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ABSTRACT 

This paper presents an efficient and robust method 
for registration of terrain models created using stereo 
vision on a planetary rover. Our approach projects cwo 
surface models into a virtual depth map, rendering the 
models as they would be een from a single range sensor. 
Correspondence is established based on which point 
project to the same location in the virtual range sensor. 
A robust norm of the deviations in observed depth is used 
as the objective function, and the algorithm searches for 
the rigid transformation which minimizes the norm. An 
initial coarse search is done using rover pose information 
from odometry and orientation sensing. A fine search is 
done using Levenberg-Marquardt. Our method enables a 
planetary rover to keep track of designated science targets 
as it moves, and to hand off targets from one set of stereo 
cameras to another. These capabilities are essential for the 
rover to autonomously approach a science target and place 
an instrument in contact in a single command cycle. 

1. INTRODUCTION 

Single cycle instrument placement (SCIP) is the single 
greatest autonomy need for the next generation of Mars 
rovers, such as the planned 2009 MSL rover mission to 
Marsl. The goal of SCIP is to enable a planetary rover 
to approach and place an instrument on a scientifically 
interesting point on the terrain from a distance of 10 
meters[J], [2]. This must happen within one command 
cycle, so that after an operator selects a science target 
and uploads a command, the next response from the 
rover is the requested science measurement from the 
target. Single cycle instrument placement will significantly 
increase science return per unit of operational time over 
the stop and move, human-in-the-Ioop operation of the 
Sojourner and MER rovers, which each require between 
3 and 5 command cycles to obtain the same data. 

The first step in SCIP is the navigation of the rover 
to a location that places the point of interest within the 
workspace of an arm which carries an instrument. Un­
certainty about the exact target position and accumulated 
rover localization errors require that the rover actively 
keep track of where the target is in relation to itself as 
navigates towards it. Once positioned, the rover evaluates 

Fig. 1. Artist's conception of 2009 Mars Smart Lander [JPL] 

the target to ensure the instrument can be safely placed 
and then moves it into place with the arm. This can require 
handing the target off from the cameras used to track it 
in the approach phase to the cameras used for close up 
inspeciiofl and positioning of the arm. . . ., . 

Terrain model registration can solve both the target 
tracking and target hand-off problems. Tracking is done 
by registering successively acquired terrain models of the 
target area to the initially acquired model of the target. 
Tracking also provides information about rover motion 
between views. Hand-off is done by registering the target 
models from two different sensors. 

This paper focuses on the problem of terrain model reg­
istration. The method presented in this paper uses tereo 
vision to build 3D terrain models, then uses an algorithm 
similar to ICP to find the rigid transformation which 
aligns two models. An important difference between the 
method presented here and ICP is the use of a sensor 
model which projects the two view into a virtual range 
sensor. Using a rendering model removes the need to 
search for corresponding points with a distance heuristic. 
A robust error metric is then minimized, reducing the 
effect of outliers in the stereo models. A coarse search 
for the minimum is performed using a correlation based 
strategy which uses partial knowledge of rover motion. A 
fine search is performed using a general purpose robust 
estimation algorithm. 
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11. PREVlOUS WORK 

The Iterated Closest Point (ICP) algorithm was intro­
duced by Chen and Medioni[3] and Besl and McKay[4] to 
recover a rigid transformation between two point clouds 
with unknown correspondence. The method relies on two 
steps. The first uses a nearest neighbor heuristic to estab­
lish correspondence between points. The second computes 
the rigid transformation between the point clouds. When 
only two point clouds are being aligned, the second step 
is computed in closed fo rm. 

A good summary of ICP and its extensions can be found 
in a recent survey[5]. An important extension to ICP is 
an objective function which uses the distance between a 
vertex in one model and the nearest point on the surface 
of the other model, rather than the nearest vertex[6] . 
This objective function does not penalize for motion of 
corresponding points along the surface. 

Methods other than rep have also been used 
for model registration, including the Expecration­
Maximization algorithm[7], and nonlinear optimization 
with robust M-estimators[8]. The latter approach is at­
tractive for several reasons. Fitzgibbon showed that be­
sides increasing the robustness of the so lution to outliers 
in the data, using Levenberg-Marquardt to minimize a 
robust norm converges to a solution rapidly and has a 
significantly larger basin of attraction than lea t squares. 
For these reasons, robust estimation with Levenberg­
Marquardt is used in this work. 

III. ApPROACH 

This section describes the technical approach u ed for 
terrain model registration. The approach relies on three 
key parts. The first is a sensor model which predicts the 
observations that should be seen under a hypothesized 
transformation for the surface models. The sensor model 
used here is a virtual range sensor, which is a reasonable 
approximation to the stereo system u ed to measure the 
shape of the terrain. The sensor model allows us to write 
an objective fu nction which depends on the difference 
between what is observed and what is expected under the 
hypothe is. 

The econd part is a coarse earch based on approx­
imate knowledge of position and orientation. Assuming 
a fixed orientation, the virtual range sensor axes specify 
a coordinate frame over which a 2D correlation search 
can be performed. The coarse search finds an approximate 
translation which is closer to the alignment than the initial 
guess based on odometry. 

The third part is a fine search based on Levenberg­
Marquardt (LM) nonlinear optimization[9], along with 
an extension which incorporates robust estimation using 
iteratively reweighted least sq uares (IRLS)[lO], [11]. The 
robust optimization method is used to minimize the ob­
jective function and recover the alignment of the terrain 
models. 
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Fig. 2. Each pixel in the range image is predicted by rendering the 
corre ponding mesh facet into a virtual range sensor. 

A. Sensor model 

Stereo processing results in a range image conslsung 
of a depth estimate for every pixel in the rover stereo 
cameras. These depth estimates are combined to produce 
a 3D model of ll-]e surface. If two models of a surface 
are made from different locations, the rigid transformation 
that aligns the two models can be u ed to determine the 
coordinate transformation between views. 

The surface models are represented by triangulated 
meshes with vertices v and v'. If the two 3D models 
contain some region of overlap, there is a rigid trans­
formation that aligns the overlapping regions. The goal 
of registration is to find the rigid transformation that 
aligns the model v with the model v '. We represent the 
transformation using the parameter p = (x, y, z, , , )T 
corresponding to 3 translational and 3 rotational degrees 
of freedom. There are many ways to represent rotations; 
we choose Euler angles for simplicity. Singularities in 
the representation are not an issue since roU· and pitch 
angles for our rover are naturally constrained to be within 
tolerable physical limits. 

These parameter p defines a 4 4 transformation matrix 
T p . If p is the parameter describing the transformation 
between surfaces v and v ', then for every pair of corre­
sponding points V i and v; the relationship 

(1) 

holds. With real observations this equality will not hold 
exactly. The approach taken in rcp is to minimize the 
Euclidean distance between the corresponding points. 

In this work, we pmject these two models into a virtual 
range sensor view and minimize the difference between 
the rendered depths at each point. The projection is done 
using a rendering operation which uses the hypothesized 
pose of a model in the camera coordinates to find the 
intersection of the surface of the terrain model and the rays 
corresponding to each pixel of the virtual range sensor. 
The range is then computed as the distance between the 
camera center and the intersection of the model surface 
and camera ray. 

The rendering takes O(n) operations, where n is the 
number of pixels in the virrual range sensor. For each 
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triangle on the mesh v', the vertices v;, vj, and ~~ are 
projected onto the image plane. For every pixel in ide that 
triangle, the location of the inter ection of the camera ray 
nc and the facet of the mesh is a point s~ , given by 

(2) 

with a i + a j + a k = 1. The depth to the intersection point 
is the length of the projection of the intersection point 
onto the camera ray, 

(3) 

The vector of all depths Zi is denoted z. We fix the 
registration to use the coordinate frame of the surface 
model v' so that it does not move during registration. This 
means that z is a constant and can be computed once at 
the beginning of a registration. 

The depth to the point V i changes with p. Similarly to 
(2) and (3), we write 

(4) 

and 
hi(p ) = nc Si (5) 

The function h(p) is a vector contalmng all predicted 
depths. We define an objective function which is the sum 
of squared deviations between the projected depths 

1 
J2 = 2 (Z h(p ))TR l(z h (p)) (6) 

where R is the measurement covariance. The use of 
a rendering model eliminates the need to search for 
corresponding points. Correspondence between points is 
established directly by the rendering operation since uncer 
the current pose hypothesis, corresponding mesh points 
project to corresponding range image pixels. 

B. Coarse registration 

We can expect our rover to have approximate knowl­
edge of translation and rotation between observations. 
Dead reckoning can provide rudimentary information 
about both translation and rotation . On relatively short tra­
verses, errors in dead reckoning based purely on odometry 
on the K9 rover are on the order of 10 cm of translation 
and a few degrees of rotation in yaw per meter travelled . 
Our rover also has sensors which measure orientation 
directly, including an inclinometer and a sun tracker 
which together fully constrain the rover orientation. These 
sensors are accurate to within a few degrees regardle s of 
distance travelled. 

Visual tracking methods often make use of brute-force 
correlation to find the 2D image plane location of a feature 
of interest. Searching for a 6dof rigid transformation 
using correlation is prohibitive, since evaluating every 
hypothesis on a 6D grid is expen ive. However, if the 
orientation is approximately known , then 3 of the degrees 
of freedom can be eliminated, reducing the search to 3dof. 
Since a virtual range image is used to evaluate each pose 
hypothe is, we can also eliminate the search in the camera 
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Fig. 3. Example correlation surface for coarse registration. 

Z axis. For any translation parallel to the camera x y 
plane, the average or median Z deviation can be computed 
and removed. This reduces the 6D search to 2D, making 
correlation feasible. 

The correlation proceeds as follows. The camera loca­
tion and orientation are estimated using onboard sensors, 
and the orientation is fixed. A grid is established in the 
camera sensor plane as a set of translations X c and 

Yc' The camera z coordinate of each translation is zero. 
The approximate camera orientation is then used to rotate 
these translations to world coordinates ( x , y , z) . 
For each translation hypothesis, the differences between 
corresponding pixels in the two rendered range images is 
computed. The median of these differences is found and 
subtracted out, and then the sum of absolute differences 
between the corrected range values is computed as a 
match score. The match score for each translation in the 
correlation grid is then interpreted as a correlation surface. 
The minimum value i chosen as the coarse match. An 
example correlation surface is shown in Figure 3. 

A grid size and grid spacing must be determined over 
which the correlation is to be computed. Our current 
implementation uses an 11 11 grid with a 10 cm spacing, 
which can compensate for translation errors of up to half 
a meter and find an initial coarse alignment that is within 
5 centimeters of the solution. 

C. Fine registration 

The goal of our registration procedure is to minimize 
(6). LM requires the gradient and approximate Hessian 

V p J2 = H TR l (Z h(p)) 

V~J2 H TR IH (7) 

to compute a parameter update 

p <- p + (V~h + I ) IVph (8) 

The parameter ensures that (8) is well conditioned and 
takes an appropriate step. A more complete description 
of the LM algorithm is beyond the scope of this paper. 
Several useful descriptions exist[12] , [9]. However, the 
Jacobian of the sensor model is specific to the application 
described here. 
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Fig. 4. The Jacobian of the depth measurement is found by projecting 
the derivative of the vel1ex locations onto the urface normal. 

The Jacobian H is the change in the rendered dep th at 
each point with respect to a change in the transformation 
parameter p . Motion of the point Si on a polygon can be 
decomposed into motion normal to the plane and motion 
parallel to the plane. Motion parallel to the plane does not 
change the depth. The depth only changes with motion 
normal to the plane. 

The change of the point S i is described by 8si/8 p , 
which is a linear combination of the derivaLives 8v / 8 p 
with the same coefficients used during rendering in (4) . 
The projection of the derivative onto the surface normal 
is 

(9) 

The change in depth hi lies along the camera normal. Its 
projection onto the surface normal is 

ohi • • Ohi (10) -- = n c n s -
OP.L op 

Equating the projections (9) and (10) we find 

Ohi _ ~ ( . OV i . OVj OVk) (11) 
-0 -. • a, '" + aJ '" + ak '" p D c ns v p vp v p 

The Jacobian H is the matrix containing all of the gradi­
ents ohd op. 

D. Robust Estimation 

The L 2 norm is optimal when the observation noise is 
Gaussian. However, the L2 norm may exhibit problems 
when it is not. For data which contains outliers, there 
are a family of norms () which are robust to large 
deviations. These are functio ns which have a bounded 
derivative far from zero, so that large deviations provide 
only a small contribution to the gradient of the objective 
function. The objective function used in this work uses 
the Huber norm[ll) , 

(x) _ {e
2 (1 cos(x/e)) 

- e/xl + e2 (1 12) 
if Ixl /e < 12 
if Ixl l e 12 (12) 

shown in Figure 5. When the deviation is close to zero, 
the Huber norm behaves similarly to the L2 norm. ·When 
the deviation is large, the norm behaves similarly to L 1 . 

This norm has been shown to perform well for ICP[8]. 
Using the robust norm, we rewrite (6) as 

JH (p) = ~ .L (Zi hi(p)) (13) 
i 
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Fig. 5. Comparison of the L2 norm and the Huber robust norm used 
in this work, and the weight function for weighted least squares. 

and the derivatives as 

H T R l (Z h(p)) 
H T R IH 

• where is a diagonal matrix of weights 

Wii = W(Zi hi(p)) 

The weight function for the Huber norm is 

(14) 

(15) 

( ) _ { e/xSin(x/ e) if /xl/e < / 2 (16) 
W x - e/ lxl if Ixl/e 12 

with e = 1.2107. The weights are recomputed during 
each iteration of Levenberg-Marquardt, resulting in an 
iteratively reweigh ted least sq uares algorithm. 

IV E XPERIMENTA L RESULTS 

To empirically validate the performance of the regis­
tration for instrument placement, we tested our algorithm 
with a 4 meter traverse in the laboratory. A stereo image 
pair was captured using the navigation cameras on the 
mast of the K9 rover. A 3D model was computed and 
presented to an operator in the Viz visualization tool. 
The user specified a goal point on a rock. The selected 
instrument placement goal location is marked with a "+" 
in the left camera image shown in Figure 8. The rover 
moved 4 meters, stopping every meter to align the 3D 
model of the current view of the goal location with the 
3D model created from the initial view. At a distance of 
2 meters, the view switched from the navigation cameras 
on the mast to the hazard cameras on the underside of 
the rover chassis in order to provide a better view of the 
goal. This was accomplished using our target handoff by 
aligrung views from the two different camera pairs. 

Figure 6 shows two 3D models. The red model is the 
initial 3D model computed using stereo vision ' from a 
distance of 4 meters. The arrow indicates the goal location 
selected by the rover operator. The textured model is 
the final view of the rock from the hazard cameras at 
a distance of SOcm. The misregistration is a result of 
errors in by dead reckoning, rover kinematics, pan tilt unit 
calibration, etc. Figure 7 shows the result of aligning the 



Fig. 8. Selected goal location 

Fig. 9. Estimated goal location after registration 

initial model from the navigation cameras witb the final 
model from the hazard cameras. 

The goal location on the rock can be recovered directly 
using the transformation willch aligns the views, which is 
represented with an arrow in Figure 7. The final camera 
view of the goal is in Figure 9, with the estimated goal 
location indicated with a "+". This is the intended location 
for the instrument, which is placed using the algorithms 
described inC 1]. 

V. DISC USSION 

Registration of 3D surface models is an attractive 
method for localization and target approach. As long as 
the lighting conditions permit the acqu isition of images 
for stereo, the surface models and resulting registration 
results are independent of the lighting conditions. This 

is attractive compared to 2D approaches which might 
have difficulty with tracking features or recognizing places 
when lighting conditions change. We can also achieve 
bounded error in pose estimation with respect to the target 
location since the initial target model can be used as long 
as the target remains in view. 

Furthermore, 2D visual tracking requires the rover to 
spend computational effort on computations that it may 
be doing only for the purpose of visual pose estimation. 
However, ASA's current plans call for stereo vision 
to be used for hazard avoidance on MER in 2003 and 
probably on MSL in 2009. Registering the 3D models that 
are already created for local path planning and obstacle 
avoidance makes dual use of data that is being generated 
anyway. The marginal computation for registration is less 
than the computation required for building the 3D models 



Fig. 6. Terrain models before registration. 

Fig. 7. Terrain models afler registration. 

in the first place, so most of the computational work is 
already done. 

The robust estimation method used in this paper works 
quite well. The surface models used in the examples 
here were not regularized, resampled, or "cleaned" in any 
way and the results are still promising. Other reported 
approaches require mesh regularization and cleaning in 
order to ensure that meshes have similar resolutions and 
there are no outliers before minimizing a norm which is 
sensitive to large deviations. These steps may improve 
the results we can acheive using robust estimation but 
empirically are not required for it to work. 

Algorithmically, our technique compares well to ICP 
The rendering operation takes O(n) where n is the number 
of pixels in the virtual range image. The resolution of 
the virtual range image can be changed to speed up 
the algorithm with a corresponding loss in performance 
due to lack of detail in the models. Levenberg-Marquardt 
updates require O(n) to construct and multiply matrices, 
but the computation of the update to the parameter is 
constant time since the number of dimensions in the 
parameter vector is fixed at 6. In terms of convergence, the 
approaches have similar properties since each converges 
to a local minimum and will find the global optimum if 
the initial guess is within the basin of attraction. We have 
not yet done experiments to determine what that basin 
might Jook like for the different method , but we have 
empirically noticed that the basin of attraction is larger for 
the robust norm than for least squares. We are working on 
a more thorough empirical comparison of our technique 
to ICP, and in the mean time we have also made our 
3D terrain data public for interested readers to use for 
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comparison with other techniques[ 13). 
We are currently working to further extend thi work. 

Algorithmically we are investigating ways to optimize 
the implementation, perhaps making use of some efficient 
rendering techniques. We would also like to extend this to 
multiview registration in order to handle more than two 
views at a time. 

This method is being incorporated into a larger demon­
stration of single cycle instrument placement for improved 
efficiency of planetary rovers and increased science return 
for future Mars missions. 
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Abstract 

This paper presents a method for registration of 
terrain models created using stereo vision on a 
planetary rover. Most 3D model registration ap­
proaches use some variant of iterated closest point 
(lCP), which minimizes a norm based on the dis­
tances between corresponding points on an arbi­
trary 3D surface, where closest points are taken to 
be corresponding points. The approach taken here 
instead projects the two surface models into a com­
mon viewpoint, rendering the models as they would 
be seen from a single range sensor. Correspondence 
is established by determining which points on the 
two surfaces project to the same location on the 
virtual range sensor image plane. The norm of the 
deviations in observed depth at all pixels is used 
as the objective function, and the algorithm finds 
the rigid transformation which minimizes the norm. 
This recovered transformation can be used for vi­
sual odometry, rover pose estimation and feature 
hand off. 

1 Introduct ion 

Single cycle instrument placement (SelP) is a crit­
ical need for the planned MSL 2009 rover mission 
to Mars. The goal of SelP is to enable a planetary 
rover to place an instrument on a scientifically in­
teresting point on the terrain from a distance of 10 
meters with a single rover cornmand[l]. 

The first step in SCIP is the navigation of the 
rover to a location that places the terrain point 
within the workspace of an arm which carries an 
instrument. Once positioned, the rover servos the 
instrument into place for taking a measurement. 

1 

Figure 1: K9 rover placing its microscopic camera 
on a science target in the Marscape 

All of this happens within one command cycle, so 
that once an operator selects a science target, the 
next response from the rover is the data that was 
requested. Single cycle instrument placement will 
significantly increase science return per unit of op­
erational time over the stop and move, human-in­
the-loop operation of the Sojourner rover. 

Two technology needs within Se lP are pose es­
timation and feature hand off. Pose estimation is 
required in order to place the rover within reach of 
the science target. Registration of terrain models 
from different rover locations can be used to re­
cover the pose of the rover in the different views . 
Feature hand off may be required to provide a bet­
ter 3D model of the instrument goal location for 
the final step of instrument placement using im­
agery from hazard avoidance cameras closer to the 
ground. Registration of terrain models from the 
navigation cameras and hazard cameras provides a 
calibration which can be used for handing off the 
goal location from one stereo pair to the other. 



This paper focuses on the problem of terrain 
model registration. The method presented in this 
paper uses stereo vision to build 3D terrain models , 
then uses an algorithm similar to Iep to find the 
rigid transformation which aligns two terrain mod­
els. The important difference between the method 
presented here and the popular Iep algorithm is 
the use of a sensor model which projects the two 
views into a virtual range sensor and minimizes the 
difference between the measured depth to points on 
the two models. Using a rendering model removes 
the need to search for corresponding points with 
a distance heuristic. At the correct registration, 
corresponding points project onto the same range 
sensor pixel. 

2 Previous work 

The Iterated Closest Point algorithm (rCP) algo­
rithm was proposed independently by ehen and 
Medioni[2] and by Besl and MacKay[3] to recover a 
rigid transformation between two point clouds with 
unknown correspondence. The method relied on 
a step which used a nearest neighbor heuristic to 
establish correspondence between points, followed 
by a step which computed the rigid transformation 
between the point clouds in closed form using tech­
niques which had been studied earlier[4, 5]. IGP 
was later extended to handle multiple views[6, 7, 
8, 9], where there is no longer a known closed form 
solution for the alignment of all views even when 
the correspondences are known. A good survey of 
efficient variants on the original Iep algorithm can 
be found in [10]. 

An important extension to the original Iep al­
gorithm was a modification to the objective func­
tion which minimizes the distance between a ver­
tex in one model and the nearest point on the sur­
face of the other model , rather than the nearest 
vertex[ll]. This extension captures the fact that 
changes in the rigid transformation which cause a 
point to move along a surface should not be penal­
ized. The derivatives of the cost function reflect the 
fact that the distance between a point and a plane 
only changes when the point moves in a direction 
parallel to the surface normal. 

Methods other than Iep have also been used for 
model registration, including the general purpose 
Expectation-Maximization algorithm[12], and gen-

2 

eral purpose nonlinear optimization using robust 
M-estimators[13]. The latter approach is attrac­
tive. Fitzgibbon showed that besides increasing the 
robustness of the registration solution to outliers 
in the data, using Levenberg-Marquardt to mini­
mize a robust norm converges to a solution rapidly 
and has a significantly larger basin of attraction 
than least squares. Because of these properties, ro­
bust estimation with Levenberg-Marquardt is used 
in this work. 

3 Approach 

This section describes the technical approach used 
for terrain model registration. The approach relies 
on two key parts. The first is a sensor model which 
predicts the observations that should be seen under 
a hypothesized transformation for the surface mod­
els. The second is the Levenberg-Marquardt[17, 18, 
15] nonlinear optimization method, along with an 
extension which incorporates robust estimation us­
ing iteratively reweighted least squares[16, 19, 20]. 

3.1 Sen sor modeling 

For every pixel in the left camera image for which 
a correspondence is found in the right camera im­
age, the stereo algorithm estimates the depth to 
that point . These depth estimates are combined to 
produce a 3D model of the surface. If two models 
of a surface are made from different locations, the 
rigid transformation that aligns the two models can 
be used to determine the coordinate transformation 
between views. 

The surface models are represented by triangu­
lated meshes with vertices v and v'. If the two 3D 
models contain some region of overlap, there should 
be a rigid transformation that aligns the two over­
lapping regions on the two surfaces. We represent 
the rigid transformation using the parameter vector 
p = (x , y,z,cx,{3,/)T corresponding to 3 transla­
tion directions plus rotation in roll, pitch, and yaw. 
These parameters define a transformation matrix 
T p. If p is the parameter describing the transfor­
mation between surfaces v and v', then for every 
pair of corresponding points Vi and v~ the relation­
ship 

(1) 
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Figure 2: Each pixel in the range image is predicted 
by rendering the corresponding mesh facet into a 
virtual range sensor. 

holds. With real observations this equality will not 
hold. The approach taken in lOP is to minimize the 
Euclidean distance between points. In this work, 
we project these two models into a virtual range 
sensor view and minimize the difference between 
the depths at each point. 

Rendering takes O(n) operations, where n is the 
number of pixels in the virtual range sensor. For 
each facet on the mesh v', the three vertices v~, vj, 
and v~ are projected onto the image plane, creating 
a triangle. For every pL'Cel inside that triangle, the 
location of the intersection of the camera ray llc 
and the facet of the mesh is a point s~ which is a 
convex combination of the vertices, 

(2) 

with a i +aj +ak = 1. The depth to the intersection 
point is the z coordinate in the camera frame, 

(3) 

The vector of all depths Zi is denoted z. The surface 
model v' does not move during registration, so z is 
a constant . 

The depth to the point Vi changes with p . Sim­
ilarly to (2) and (3), we write 

(4) 

and h(p) is the vector containing aU predicted 
depths hi (p). We then define an objective function 
which is the sum of squared deviations between the 
projected depths 
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lis " dv 
~ ap 

Figure 3: The Jacobian of the depth measurement 
is found by projecting the derivative of the vertex 
locations onto the surface normal. 

1 
J2 = 2(z - h (p)fR -l(Z - h (p)) (5) 

The goal of the registration then is to minimize (5). 
Using Levenberg-Marquardt requires the gradient 
and approximate Hessian 

_HTR-1(z - h (p)) 
HTR-1H 

to compute the updated parameter 

(6) 

p (iH) = p (i) + (\7~J2 + AI)-1\7p J 2 (7) 

The parameter A is used to dynamically mix 
ewton-Raphson style updates with gradient de­

scent style updates . If an update results in 
J (p (iH)) > J(p(i)) tl).en A is increased and p (i+l) 

recomputed. A more complete description of the 
general use of Levenberg-Marquardt optimization 
is beyond the scope of this paper. Several useful 
descriptions exist[14, 15]. However, the Jacobian 
H = ~~ warrants some explanation. 

The J acobian H is the change in the rendered 
depth at each point given a change in the transfor­
mation parameter p . Any motion of the polygon on 
which the point Si lies can be decomposed into mo­
tion normal to the plane and motion parallel to the 
plane. Motions parallel to the plane do not change 
the depth to the point. The depth only changes 
with motion normal to the plane. 

The change of the point Si is described by 
OSi/Op, which is a linear combination of the deriva­
tives Ov / op with the same coefficients used during 
rendering in (4). The projection of the derivative 
onto the surface normal is 

OSi , 8 V i 8vj 8Vk) 
- = llc . (ai- + a - + ak--
8p J.. op J op 8p 

(8) 



-- - L2 norm 

- Huber norm 

I 

Huber weight 

, 
I 

I 

, 
I 

, 
I , 

, , 
I 

, 
I 

I 

5 

Figure 4: Comparison of the L2 norm and the Hu­
ber robust kernel used in this work, and the weight 
function for weighted least squares. 

The change in depth hi lies along the camera nor­
mal. Its projection onto the surface normal is 

8hi A A 8hi 
8p .L = O c . O s 8p 

Equating the projections (8) and (9) we find 

(9) 

8h i 1 A 8 Yi 8 Yj 8 Yk 
-8 = -- - -- OC·(Oi-

8 
+OJ-8 +Ok-

8 
) (10) 

p 0 c· n s p p p 

The Jacobian H is the matrix containing all of the 
gradients 8hd8p . 

3.2 Robust E stimation 

The L2 norm is optimal when the observation noise 
is Gaussian. However, the L2 norm is known to ex­
hibit problems when the data contains outliers . For 
data which may contain outliers, there are a family 
of norms pO which are robust to large deviations. 
These are functions which have a unique minimum 
at zero and a bounded derivative far from zero, s.o 
that large deviations provide only a small contribu­
tion to the gradient of the objective function. The 
kernel used in this work is the Huber norm[20)' 

if Ixl/c < 1f/2 
if JxJ/c ~ 1f/2 

(ll) 

norm does not increase as the deviation increases. 
Robust estimators have been used for a variety of 
applications[16]. In particular, this norm has been · 
shown to perform well for ICP[13]. Using the ro­
bust norm, we rewrite (5) as 

and the derivatives as 

H TnR-1(z - h (p )) 
H TnR-1H 

where n is a diagonal matrix of weights 

(12) 

(13) 

(14) 

The weight function is derived from the robust 
norm, and several examples are shown in [20] . The 
weight function for the norm used in this work is 

w(x) = { c/xsin(x/c) if JxJ/c < 1f/2 
c/JxJ if JxJ/c ~ 1f/2 

(15) 

with c = 1.2107. The weights are recomputed 
during each iteration of Levenberg-Marquardt, re­
sulting in an iteratively reweighted least squares 
(IRLS) optimization. 

4 Experimental results 

To empirically validate the performance of the reg­
istration, we tested the algorithm using a few ex­
amples of 3D surface registration problems which 
are part of a single cycle instrument placement sys­
tem. The 3D models used in these experiments 
are all built using stereo algorithms which run on­
board the Kg rover using images from three dif­
ferent stereo camera pairs. Table 1 describes the 
stereo camera pairs used on the rover . The ter-

Camera pair Location FOV 
. Science cam top of mast narrow 

av cam top of mast moderate 
Haz cam below solar panel wide 

shown in Figure 4. When the deviation is close Table 1: Stereo camera pairs on Kg rover 
to zero, the Huber norm behaves similarly to the 
L2 norm. When the deviation is large, the norm rain models derived from stereo imaging are used 
behaves similarly to L1 , i.e. the derivative of the for a variety of purposes including visualization for 
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scientists and rover operators as well as onboard 
autonomous hazard avoidance. Registration of 3D 
models can also enable the applications outlined in 
Table 2. Examples of these are shown below. 

Application Camera pair Camera pair 
Visual odometry Navcam Navcam 
Pose estimation Nav cam Science cam 
Target hand off Haz cam Nav cam 

Table 2: Applications of 3D registration and the 
stereo pairs used for each. 

4.1 Visual odometry 

Visual odometry can be achieved by registration 
of 3D surface models created using images from 
the navigation cameras before and after the rover 
moves. The transformation which aligns the views 
is directly related to the change in pose of the 
rover, leading to an odometry measurement be­
tween poses. For the visual odometry experiment 
the rover was placed in the Marscape and incre­
mentally commanded to move forward one meter 
or turn 45°. The 3D models acquired before and 
after each move were registered using dead reckon­
ing as an initial guess for the alignment. 

Figure 5 shows the differences in depth be­
tween the rendered surfaces using the transforma­
tion from dead reckoning, before the registration 
algorithm is applied. Medium gray pixels denote 
zero error, while white and black denote errors of 
more than 10 cm. Figure 6 shows the depth errors 
found after optimizing the L2 norm in (5) using 
Levenberg-Marquardt. While the ground plane is 
well aligned, there are large errors where a rock in 
the foreground is misaligned. Figure 7 shows the 
result of optimizing the robust norm in (12). By 
minimizing the robust norm the algorithm is able 
to correct the errors seen in Figure 6. This is con­
sistent with Fitzgibbon's results and the claim that 
the robust norm has a wider basin of attraction 
than L 2 [13]. 

._--------,.-, 

10 

Figure 5: Initial depth errors for starting guess pro­
vided by dead reckoning for the visual odometry 
example. Error measured in centimeters. 

10 

5 

Figure 6: Final depth errors after convergence with 
L2 norm for the visual odometry example. Error 
measured in centimeters. 

10 

Figure 8 shows the convergence of the robust 
norm through time for several runs. Typically, con­
vergence is achieved within 5-10 iterations. The 
two convergence curves which show 20 and 38 iter­
ations correspond to point turns, where the overlap 
in the models is poor. 

Figure 7: Final depth errors after convergence with 
Huber norm for the visual odometry example. Er­
ror measured in centimeters. 

5 
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Figure 8: Convergence of the norm for several vi­
sual odometry examples 

4 .2 Pose estimation 

Pose estimation may also be done relative to a 
map of the environment built earlier. This may 
be done, for example, by building an extensive 3D 
panoramic model using the high resolution, narrow 
field of view science cameras from a single location 
and using the model as a 3D map. The rover can 
repeatedly register terrain models captured by the 
navigation cameras against the larger more accu­
rate model as it moves. The transformation which 
aligns the nav cam model to the previous map is 
directly related to the pose of the vehicle in the 
coordinate frame of the rover when the panoramic 
model was created. Figure 9 and 10 show an ex­

Figure 9: Alignment before registration for the pose 
estimation example. 

ample of the registration of 3D models created by Figure 10: Alignment after registration for the pose 
the navigation cameras and science cameras. The estimation example. 
initial alignment again comes from dead reckoning, 
but once the rover has localized, the next pose can 
be initialized using the previous registration plus 
an incremental dead reckoning estimate. Figure 11 
shows the initial and final depth errors for the mod­
els in F igure 9 and Figure 10. 

4 .3 Feature hand off 

In the context of instrument placement it may be 
necessary to coordinate multiple stereo pairs . For 
example, for the task of placing an instrument 

, ......... : .. -

. . . .. . 
~ ... ~ ~ .. 

10 10 

5 5 

0 0 

-5 -5 

-10 -10 

against a rock in front of the rover, the Haz cams Figure 11: Depth error before and after registration 
might have a better vantage point to image the goal for the pose estimation example. Error measured 
location when the rover is close to a rock which in centimeters. 
was selected by rover operators using the naviga-
tion cameras. By registering the 3D models from 
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Figure 12: Depth error before and after registration 
for goal location hand off example. Errors mea­
sured in centimeters. 

the Haz cam and Nav cam, the rover can hand off 
the target location from one view to the other. Fig­
ure 12 shows the depth errors before and after reg­
istration of surface models created with the Nav 
cam and Haz cam. 

5 Discussion 

Registration of 3D surface models is an attractive 
approach for rover localization. As long as the 
lighting conditions permit the acquisition of images 
for stereo, the resulting 3D surface models are in­
dependent of the lighting conditions. This is at­
tractive compared to 2D approaches which might 
have difficulty with tracking features or recogniz­
ing places when lighting conditions change. 

Furthermore, 2D visual tracking approaches re­
quire the rover to spend computational effort on 
something that it may only be doing for the pur­
pose of visual odometry. However, NASA 's current 
plans call for stereo vision to be used as a hazard 
avoidance technique on MER in 2003 and likely on 
MSL in 2009. Registering the 3D models that are 
already created in order to do local path planning 
and obstacle avoidance makes dual use of data that 
is being generated anyway. The marginal computa­
tion for registration is less than the computational 
effort for building the 3D surfaces, so most of the 
computational work is already done. 

Accurate stereo calibration is fundamentally im­
portant for the approach in this paper. A miscali­
bration of stereo can cause the resulting models to 
be distorted by a projective transformation. Such a 
deformation will not be recoverable by the param­
eters in p. 

The robust estimation method used in this pa­
per works quite well, as was reported in [13J. The 

7 

surface mOdelS used III the examples here were 
not "cleaned" in any way and the results are 
still promising. Other reported approaches require 
mesh regularization and cleaning in order to ensure 
that there are no outliers before minimizing a norm 
which is sensitive to large deviations. These steps 
may improve the results we can acheive using ro­
bust estimation but empirically are not required for 
it to work. 

We are currently working to further extend this 
work. Algorithmically we are investigating ways to 
optimize the implementation, perhaps making use 
of some very efficient existing rendering techniques. 
We would also like to extend this to multiview reg­
istration in order to handle more than two views at 
a time. It should be possible to extend the objec­
tive function to include a term which matches the 
albedo at each point along with the depth. 

In terms of rover autonomy, this method might 
benefit from some sensor planning to determine 
when a next view is necessary for localization. We 
have already seen the difficulties with registering 
views where the rover has turned far enough that 
there is a small overlap between surface models. 

This method is also being incorporated into a 
larger demonstration of single cycle instrument 
placement for improved efficiency of planetary 
rovers and increased science return for future Mars 
missions. 
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