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Absfract- We develop the dynamic model for a planar 
ROLLERBLADER. The robot consists of a rigid platform and 
two planar, two degree-of-freedom legs with in-line skates at 
the foot. The dynamic model consists of two unicycles coupled 
through the rigid body dynamics of the planar platform. We 
derive the Lagrangian reduction for the ROLLERBLADING 
robot. We show the generation of some simple gaits that 
allow the platform to move forward and rotate by using 
cyclic motions of the two legs. 

I. INTRODUCTION 

The last decade has seen a great deal of interest in undu- 
latory robotic locomotion systems, including the Eel 1111, 
the Snakeboard [12], the Variable Geometric truss [9], the 
Roller Racer [lo] and various snake like robots [6].  The 
configuration space for such robots consists of two types 
of variables, group variables which represent the aggregate 
motion of the robot and shape variables. Propulsion or 
net motion of these robots is a result of cyclic shape 
variations. Such cyclic shape variations are often referred 
to as gaiis. Unlike more conventional locomotion systems, 
the dynamics of such systems are quite complicated and 
it is often difficult to determine how shape motions can 
be synthesized and controlled to generate desired group 
motions. 

Robots like the snakeboard are affected by the presence 
of nonholonomic or non-integrable constraints. Such con- 
straints are usually expressed as linear functions of group 
and shape velocities. Exploring the interplay between the 
constraints and the dynamics is necessary to understand 
the build up and decay of momentum in the system [IZ]. 

In t h i s  paper, we analyze and present simulation 
results for a planar rollerblading robot called the 
ROLLERBLADER. The ROLLERBLADER consists of a cen- 
tral platform with two extensible l i s  attached to it, as 
shown in Fig. 1. Each link has a rotary actuator mounted 
at the joint joining the link to the central platform and a 
linear actuator that controls the extension of the link. The 
links make contact with the ground using an inline skate 
at the end of each link. The skate is fixed perpendicular 
to the link. Thus the system considered in this paper has 
a total of four inputs that control the movement of the 
legs, and seven degrees of freedom. Note that there are 
many variations on this geometry. It is possible to include 
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Fig. 1. Schematic of the ROLLERBLADER. (s,y,8) are the group 
variables and [n,dl,Tz,dz) are the shape variables. 

additional legs, and to add additional degrees of freedom 
to each leg. For example, articulating the in-line skate 
with respect to the leg provides an additional input in the 
system. However, we consider here the simplest geometry 
needed to perform the rollerblading motion. Thus, we do 
not consider issues of balance that introduce an additional 
level of complexity in terms of analysis and development. 

This work builds on the recent body of litera- 
ture on nonholonomic mechanics of locomotion sys- 
tems [[lo], [12], [ll], [l]). The systems that are most 
closely related to this paper are the Roller Racer [lo] 
and the Roller Walker [8]. In fact, the ROLLERBLADER 
is based on the design of the Roller Walker, a four legged 
machine with in-line skates at the feet. An experimental 
prototype was shown to be able to generate skating mo- 
tions in the forward and rotary directions and also follow 
a figure-eight path [51. Our goal is to better understand 
the mechanics of the skating motion and the process of 
generation of gaits. 

The organization of the paper is as follows. We first 
provide some general background information in the next 
section (see [Z], [12] and [9] for more details). In Section 
111, we derive the dynamics for the system in Figure 1. 
In Section N, we use the BKMM Lagrangian reduction 
technique [2] to develop simplied equations of motion. 
The process of generating momentum in undulatory loco- 
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motion systems and the generation of gaits are discussed in 
Section V. Numerical simulation results provided in Sec- 
tion V illustrate gaits for forward motion and rotation. We 
conclude with a brief discussion of problems that remain 
to be solved and ow ongoing work in this direction. 

11. BACKGROUND 
The configuration manifold for the robot is given by 

Q = SE(2) x S x IR x S x IR. S denotes the group 
of rotations on W2. SE(2), the special Euclidean group, 
represents rotation and translation of a rigid bcdy in 
a plane. A point h = ( z l , y ~ , a )  E SE(2)  can be 
represented using homogeneous coordinates: 

s ina  cosa y1 . 
C O S ~  - s ina  XI 

0 0 1  1 h =  ( 
We can associate with SE(2)  a left action, 

Lh : SE(2) -+ SE(2) : y + h y .  

We also denote by ThLh the differential map of the 
left action evaluated at h E G. We choose q = 
( x , y , 8 , y l , d l , ~ ~ , d 2 ) ~  to represent the configuration of 
the system where (z,y) is the position of the central 
platform in a inertial reference frame, 6' is the orientation 
of the robot in the inertial reference frame, (71,rz) 
denotes the angular position of links 1 and 2 with respect 
to the central platform, (dl , d2)  are the extensions of links 
1 and 2. 

The configuration space can he naturally put into a 
trivial principalfber bundle denoted by &(M,G). Q is 
called the total space while M = S x W x S x W represents 
the shape or base space. We choose r = (71 ,  d l ,  72, dz) 
as local coordinates for the shape variables. G = SE(2) 
represents the fiber space. y = (z, y, 6') E SE(2) are often 
referred to as the fiber variables orfber directions. 

We denote by TqQ the tangent space of Q at q = 
(g, r )  E Q and by uq E T4Q a tangent vector at q. For our 
system, uq = (x, y, 0, ?I, dl , jz ,  &). We will use E E TeG 
to denote the body velocity where T,G is the tangent space 
of G at the identity e. 

We are interested in the left action of SE(2)  on the 
configuration space, @ : SE(2) x Q -+ Q given by 
@h(q)  = @h(g,r )  = ( L h g , r )  for h E G and q = (g,r) E 
G x M = Q. We will also require the tangent map of 
@ h ( q )  given by ThQhZlg : TqQ + TqQ: 

/ cosa -s iua o 1 \ 

where h = ( z ~ , y l , a )  E SE(2). As seen later, SE(2)  is 
the symmetry group for the ROLLERBLADER. The tangent 

space at q E Q to the orbit of SE(2) is given by: 

V, = T,Orb(q) = sp - - - . {aaz> :y> 3 
111. DYNAMIC MODEL 

In this section we derive the full dynamics for the 
ROLLERBLADER.  Let the mass and rotational inertia of 
the central platform of the robot be M and I, respectively. 
Let each link have rotational inertial I,. The mass of the 
link is assumed to be negligible. Each skate has mass 
m, but is assumed to have no rotational inertia. Then the 
Lagrangian for the robot is given by 

1 . 1  1 1 
2 2 

L = 2 ~ c 8 2 + 5 ~ p ( 8  + i .1 )2+-~p(8  + ?2)z+-~(2 + 0') 
1 1 

+-m(k:: 2 + y;) + -m@; 2 + y;). (2) 

where (z l ,y l )  and (zz,y2) represent the position of the 
skates in the inertial reference frame: 

X I  = x + bsin8 + dl sin(8 + ?I) ,  

z~ =x-bsin8-dzsin(O+yz) ,  
y2 = y + bcos0 + dz COS(@ + 72)  

yi = y - bcos0 - dl cos(8 + 71). 

Differentiating, we get 

= z+bcos86+dl  cos(0+71)(6+j1)+d1 sin(8+y1), 
y1 = 6+bsinOb+dl sin(8+?1)(8+?1)-& cos(O+y~). 
12 = i.- b cos Oe-dz cos(O+,)(e+?Z) -& sin(B+yz), 

= 0- b sin Be-dz sin(0+7&+qd +d2 cos@+y~). (3) 

Using the body velocity f = ( fz,&,,fo) of the system, 
the Lagrangian can be seen to simplify to 

1 
2 

L = - [ ( A t  + 2m)$ + (A4 + 2m)E," + I P ( b  + ?1)2 + 
I& + "12)' f ( I ,  + 2mbZ)Fe2 + m(df + 2; 
+d: (Fo+j~)~  + ~ ~ ( E ~ + ? Z ) ~ + ( ~ ~ I C ~ ~ Y I ( ~ B + ? I )  
-2d2cosyz(~s+~z)+2d1sinyl  +2d2sinyz)tz + 
2bdi€ecosyi(Es + 91) + 2bdzFe~0~7z(Fe + ? z )  
+(26&1 sinyl + 2bdzsinyz)f,9 +(MI sinrl(f.g+?1) 

-221 cos 71 - 2dz sin yz(te +?z) +222 cos yz)&,)] (4) 

where 
FZ=1cos6 '+ys in0 ,  

Fv =-xs in8+xcos8 ,  (5)  
60 = e. 

The Lagrangian defined here is invariant to the left group 
action, i.e. L(@hq,ThQhuq) = L(q, up). The invariance 
of the Lagrangian to the left action is also evident from 
the fact that the group g = (z,y,6') does not appear in 

861 



the expression for the Lagrangian written in terms of the 
body velocity (Equation (4)). 

The formulation of the dynamics of the system must 
handle the non-holonomic constmints acting on the sys- 
tem. It is necessary then to specify the constrailif disrri- 
bution on Q which contains the allowable directions of 
motion of the system. In order to formulate the constraint 
distribution, the constraints are expressed as linear func- 
tionals of the velocities or onelfonns. The nonholonomic 
constraints are specified as 

QI cos(8 + 71) - XI sin(8 + 71) = 0, 
y z  cos(8 + YZ) - X Z  sin(8 + 7 2 )  = 0. 

Using Equation (3), we have 

- sin(8+y1)5+cos(8+y~)j,-bsin(y~)~-d1 = 0, (6) 
- s i n ( ~ + y z ) ~ + c o s ( ~ + y 2 ) ~ + ~ s i n ( y z ) 8 + d 2  = 0. (7) 

We can now define the constraint one-fonns as 

U: = - sin(0 + yl)&+cos(8 + y~)dy-bsin(yl)dB-ddl, 

U,'=- sin(8 + yz)dz+cos(6' + yz)dy-bsin(yZ)de+ddz. 

The constraint distribution V, is given by the intersection 
of the kernels of the two one-forms given above. A basis 
for the distribution can be written as 

E : , = [ O  0 0 0 0 1 O I T ,  

r $ = [ o  0 0 1 0  0 O]=, 

E; = [ a1 a2 a3 0 0 0 0 1' 
where, 

GI = (Q)I = -b(cos(yz+O) sin(yl)+cos(yl+8) sin(yz)), 
w =  (5$)2= -b(sin(yz) sin(y1+8)+sin(yl) sin(y2+8)), 

as=sin(yl - 72). (8) 

The consuaint distribution is given by 

v, = SP {t& c& E;, t& Q ) 
The Lagrange's equations of motion with the constraints 
contain all the relevant information on the dynamics. In the 
next section, we show how the BKMM reduction process 
can he used to rewrite the equations by projecting them 
along the unconstrained directions. 

IV. REDUCTION 
We now present the process of Reduction due to 

Bloch, et. al. [2] which leads to simplified equations of 
motion, allowing us to write them in a lower-dimensional 
space. It also provides insight into the geometry of the sys- 
tem. In the course of reduction of a system, the externally 
applied constraints and certain internal constraints which 
often represent momentum conservation laws are used to 
define a connection on the principal fiber bundle. The con- 
nection relates thefiber velocities to the shape motions. In 
the presence of nonholonomic constraints there may exist 
one or more momenta along the unconstrained directions. 
The evolution of this momentum vector, referred to as 
the generalized momentum, is governed by a generalized 
momentum equafion (first derived in [2]).  The connection 
and the generalized momentum equation can then be used 
to reduce the dynamics of the base space. A fairly detailed 
approach to canying out such a reduction can be found 
in [2] and [12]. 

For the ROLLERBLADER, we first derive the uncon- 
strained directions and then the generalized momentum 
equation. In addition, we also dcrive the connection for 
the system and the reduced equations for the evolution of 
the base variables. This set of equations then defines the 
complete dynamics of the system. A process of Recon- 
struction can then be used to recover any variables which 
were removed in the Reduction process. 

A. Consfruined Fiber Distribution 

To derive the generalized momentum equations, we 
need to calculate the unconstrained directions of the 
system in the presence of the nonholonomic constraints. 
These directions are represented by the consimined fber 
distribution(S,) which is defined as the intersection of the 
constraint distribution 'D, and the fber distribution V,. 
The fiber distribution contains all the infinitesimal motions 
of the system that do not alter the sbape of the system. 
The fiber distribution can be written as 

Every vector e$ E S, must be in both the fiber distribution 
and the constraint distribution. Thus, we can write ( 8  in 
terms of the basis elements for V, and V,. 

(9) 
a a a Q = 11, - + vz- + r g -  ax av as' 

Q = U& + .zQ + 7 4  + .4$ + Us<;. (10) 

Using Equations (9) and (10) and the basis for the 
constraint distribution, we can write 

u1 = 0, u2 = 0, la3 = 0, ~ d d  = 0, 
2 1 , = a 1 u ~ , ~ = a 2 ~ 5 , ~ 3 = ~ 3 ~ 5 ,  
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where (al, az, a3) are given by Equation (8). Thus, S, is 
one-dimensional except at the singular point (71 = 7 2  = 
0) and we can write 

where, 
a a a 

ay ae' Q = a l z  + az- + a3- 

Let (Al ,dz ,  A3) represent a basis for the Lie Algebra 
se(2) corresponding to SE(2). The infinitesimal generator 
corresponding to p =(,AI + [ 2 d 2  + (3A3 E se(2) is 

8 A given vector field Cq - VI & + vz a + u3 & can be 
considered as the infinitesimal generator of an element 
( 9  E se(2) ,  under the group action @. Then, 

9 -  

tq = V3A1 + (V I  + YV~)AZ + (VZ - 5~3)A3 

Thus, we can write 
a a a 

= ( a i + a 3 y ) - + ( b 2 - a 3 X ) - + b 3 -  (12) (%)Q ax ay de' 

B. Generalized Momentum 
Given the constrained fiber distribution and a La- 

grangian, L, for the given system the generalized momen- 
tum, p ,  is given by 

(13) 

where summation over the index i is implied. is given 
by Equation (11). 

The generalized momentum of the system can be physi- 
cally interpreted (after a scaling factor) as the angular mo- 
mentum of the system around the center of rotation defined 
by the two skate constraints. The center of rotation bas 
coordinates (a2/a3, al/a3) in an inertial reference frame 
fixed at the center of the robot. The angular momentum 
of the robot about the point of rotation is then given as 

a1 a2 

a3 a3 
p' = Ice  + MX- +My-- + &(e + + I )  + I p ( b  + +2). 

Evaluating Equation (13), we find p is given by p' multi- 
plied by a scaling factor(a3). 

Using Noether's theorem [12], the generalized momen- 
tum equation specifying the evolution of the momentum 
can be written as 

Here, T is the one-form of the input torques and 
forces. For the Rollerblader, this is given as T = 
(o,o, 0,771 3 fdl, 7 7 2 ,  fd9lT where 771, fd, 3 T-n and fdz are 

the input torquedforces corresponding to the 71 ,  dl ,TZ and 
dz degrees of freedom respectively. The expression for 
(g) is given by Equation (12). 

C. The Reduced Equations 

To cany out the required reduction, we use the invari- 
ance of the momentum under the group action. Evaluating 
Equations (6), (7) and (13) at (z,y,@) = (O,O,O) gives 
us a set of three equations which can be solved for 
the body velocities in terms of the base velocities and 
the momentum. (Thus, the momentum equation gives us 
an extra constraint.) We can write the resultant reduced 
equations in the form f121: 

5 = -A(r) i  + f-lp, (15) 
1. 
2 p = -rTue+(r)+ + p T o ~ ( r ) l :  + pTupp(r)p  + 7, (16) 

M(r)i: + i T C ( r ) i  + f i ( r , t , p )  = T. (17) 

Very briefly, A(?) is the nonholonomic connection, f and 
M can be derived from the inertia tensor for the system, 
C(r) represents Coriolis and centrifugal terms, N includes 
the influence of the momentum on the dynamics of the 
shape variables. Detailed expressions are provided in [4]. 
Using Equations (15) and (16), we can numerically solve 
for the evolution of the body velocities and momentum. 
We can then solve for (2, y, 0) using Equation (5). 

v. GENERATION OF GAITS 

The generation of gaits for the ROLLERBLADER is a 
complex problem. Periodiclvibratory motion of the shape 
variables has often been used to generate motion. In [3], 
Brocken presented a mathematical formulation to under- 
standing such actuation. Periodic inputs have since been 
used to drive a variety of robots including the Roller- 
Racer [91 and the Snakeboard [12]. In [Ill, McIsaac 
and Ostrowski used a pericdic input traveling down the 
length of an articulated Eel-lie robot to generate motion. 
Periodic inputs were also used to generate motion for 
snake-like robots [7] and the RollerWalker [5].  Motivated 
by these examples, we examined the use of periodic inputs 
to generate motion for the ROLLERBLADER. 

For simplicity, we assume that we have direct control 
over the shape inputs and are able to drive them directly. 
This is equivalent to assuming the motors are controlled 
by a feedback controller that cancels the dynamics in 
Equation (17) allowing the direct control of r(t). Now, the 
simplest possible gait that can be used is the one where 
the motions of the two legs are symmetric with respect 
to the longitudinal axis of symmetry (z axis of the body 
fixed frame - see Figure 1). We call such a gait, where 
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yz = -71 and dl = dz, a symmetric gait. Thus, 

YI = -72, ?I = -?z,di dz, d l  = 82. (18) 
(19) upp = 0, i = 0. 

Now, substituting the conditions in Equation ( 1 0  we find 

U++ = 0. (20) 

p = pp+(r )$ .  (21) 

Thus, Equation (16) simplifies to 

We note that the above equation is linear in p. This implies 
that, for a system starting from rest, the generalized mo- 
mentum stays at 0 for all t, i.e. p ( t  = o) = 0 + p ( t )  = 0. 
Using this fact, we can simplify Equation (15) to 

E = g-'g = - A ( T ) ~ .  

Using the conditions in Equation (18), the above equation 
simplifies to 

T 
E = (-&/(Siny1),0,0) . 

Thus, for a system starting from rest, the symmetric gait 
generates motion only in the forward direction. 

A similar analysis can be conducted for an anti- 
symmetric gair, i.e. a gait for which (71 = yz,dl = dz). 
For an anti-symmetric gait we have 

TI=YZ,? I  =?z ,d i=dz ,d i  =dz. (22) 

Again, we find that the generalized momentum for the 
system starting from rest is conserved. Now, Equation (15) 
simplifies to 

T 
E = (0,O,-&/(bsinyl)) . 

Thus, an anti-symmetric gait gives rise to pure rotational 
motion of the robot. Note that both these gaits are cbar- 
acterized by zero generalized momentum. This of course 
does not mean that the momentum of the ROLLERBLADER 
is zero and that no motion is possible. 

We now present simulation results for forward and 
rotary gaits of the robot. The physical parameters used 
for the simulations are (m = 2, M = 25, I, = 20, Jp = 

Forward motion gait A symmetric gait with y1 = 
-y~ is used to generate forward motion. Since the base 
variables are considered to be directly controllable, they 
are used directly as inputs. The inputs are specified as 
sinusoids: 

10, b = 0.05). 

dl = dl, + dl, sin(Znt/Td, + 4 d l ) i  

YI = ?lo + Y I ~  s in (WT, ,  + 471)1 
d2 = dzO + dzcsin(2nt/Td, + # d z ) ,  

îz = ~ 1 2 ~  + ~ z ~ s i n ( 2 n t l G ,  + 4,>). (23) 

i.,.:.i 1.6 
.. " . . . 

Fig. 2. Snapshots  of the gait for forward m o t i o n  at t = 
(0,0.05,0.31,0.46,0.51,0.76,0.96,1) seconds. 

(a) Fonvard motion of the (b) Shape mriables 
ROLLERBLADER. 

F i g .  3. Forward motion g a i t  for the ROLLERBLADER. 

where (dl, = dzo = 0 . 1 2 5 , ~ ~ ~  = 0). (di, = dze = 
0.025,72, = -ylC = 0.8) are the amplitudes of the 
sinusoidal inputs, (& = 9, #dz = = 0,  = 0)  
and (I 'd ,  = I'd2 = TT1 = TT2 = 1) are phase offsets and 
time periods respectively for the inputs. 

Fig. 2 shows snapshots of the forward motion staR- 
ing from an initial position (2,Y,B,Yi,di,Yz,dz,p) = 
(0, 0, 0,  0 ,  0.1, 0, 0.1, 0). Figure 3 shows the stmight line 
motion and inputs for the gait. Note that a closerinvestiga- 
tion of Figure (3(a)) (not shown) reveals that the fonvard 
velocity, Ez,  is not constant. 
Rotary gait By using an anti-symmeVic gait with in- 

phase movements of the legs, we can get the robot to 
turn in place. The inputs for the gait are still given 
by Equation (23) but now = 7sC = 0.8. All the 
other parameters have the same values as in the forward 
motion gait. Thus, the gait is similar to the one for the 
forward motion except that y1 = 7 2 .  Figure 4 shows 
snapshots for the rotary motion for initial condition: 

ure 5 shows the evolution of 6 and the inputs for the gait. 
(z,y,6,~1,di,~z,d2,p) = (0,0,0,0,~.1,0,0.1,0). F i e  
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Fig 4. Snapshots of the gait for row motion at t = 
(o,0.085,026,0.41,0.58,0.68,0.76,0.91,0.99) seconds. 

VI. DISCUSSION AND CONCLUSION 

In this paper, we have formulated the dynamics for 
the ROLLERBLADER. The process of reduction helps to 
formulate the dynamics in terms of a smaller set of 
variables, providing insight into the process of momentum 
generation for the robot. We showed how two basic gaits 
can he developed for the robot-enabling it to move forward 
and rotate. 

There are several directions to our ongoing research. In 
order to systematically design gaits and motion plans for 
such a robot, we are investigating the controllability of the 
system. Since the Rollerblader is not a dtift-free system, a 
logical course of action is to use Sussman's condition [14] 
to determine whether it is Small 7irne Locally Controllable 
(STLCJ. If the system is STLC, optimal control techniques 
can be used to generate gaits for the system. In [13], an 
optimal control method was used to generate gaits for the 
Snakeboard and is potentially applicable to our system as 
well. A second direction of ongoing research is motion 
planning for the ROLLERBLADER using a combination 
of the two gaits demonstrated in this paper. Finally, 
we are in the process of building a prototype of the 
ROLLERBLADER using which we hope to demonstrate 
both these gaits and their composition. The long term 
goal of our research effort is to he able to automatically 
generate dynamic models, controllers and motion planning 
algorithms for locomotion systems consisting of a planar 
rigid body with an arbitrary combination of wheels, legs 
and skates. This will lead to a general framework for 
modular hybrid locomotion systems. 
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(a) Orientation of the robot. (b) Shape variables 

Fig. 5. Rotary motion gait for the ROLLERBLADER 
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