 
robot and is discussed elsewhere [2]. 

IV. CONSTRAINTS 
As mentioned before, with each edge (Ri, Ri) E E,, we 

associate a configuration constraint for Rj induced by R; 
as a inequality of the form g(qi. q j )  5 0. For example, if 
Rj must keep R; in sight using a omnidirectional camera, 
g ( p i , q j )  = ( ~ i  - ~j)’ + (Y; - ~j)’ - T* [61. 

In this paper each constraint g(q;,qj) defines three 
regions in the configuration spaces of Ri and Rj (see 
Figure 2). In the safe region, g(qi.qk) < 6, where the 
small negative number 6 can he thought of as a threshold. 
The region defined by 6 5 g(q,, q k )  < 0 is the critical 
region for the robot. The constant 6 is designed in order 
to guarantee that the constraint is still satisfied in the 
critical region and also to ensure that the robot does not 
leave this region. We say that a constraint is active when 
g(q,,qk) 2 6. If g(q , ,qk)  2 0 the robot is in the unsafe 
region. Depending on the nature of the constraints, the 
robots may not be able to return to the safe region of 
the configuration space. Our decentralized controllers are 
designed with the objective of keeping the robots in the 
safe configuration space. 

V. CONTROLLERS 
Our conuol system is decentralized and implemented 

using a set of three reactive controllers. Based on the two 
graphs, Gf and G,, described in Section 11 we define a 
third graph that will govern the switching between the 
controllers. We call this time dependent graph that changes 
with the state of the robots, the formarion graph H = 
(E,&), where &h is defined as the union of two subsets 
of &J and E,: 

&h = fJ u f c ,  
&J = {e,j\ [eij E E!] A [g(k,i) < OVek, E E,, R k  E E ] } ,  

fc = {e;,l [eij E E,] A [ g ( i , j )  2 61). 
Thus based on H ,  each robot R, has three basic 

behaviors or modes depending on the number and type 
of incoming edges at RA. If there is only one incoming 
control edge (e j ,  E E,), the robot is in the SAFE mode, 
corresponding to the safe region in Section N. The control 
law in this mode is given by: 

U; = -kVd;, (3) 

where VO, is the gradient vector of the potential function 
4,, and k is a positive gain. For the lead robot it is 
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Fig. 2. The activation of thc conmaim define three regions in the robots' 
configuration space. 

a deliberative controller with a pre-planned navigation 
function that guides the robot toward the goal. For the 
followers it is a reactive controller designed to maintain 
the edge of the graph as shown in Section Iu. 

When all incoming edges are constraint edges ( e j i  E 
EC), R; is in the UNSAFE mode. The robot tries to move in 
order to satisfy the constraints without using the potential 
function. In other words, the constraints themselves act 
as potential fields attracting the robots to each other and 
forcing them into a feasible configuration that satisfies all 
the constraints. The control input in this mode is: 

U, = -kVg' , (4) 

where Vgj is the gradient of the constraint gJ(qi,qj) 
defined by 8 g j  fani and g j  is the constraint induced on 
R, by Rj, If Ri has more than one active constraint to be 
satisfied, Vgj represent the sum of their gradients. 

The third mode is a linear combination of the other 
two. A robot switches to this mode if it has one incoming 
control edge (e,, E E,) and at least one constraint edge 
( e j y  E EC). The robot must navigate toward its goal while 
maintaining the constraint whose boundary it is closest to. 
This mode is called the CRITICAL mode. The input in the 
mode is: 

U1 = -k(a; VgJ + Odd,  ( 5 )  

where 0 < ai 5 1. The constant a; determines how much 
each robot will deviate to its main objective in order to 
preserve a constraint. It must be chosen so that: 

if V+,Vgj < 0 and 1 otherwise. This condition guarantees 
that U; has positive projection along V& 

As an example of how the switching among the control 
modes is governed, consider a possible H generated by the 
combination of the two graphs of Figure 1. In Figure 3, the 
dotted arrows show active constraints, while solid arrows 
denote equality specifications. Rg is in the UNSAFE mode, 
RI is in the SAFE mode, and R2, RB, and & are in the 

It  can be shown that the above switched control system 
solves the n problems of individually controlling the 
robots while guaranteeing the constraints are satisfied in 
the following sense: 

CRITICAL mode of the controller. 

Fig. 3. A formation @aph based an the combination of the graphs 
of Figure 1. Based on incoming edges, Rg bas mrdguratioo spaw 
constraints on iu position nlarive to Ra, RI follows a patentid function 
to acquire a position relative to RJ.  while Rz, R3. and must mecute 
a combination of two m t i v c  behaviors. 

If the robots initially satisfy the constraints and never 
enter the unsafe region of the configuration space, the 
controllers given by Equations 3 and 5 guarantee that the 
lead mbot goes f a  its destination and the team achieves 
the desired formation. 

The proof for this is straight forward. Observe that &, 
which is locally positive definite, is a common Lyapunov 
function for both behaviors: 

In the SAFE mode: 

ii = Vd; . c; = -ICvf$< . vq4i = -kllV#i)I 5 0 

4, = -ICvf#Ji ' (a, v g j  + Vdi) 
In the CRITICAL mode: 

= of$; . VgJ + of$; ' Vd;) 4 0 

since a; is properly chosen. Therefore, in these two modes 
the control law is free of local minima since Vd, = 0 if 
and only if qi = q t ,  by the definition of 4,. 

However, one shortcoming of the above analysis is that 
it fails to include an anaIysis of the stability of the system. 
While we have shown that under the stated assumptions 
the value of potential function for all the robots decreases 
as a function of time, we have not shown the system is 
Lagrange stable. 

The above analysis lends itself to stronger results for 
specific graphs. Consider, for example, a group of robots 
in a linear formation where each robot has to satisfy a 
constraint with its immediate follower. The system would 
never enter in the unsafe mode if for a generic active 
constraint, g(q,, q j ) ,  the control input ensure g(q;, qj) 5 0. 
The time derivative of g(qi, q j )  is given by: 

(7) 

Denote ag/aq, by Vg', and agfaqj by ,vgJ. The key 
observation is aglaq, = -ag/aqi, or vg '  = -vgj. 

In the worst case, both the leader R; and the follower Rj 
are in a critical mode. Assume that there is a constraint 
g ( q j , q k )  with gradient Vgk active for the follower Rk. 
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Substituting q; and qj in (7) by the control inputs in (5 )  
we rewrite the time derivative of g(qi ,  q j )  as: 

g(q; ,q j )  = -kVgj(a;Vgj + Vdi)+ 
+ kVgj(ajVgk + V4j) 

For the specific case of circular constraints @ ( q i ,  qj) = 
(xi - ~ j ) ~  + (yi - yj)* - r2), Observe that Vgj is anti- 
parallel to Vbj.  Also, notice that, for a linear formation 
in steady-state, V4; and Vgk are anti-parallel as well. 
Grouping those vectors together we rewrite the previous 
equation as: 

g ( q i , q j )  = -kVgj(a1VB - V4j)+ 
+ kVgJ(qVgk - V&) ,  (8) 

where the first term is contributing to satisfy the con- 
straints and the second has the opposite effect. 

By (X), observe that if Vgk = 0 there is always a value 
of ai that guarantees that the constraint is satisfied. Thus, 
starting with the terminal follower, for which Vgk does 
not exist, and finishing in the lead robot, it is easy to see 
that all constraints can be satisfied. Again considering the 
chain of robots, notice that small velocities of the lead 
robot (small VOi) contribute to satisfy the constraints. 
Also, observe that if robot Rj  fails, causing V+j = 
Vgk = 0, the constraint will eventually be violated and Ri 
will enter its unsafe configuration space. In practice, this 
situation causes all interconnected robots to continuously 
switch between the UNSAFE and CRITICAL modes forcing 
the group to stop. It is in some way a desirable condition 
since the main idea of the methodology is forcing the 
robots to wait for their teammates. Other similar observa- 
tions can be made depending on the values of the other 
terms in (8): 

The controllers of this section have considered fully ac- 
tuated robots. Since in practice most of the robots are un- 
deractuated, it is also natural to ask if the methodology can 
be extended to non-holonomic robots. For non-holonomic 
robots we can derive controllers that will allow a reference 
point (x, U) to follow a desired trajectory including those 
that are specified by potential field controllers. We rely on 
this idea for implementation of the methodology on our 
real world robot platforms. In the next section we present 
experimental results demonstrating the performance of our 
cooperative leader following approach on three of our car- 
like robot platforms. 

VI. EXPERIMENTAL RESULTS 
Our car-like robots are equipped with omnidirectional 

cameras as their primary sensors (see Figure 4). The 
communication among the robots relies on IEEE 802.11b 
networking. A calibrated overhead camera is used to 
localize the robots'in the environment. Because with this 
camera we do not estimate the robots' orientation, we use 
communication between the robots in order to construct a 

Fig. 4. The GRASP Lab. mbts  (left) and a sample image from an o m i -  
directional camera (right). 

la) Ibl 

Fig. 5. (a) - The control graph and @) - the consmint graph far the 
expsriment. 

complete knowledge of the robots configuration. The com- 
munication is essentially used for cooperative localization 
but is not used for control or decision making. See 121 for 
details. 

A limitation of the omnidirectional cameras used by the 
robots is that their resolution decreases with the distance 
of the objects. At 2m, for instance, the projection of 
an observed robot in the image plane is only one pixel 
in size. Since visibility of other robots is important for 
orientation estimation, the three robots must maintain 
sensing constraints with their neighbors. Thus, in the 
experiments, the three robots are commanded to maintain 
a line formation as shown by GI and G, in Figure 5.  
The function g(q,, ql )  was set as a circle of radius 1.6m. 
Observe that this radius is much smaller than the distance 
where the robots are actually blind (Zm) in order to 
guarantee that the task is completed even if the robots 
enter in their unsafe configuration spaces. The threshold 
6 for the critical region was chosen to make it a circle of 
1.3m radius. 

Figure 6 shows four snapshots of our experiment. In 
(c) the last robot (R3) was manually stopped. In what 
follows all the robots switch to their UNSAFE modes. 
When R3 starts moving again the robots switch back to 
their CRITICAL and then SAFE modes and complete their 
tasks. Figure I shows the y coordinates of-the robots for 
the same experiment. 

VII. CONCLUSIONS AND FUTURE WORK 
We have presented a methodology that allows robots to 

maintain constraints while pursuing a specified formation. 
The robots follow potential field controllers to achieve the 
desired formation, hut modify their motion to accommo- 
date constraints. When the specified formation satisfies the 
constraints, we can show that the robots eventually reach 
the desired formation. Because the robots are sensitive to 
constraints, they stop as a team to accommodate failed 
robots. Thus, they are in one sense, more robust to 
failures. Although, our approach considers fully actuated, 
point robots, we have presented encouraging experimental 
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Fig. 6. Four snapshots of an experiment where three robots are in line formation and keeping visibility conrvaints with their followers. me goel 
confipuration for the lead robot is marked with a f*). The dashed circumferences represent he  sensors* field of new. In (c) robot RB was manually 
stopped for 7 seconds. The robots stop following their potentid functions and wait for RJ so that the constraints are preserved. 

results with a group of non-holonomic robots arranged in 
a simple formation. 

Future work includes methodologies and algorithms for 
the assignment of control and constraint graphs and the 
analysis of the system behavior for complex formations. 
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