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Abstract—The paper deals with the determination of (in the sense of the most robust force-closure grasp) of 2D
optimal force-closure grasps for 2D polygonal objects. The objects using the minimum number of frictionless contacts
problem is analyzed and some intrinsic properties of grasps (four for 2D objects [9]) and the quality measure proposed

are determined. The approach is applied to the determination . S .
of the position of a fourth finger given the positions of by Ferrari and Canny, and avoiding iterative procedures.

three other fingers. Moreover, the range of solutions that Some intrinsic properties of the problem that help in the
allow the force-closure property as well as the optimal value solution search are presented here. In particular, the prob-
are analytically determined, checking only four points in lem of determining the optimal position of a fourth finger

the worst case. The algorithm has been implemented and

X . . given the positions of the other three and the contact edge
numerical examples are included in the paper.

for the fourth is solved in an analytical way (the problem

|. INTRODUCTION has already been solved even for 3D objects [5], but the
approach proposed here does not involve hard searches
or iterative processes). Solving this problem is of special
relevance in re-grasping actions. The main assumptions
considered in this work ard) Grasped objects are planar

Grasping and manipulation of objects using multi-finger
mechanical hands has become a field of great interest in
the two last decades. Good overviews of the state of the

art in this field and related problems can be found in [14] ;.4 polygonal-shape@) The object edge where the fourth
and [2]. o ) . finger will contact is given;3) Forces applied by the
Grasps capable of resisting external disturbances satisfy fingers act only against the object boundary (positivity

one of the following properties: form-closure (the position  ¢,nstraint)4) Frictionless contacts (then the force-closure
of the fingers ensures the object immobility) or force- g4 tion is also form-closurel) The fingertip is a point.

closure (the forces applied by the fingers ensure the  \gte that there is no constraint regarding the number
object immobility) [1]. Finding the optimal position of ¢ fingers per edge. In this approach it is then possible
the fingers that produce a grasp satisfying either of these ;, ~onsider two fingers on the same edge (for polygonal

properties is a frequent problem. A criterion for grasp gpiects a minimum of three edges must be contacted to
quality evaluation must be chosen, and several ones have allow a force-closure grasp).

therefore been proposed. Ferrari and Canny [6] proposed
a criterion based on the maximum wrench that the grasp [l. GRASP QUALITY MEASURE
can safely resist, and algorithms for grasp synthesis based
on this criterion were proposed by Pollard [13] and A. In the Wrench Space
Borst et al. [3], though they do not generate optimal One of the most intuitive and accepted criterion for
grasps. Ponce et al. [11] proposed the minimization of quality evaluation of a grasp that satisfies the force-closure
the distance between the object’s center of mass and the condition (hereafter called FC grasp) was proposed by
geometric center of the grasping points. This criterion is Ferrari and Canny [6]. This criterion indicates the module
used by Ding et al. [5], among others. One variation of Of the maximum wrench that a grasp may resist regardless
the problem is the determination of independent regions of the wrench direction: the larger the module, the better
on the object boundary such that a finger in each region the grasp.
ensures a form/force-closure grasp, thus dealing with some ~ Each finger can exert a forgg, on the object boundary
uncertainty in the finger positioning. The works of Ponce at each contact point (in the absence of frictigh,is the
et al. [12] and Nguyen [10] are remarkable in this line. ~ applied force normal to the object boundary). Foite

In general, the algorithms proposed for the search produces a torque; with respect to the object’s center of

of an optimal grasp are based on linear or non-linear mass, and the vectar; = ( f7 T g is called a wrench

programming, thereby implying an iterative procedure. o 4 generalized force\(defines thé metric of the wrench

This paper tackles the problem of finding optimal grasps space and, in order to have a physical meaning in terms
0 of energy)\ is considered to be the radius of gyration. The

This work was partially supported by the CICYT projects p.rOpOIS.ed ?Pproach is valid for any value Xfthus, for
DPI2001-2202 and DPI12002-03540 simplicity it is considered\ = 1).




The forces applied by the fingers can be subject to
different constraints, depending on the characteristic of the
grasp to be optimized. The constraint used in this work
(other constraints with their physical and geometric mean-
ing can be found in [9]) is that the total force exerted by
all the fingers is limited, for instance, due to a maximum
available power for all the finger actuators. This implies
that the applied forces can generate a resultant wrench
w =, fiw; with >, 6; <1 andw, being the wrench
produced by forces satisfyingf,|| = 1. Geometrically,
the resultant wrench can be any inside the polytope

P, = COI’IVGXHU”(CJ{WZ'})

i=1

1)

Considering this constraint, the quality meas@eof an

FC grasp is given by the maximum wrench that the finger

forces can generated in any direction of the wrench space:
Q= min [lwl ©

where0P; is the boundary of polytop®; .

In the case of 2D objectsP; is a polyhedron and
the quality measure is equivalent to the radius of the
greatest sphere centered at the origin and fully contained
in polyhedronP;.

The quality measure) is determined by one of the
distances from the origin to the faces ®f. Consider
three wrencheso; (i = 1,..,3) expressed in cylindrical
coordinates as); = (cos «y, sin a;, 7;), v; being the angle
that indicates the direction gf;. The distanceD from the
origin to the face (plane) gP; determined by, w, and
w3 can be written as a function of the torque of one of
them; for instance, as a function of of w3, we obtain:

D(rs) = ot ey ®
V (k3 + kam3)2 + (ks + ke73)2 + k2
where:
k1 = sin(az—ag)m + sin(a; —as3)m (4)
ky = sin(aa—ay) (5)
ks = (sinas—sinas)m+(sinag—sinay)m  (6)
ks = sinag—sinasg 7
ks = (cosasz—cosasg)m+(cosa;—cosaz)my  (8)
ks = (cosag—cosay) 9)
k7 = sin(az—as)+sin(as —a1)+sin(a; —asg)(10)

This function has four important properties (an example

is shown in Fig. 1):

1.1t is a continuous function (the denominator can only
be zero if all the forces are in the same direction, and
then the FC grasp is not possible).

2.1t becomes zero aty = —k1 /ko.

—ky/ko TM

Fig. 1. Qualitative shape of distance D(7)

3.1t tends to a finite positive value when — +oo,

L =limr,_ 0o D(73) = ko/\/(kF + K2).

4.1t has only one maximum/ at
(K3 + k2 + k2)ko — (ksky + kske )k
—ka(kska + kske) + ki (k] + k§)

™ = (11)

B. In the Force Space

Similarly to Mirtich and Canny’s application of the
guality measure to two particular sets of forces and
moments [7], the quality measure described in equation (2)
can be applied in the force space (i.e. the 2D subspace of
the wrench space defined by pure forces) as

Qp = min | f]

12
feapf ( )

where P; is the polygon defined in the force space by
the contact forces anddP; is its boundary P, coincides
with the projection ofP; on the force space).

Proposition 1: Consider three wrenches that define a
face of P;. If the componentr of one of them tends to
+o00, the distance between the origin of the wrench space
and the face tends to the distance between the origin and
the straight line defined by the projection of the other two
wrenches on the force space. o

Proof: The proof is straightforward from the property 3
of the distance in equation (3). If constaits k4 and kg
are substituted by their expressions from equations (5),(7)
and (9), then wheny — +oo the distance between the
origin and f; f, is obtained. o

Lemma 1: The quality measure in the force spacg,
is an Upper Bound for the grasp quality meas@re <

Proof: Consider a prismP{° in the wrench space
with infinite edges parallel to the-axis, such that the
intersection ofPY° with the force space i®;. The radius
of the greatest sphere centered at the origin and inscribed
in P is determined by the minimum distance from the
origin to Py, i.e. Q.

Given the torques of the four contact forces, the corre-
sponding wrenches generate a polyhedPgrthat satisfies
P1 C Py by construction. Therefore, the greatest sphere
centered at the origin and inscribed  is smaller or
equal to the one inscribed #°. As a result, its maximum
radius isQjy. o



Fig. 2. Examples of the Upper Bound @ and the Internal Bounds
Coy and Ch3.

Definition 1: An Internal Bound, C;;, of a grasp is
the distance between the origin of the force space and
a segment determined by two non-consecutive vertfges
and f; of Py. o

Note that a four-finger grasp has two Internal Bounds.
If the four applied forces have different directiorf; is
a quadrilateral polygon and the Internal Bounds are the
distances from the origin to each diagonal of the polygon.
Moreover, if there are two parallel applied forces (e.g. two
fingers on the same object edg®); degenerates into a
triangle and the Internal Bounds are given by the distances
from the origin to two sides of the triangle. Fig. 2 shows
an example of the Internal Bounds.

I1l. OPTIMAL FOURTH CONTACT POINT

Geometrically, the specific problem of determining the
position of the fourth finger on the given edge is: given
three points in the wrench space (., ws, w3) and the
applied forcef, = (fz4, fy4)*, determine the component
74 such that the polyhedrof®; defined byw;, ws, w3
and w, = (f4r,f4y,74)T includes the greatest possible
sphere centered at the origin.

A. Range of possible solutions

In order to produce an FC grasf); must contain
the origin [8]. The following necessary and sufficient
condition can be stated from this condition.

Necessary and Sufficient condition. Let R;., be the
range ofry that allows an FC grasp given,, ws, w3 and
f4 and letoRy., be the boundary oR;.,. Then, in order
for a givent} to satisfyr; € ORy.,, it is necessary and
sufficient that0 € 0P,, P; being the polyhedron defined
by wi, wa, ws andwy = (f4m,f4y,TZ)T- o
Proof: It is straightforward sincéP; is convex. o
Using this condition, the extremes &f., can be found
as follows. First, three candidates are obtained from the
intersection of the three planes defined by the sets of
wrenches{ws, ws, 0}, {wi,w3, 0} and {w;,ws, 0},

respectively with the straight line determined by= f,4,
y = fya. The three candidates are given by

o _Alimjfxél - Blimjfy4
N =
! Cvlimj

whereA;i,;, Biim; andCl;,,; are the coefficients of each
plane forj =1,...,3.

These candidates are then tested in the force-closure
condition (i.e. the origin must be inside,):

Bij(fors fur, 71)T 4 Boj(fuzy fy2. o) T +
Bsi(fuss fy3:73)" = (foas fyasTag)"

wheres;; < 0fori=1,...,3. Only one or two of the three
candidates; can be valid extremes d&;.,. Depending

on the number of valid extreme points &%.,, the type

of range is:

Infinite range: if only one valuer,; satisfies the necessary
and sufficient conditions (here denoted ag) then
Ry., is the range determined bRy, = [Tz, 00) Of
Ry, = (—o0, 1ax] such thatRy., does not contain the
other twory; with j # k.

Limited range: if two valuesty; satisfy the necessary and
sufficient conditions (here denoted ag andy;) then
Rye, = [Tak, 1]

Proposition 2: Given  four wrenches w; with
i=1,...,4, the type of rangeR;. of each 7; is
independent of the components and can be determined
just from forcesf, (this is equivalent to saying that the
type of range can be automatically determined knowing
the edges of the object to be contacted by the fingers,
regardless of the exact contact point). o

(13)

(14)

Proof: Without loss of generality it will be proved that
range R;., (i.e. for ;) does not depend on components
71, T2 and 3 of wy, wy andws, respectively.

The candidates to be extremes Bf., are obtained
from equation (13) as a function of only two other
wrenches (consider, for instange= 1, i.e. candidatery;
obtained fromw, andws3). This implies that one of the
coefficients 3;; in equation (14) will be null when the
sufficient condition is applied; for the case of candidate
741, We obtain 5;; = 0, and equation (14) can be
expressed as

B21 fo2 + B31fz3 faa (15)
Ba1fy2 + B31fy3 fya (16)
Bo1ma + B31T3 = Ta (17)

i.e. three equalities with two unknowngy; and (3.
Therefore, one of the equalities is linearly dependent on
the other two. If f, and f; have different directions,
(15) and (16) are independent, and equality (17) can be
neglected. As a resultj;; and 33; can be determined as



a function of f, and f, without taking into accounty
andrs:

ﬁfslzw (18)
sin(az —as)

cos(ay) sin(ag —ag) —cos(as) sin(ay—as

By— ) (19)

cos(ag) sin(az — )

whereq; is the angle that indicates the direction Bf in
the force space. According to equation (14)J < 0
andfs; <0, thenty is an extreme ofR;., (even when
the exact value ofy; is not known!). In the same way,
(12 and (335 are obtained for,s, and 3,3 and Gs3 for 743,
and the analysis of their signs determinesf and 7,43
are extremes ofy.,.

If either of the applied forces has the same direc-
tion (e.g. two fingers on the same edge), equations (15)
and (16) have no solution and the corresponding candidate
does not exist. Then, since at least two of the three
applied forces have different directions, two candidates
are possible.

Then, althoughrs;, 742 and 743 are not known, it is
possible to know how many of them are extremesgf,
and therefore the corresponding type of range.

Equivalent reasoning can be applied #f.,, R., and
Rfc3. <

B. Determination of the Optimal Value

Proposition 3: Given three wrenchesy;, w; and wy,
(with {i,5,k} = {1,2,3}) and f,, the valuer, that
produces an optimal graspr,:) can be analytically
determined according to the following four cases. Cet
be the Internal Bound that does not dependfgrand D,
the distance from the origin to the plane definedday,
wy, andwy, with {p,v,c} = {i,j, k}. Then,

Case 1. Ry, is Infinite andC;; > Qy, then,

Taopt = F00 according toR;., .

Case 2: R¢., is Limited andC;; > Q)¢; then, there are
three candidates fors,,: given by the solutions of

Di(74) = Dj(14) (20)
D;(14) = Dy(74) (21)
Dj(m4) = Dk(7a) (22)

Case 3: Ry, is Limited andC;; < Qy; then, there are
four candidates fot,,: given by the three obtained in
Case 2 plus the value of, that maximizesDy, i.e. the
solution of

aDk(T4)

87‘4 =0

(23)

If more than one of these candidates belongsiig,,
they must be tested to identify, ;.

Case 4: Ry, is Infinite andC;; < Qy; then, there are
three candidates fors,,; given by the solutions of

Dk(T4) = Di(7'4) (24)
Dy(rs) = Dj(ra) (25)
8Dk(74)

S = 0 (26)

If none of the candidates belong tdy.,, then

Taopt = F00 according toR ., .

Proof: The proofs of the four cases are based on

'Qf > Q<T4) V14 € R{fc4.

-L, =limr, 1o D,y(74) is finite (o = i, 4, k).

- D,(74) has only one maximumd{, (p = ¢, j, k).

- Q(m) is defined by pieces ab, (1) (p =1, j, k).
Case 1: Ry, Infinite, C;; > Qy

LIEC; >Qf=Vp L, >Qy, p=1,j,k.

2.D,(74) has only one maximumi/,,.

3.From 1 and 2, we obtain/, > Q.

4. From 3,Q(m4) < M,; then from 2, all the pieces of
D,(74) that defineQ(r4) are monotonous.

5.1f Ry, is Infinite, there is only oner,* where
Q(m4*) = 0; then from 4, the pieces dd,(74) belong-
ing to Q(74) increase ifRs.,=[14*, c0) or decrease if
Rc,=(—00,74*]. Then, 14, = +oo accordingRy.,.

Case 2: Ry, Limited, C;; > Qy

1. Same as steps 1 to 4 from Case 1; then, all the pieces
of D,(r4) that defineQ)(m4) are monotonous.

2.1f Ry, is Limited, there are two values,; and
745 Where Q(745) = Q(m3) = 0; then, there are
increasing and decreasing piecesijfir,).

3.From 1 and 2, the optimal @)(7,) is located where
an increasing piece and a decreasing piece intersect
each other.

4. The values of, where two pieces of)(r4) intersect
each other are the solutions of equations (20) to (22)
and74,,: is one of these solutions.

Case 3: Ry, Limited, C;; < Q¢

1.If C” < Qf = Lp > Qf with p=1,7].

2.Same as steps 1 to 4 from Case 1 but considering
only valuesp = ¢,j. Then, all the pieces oD, (74)
that defineQ)(74) are monotonous while the pieces of
Q(14) from Dy (74) might not be.

3. Same as step 2 from Case 2.

4.From 2 and 3, the optimal @)(4) is located where
an increasing piece and a decreasing piece intersect
each other, or wher®;(7,) has the maximum\/y
(i.e. Dr(74) changes from increasing to decreasing).

5. The values of, where two pieces of)(74) intersect
each other are the solutions of equations (20) to (22),
the value ofr, where M), takes place is the solution
of equation (23) andy,,: is one of these solutions.



Case 4. Ry, Infinite, C;; < Qf

1.Same as steps 1 and 2 from Case 3. Then, all the
pieces ofD,(r4) that defineQ(r4) are monotonous
for p = i,j while the pieces of)(74) from Dy (74)
might not be.

2.1f Ry, is Infinite, there is only oners* where
Q(T4*> =0.

3.From 1 and 2, the pieces ofQ(r4) from
D,(m4) increase if Ry, = [14*,00) or decrease if
Rjc, = (—o0,7s*], while the pieces of(r4) from
Dy(74) might not be.

4.From 3, any transition from an increasing piece of
Q(74) to a decreasing one involvesy, (74).

5. The values of, whereQ(74) changes from increas-
ing to decreasing are the solutions of equations (24)
to (26) andry,,¢ is one of these solutions. o

C. Constraint of the edge length

It is possible that the optimal value ef found above
cannot be generated due to the finite length of the contact
edges. This constraint is included here.

The length of the edge for the fourth finger defines a
new rangeR,, of values ofr, that are physically possible
in the real execution of the grasping. ConsideriRg,
Ry., and e, three cases are possible:

Ry;N Ry., = @:An FC grasp is not possible by placing
the fourth finger on the assigned edge.

RiN Rye, # O and 1o, € (R4 N Rye,) : The actual op-
timal position is that corresponding tQ,:.

RiN Rye, # O and Tyop: & (Ra N Ry, ): The actual op-
timal position is the extreme ofRs N Ry.,) closer

to T40pt, because functio(r4) grows monotonously

towardsQ (7uopt) inside Ry, .

Note that the optimal position may be on an object vertex
or close to it. In this case, it is necessary to consider a
security distance.

D. Efficient Procedure

When Proposition 3 is applied, with the exception of
Case 1 wherey,,; can be directly found, it is necessary
to solve three four-order equations. If these equations
are solved in the right sequence,,; may be obtained
without arriving to solve all of them. The right sequence
is determined by the following steps:

1. Check thatRs N Ry, # O.
2.Find ,/ from D;(r4) = Dy (74), j and k being such
that:

Cases 2 and 3;(r4) and Dy(74) makeQ(74) = 0.

Case 4D;(14) makesQ(r4) = 0 and Dy(ra) — Cj;

whenty — 4o0.
3. EvaluateD,(4'), p=i, j, k. Two situations are possible:

a. lf Di(T4/) > Dj(T4/) = Dk(T4/):

it is not necessary to solv®;(ry) = D;(m4) and
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Fig. 3. 2D object and coordinates of its vertices

D,(r4) = Dy(74) because the solutions of these equa-
tions never belong t@)(74); then,r,’ is a candidate
to be myopt.
b. If Di(7’4/) < Dj (7'4/) = Dk(7'4,) = T4opt 7é 7’4/:
it is necessary to find,” from D;(m4) = D;(r4) and
74" from D;(74) = Dy(my); then,7,” and =, are
candidates to bey,p:.
4. For Cases 3 and 4: Find”” that maximizesDy(4);
then,r,””" is a candidate to bey,,.
5. ComputeD,(74), p = 1, j, k, for the corresponding can-
didates, and select as,,: the candidate that produces
the maximum minimum.

IV. EXAMPLES

In this section, some numerical examples of the pro-
posed methodology are presented. A detailed example of
each case can be found in [4]. Fig. 3 shows the object
used in the examples. For each fingave have: the edge
that will contact, the directiony; of the applied force
(orthogonal to the edge) and the ram@e= [7min,, Tmax; |
of possible actual torques produced on the contact edge.

Example of Case 1.The initial data are:

fingel’ Edge (673 Tmin; Tmaz; Ti
1 Lis 0 -0.6479| 0.3521| -0.2
2 Los | 4.9574| 0.0321 | 1.2048 | 0.5
3 L= | 2.7744| 0.2443] 1.6372| 1
4 L¢7 | 41123 -2.4630| -0.1609 | 740p:?
Procedure:
1.Rye, = (—00, —1.7568] = Ry N Ry, # O

2.Qr = 0.1826 (determined byf f3)
3.Cy3 = 0.4612 (determined byf f5)
4.Co3 > Qy, Ry, is Infinite = Case 1
5. Then,mopt =—00 & RyN Rfc4
Solution: 740pt = —2.4630 (extreme ofLgr),
Q = D2(74opt) = 0.0383.
The distances to the unknown facesf as a function
of 7, and the obtained solution are shown in Fig. 4. The
optimal solution is an extreme of an edge and it is so
indicated; in the real grasp, a given security distance from
the edge vertex should be considered.



Fig. 4. Example of Case 1: a) Distances to the faces of P, range of
possible solutions R4 N Ry, (dark segment) and maximum @ (white
circle); b) possible solutions on the object edge (dark segment) and
optimal position for the fourth finger (white circle).

a)

Fig. 5. Example of Case 3: a) Distances to the faces of P, range of
possible solutions R4 N Ry, (dark segment) and maximum @ (white
circle); b) possible solutions on the object edge (dark segment) and
optimal position for the fourth finger (white circle).

Example of Case 3.The initial data are:

finger | edge| oy Trming Tmas; Ty
1 Lio 0 -0.6479| 0.3521| 0.2
2 Lsg | 2.7744| 0.2443 | 1.6372 1
3 L7g | 1.5708| -0.6039| 2.1961| 0.4
4 Le7 | 4.1123| -2.4630| -0.1609 | 740p:?
Procedure:

1. Ry, = [—2.8409, —0.4430] = R4 N Ryc, # O
2.Qy = 0.4665 (determined byf; f4)
3.C12 = 0.1826 (determined byf; f2)
4.C12 < Qf, Ry, is Limited = Case 3.
5. FromD3; = Dy = 7'4/ = —0.9386 ¢ Rfc4 N Ry
then D (7'4/) = 0.3686, D2(7'4/) = Dg(T4/) =0.1674
7.D1(T4/) Z Dg(T4/) = DQ(T4/)
8.FromdD3/0ry = 0 = """ = 1.1537 & Ry,
Solution: 740, = —0.9386, Q = 0.1674
The distances to the unknown faces7f as a function
of 7, and the obtained solution are shown in Fig. 5.

V. CONCLUSIONS

The paper deals with the problem of determining opti-
mal grasps of 2D objects using four fingers. An approach
to the deterministic solution of this problem is proposed
using the quality measure introduced by Ferrari and
Canny [6] and considering the particular case where three

of four unknown finger positions is under development.
The force space is used to establish bounds for the
guality measure that are quite useful for determining the
optimal grasp and proving some intrinsic properties of the
problem, like the type of range of solution on each object
edge. Although this property is marginally used in the
particular case of looking for the position of the fourth
finger, it seems quite a significant intrinsic property for
the solution search in the general case of four unknown
finger positions.

[1]

2]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

VI. REFERENCES

Bicchi, A. On the Closure Properties of Robotics
Grasping.Int. J. Robot. Res., 14(4) pp. 319-334,
1995.

Bicchi, A. Hands for Dexterous Manipulation and
Robust Grasping: A Difficult Road Toward Simplic-
ity. IEEE Trans. Robot. and Aut., 16(6) pp.652-662,
2000.

Borst, Ch., Fischer, M. and Hirzinger, G. A Fast and
Robust Grasp Planner for Arbitrary 3D Objecls.
Proc. |IEEE ICRA, pp. 1890-1896. Detroit, 1999.
Cornella, J. and Sarez, R. On 2D 4-finger friction-
less optimal graspslech. Rep. |OC-DT-P-2003-03.
Ding, D., Liu, Y.-H. and Wang, S. Computing 3-D
Optimal Form-Cosure Graspbl Proc. |[EEE ICRA,
pp.3573-3578. San Francisco, 2000.

Ferrari, C. and Canny, J. Planning Optimal Grasps.
In Proc. |IEEE ICRA, pp.2290-2295. Nice, 1992.
Mirtich, B. and Canny, J. Easily Computable Opti-
mum Grasps in 2-D and 3-Dn Proc. IEEE ICRA,
pp.739-747, San Diego, 1994.

Mishra, B., Schwartz, J.T. and Sharir. M. On the Ex-
istence and Synthesis of Multifinger Positive Grips.
Algorithmica, Special Issue: Robotics, 2(4) pp.541-
558, 1987.

Mishra, B. Grasp Metrics: Optimality and Complex-
ity. Algorithmic Foundations of Robotics, pp.137-
166, A.K. Peters, Wellesley, MA, 1995.

Nguyen, V.D. Constructing Force-Closure Grasps.
Int. J. Robot. Res., 7(3) pp.3-16, 1988.

Ponce, J. and Faverjon, B. On Computing Three
Finger Force-Closure Grasp of Polygonal Objects.
IEEE Trans. Robot. and Aut., 11(6) pp.868-881,
1995.

Ponce, J., Sullivan, S, Sudsang, A., Boissonnat, J.-
D. and Merlet, J.-P. On Computing Four-Finger
Equilibrium and Force-Closure Grasps of Polyhedral
Objects.Int. J. Robot. Res,, 16, (1), pp. 11-35, 1997.

] Pollard, N. Synthesizing Grasps from Generalized

Prototypesin proc. |EEE ICRA, pp.2124-2130. Min-
neapolis, 1996.

fingers are already positioned and the position of the fourth [14] Shimoga, K.B. Robot Grasp Synthesis: A Survey.

must be determined. The extension to the general case

J. Robot. Res., 15(3) pp.230-266, 1996.



