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Abstract— This paper proposes a real-time, robust and effi-
cient 3D model-based tracking algorithm for visual servoing.
A virtual visual servoing approach is used for monocular
3D tracking. This method is similar to more classical non-
linear pose computation techniques. A concise method for
derivation of efficient distance-to-contour interaction matrices
is described. An oriented edge detector is used in order to
provide real-time tracking of points normal to the object
contours. Robustness is obtained by integrating a M-estimator
into the virtual visual control law via an iteratively re-
weighted least squares implementation. The method presented
in this paper has been validated on several 2D 1/2 visual
servoing experiments considering various objects. Results
show the method to be robust to occlusion, changes in
illumination and miss-tracking.

I. INTRODUCTION

This paper addresses the problem of robust real-time
model-based tracking of 3D objects by employing virtual
visual servoing techniques. This fundamental vision prob-
lem has applications in many domains ranging from visual
servoing [14], [8], [12] to medical imaging and robotics
or industrial applications. Most of the available tracking
techniques can be divided into two main classes: feature-
based and model-based. The former approach focuses on
tracking 2D features such as geometrical primitives (points,
segments, circles,. . . ), object contours [15], regions of
interest [10]. . . The latter explicitly uses a model of the
tracked objects. This can be a CAD model [9], [17], [19],
[7] or a 2D template of the object [16]. This second class
of methods usually provides a more robust solution. The
main advantage of the model-based methods is that the
knowledge about the scene (the implicit 3D information)
allows improvement of robustness and performance by
being able to predict hidden movement of the object, detect
partial occlusions and acts to reduce the effects of outlier
data introduced in the tracking process. In this paper a
model-based algorithm is proposed for the tracking of 3D
objects whose CAD model is known.

This study focuses on the registration techniques that
allow alignment of real and virtual worlds using images
acquired in real-time by a moving camera. In the related
computer vision literature geometric primitives considered
for the estimation are often points [11], [5], [20], contours
or points on the contours [19], [3], [7], segments, straight
lines, conics, cylindrical objects, or a combination of these
different features [21]. Another important issue is the reg-
istration problem. Purely geometric (eg, [6]), or numerical
and iterative [5] approaches may be considered. Linear
approaches use a least-squares method to estimate the

pose. Full-scale non-linear optimization techniques (e.g.,
[19], [7]) consist of minimizing the error between the
observation and the forward-projection of the model. In
this case, minimization is handled using numerical iter-
ative algorithms such as Newton-Raphson or Levenberg-
Marquardt. The main advantage of these approaches are
their accuracy. The main drawback is that they may be
subject to local minima and, worse, divergence.

In this paper, pose computation is formulated in terms of
a full scale non-linear optimization: Virtual Visual Servoing
(VVS). In this way the pose computation problem is
considered as similar to 2D visual servoing as proposed
in [22], [21]. The new method presented in this paper is
aligned with state of the art methods treating this issue [7],
[18]. Essentially, 2D visual servoing [14], [8], [12] consists
of specifying a task (mainly positioning or target tracking
tasks) as the regulation in the image of a set of visual
features. A closed-loop control law that minimizes the error
between the current and desired position of these visual
features can then be implemented which automatically
determines the motion the camera has to realize. This
framework is used to create an image feature based system
which is capable of treating complex scenes in real-time.
Advantages of the virtual visual servoing formulation are
demonstrated by considering a wide range of performance
factors. Notably the accuracy, efficiency, stability, and
robustness issues have been addressed and demonstrated
to perform in complex scenes. In particular, the interaction
matrices that link the virtual camera velocity to the vari-
ation of a distance in the image are determined. A robust
control law that integrates an M-estimator is integrated
to improve robustness. The resulting pose computation
algorithm is thus able to deal efficiently with incorrectly
tracked features that usually contribute to a compound
effect which degrades the system until failure.

In the remainder of this paper, Section II-A presents the
principle of the approach. In Section II-B the details of the
robust visual servoing control law are shown and a stability
analysis is presented. In Section II-C the computation of
the confidence in the local features extraction is introduced.
Section III deals with the chosen visual features considered
in the tracking process and the algorithm used for track-
ing local features is presented. In order to validate this
approach the tracker is used as input to a 2D 1/2 visual
servoing experiments. In section IV, several experimental
results are reported.



II. ROBUST VIRTUAL VISUAL SERVOING

A. Overview and motivations

As already stated, the fundamental principle of the pro-
posed approach is to define the pose computation problem
as the dual problem of 2D visual servoing [8], [14]. In
visual servoing, the goal is to move a camera in order
to observe an object at a given position in the image.
An explanation will now be given as to why the pose
computation problem is very similar.

To illustrate the principle, consider the case of an object
with various 3D features oP (for instance, oP are the 3D
coordinates of these features in the object frame). A virtual
camera is defined whose position in the object frame is
defined by r. The approach consists of estimating the real
pose by minimizing the error ∆ between the observed
data s∗ (usually the position of a set of features in the
image) and the position s of the same features computed
by forward-projection according to the current pose:

∆ =
(
s(r) − s∗

)
=
[
prξ(r,

o P) − s∗
]
, (1)

where prξ(r,o P) is the projection model according to the
intrinsic parameters ξ and camera pose r. It is supposed
here that intrinsic parameters ξ are available but it is
possible, using the same approach, to also estimate these
parameters.

In this formulation of the problem, a virtual camera
initially at ri is moved using a visual servoing control
law in order to minimize the error ∆. At convergence, the
virtual camera reaches the pose rd which minimizes the
error (rd will be the real camera’s pose).

An important assumption is to consider that s∗ is com-
puted (from the image) with sufficient precision. In visual
servoing, the control law that performs the minimization of
∆ is usually handled using a least squares approach [8][14].
However, when outliers are present in the measures, a
robust estimation is required. M-estimators can be con-
sidered as a more general form of maximum likelihood
estimators [13]. They are more general because they permit
the use of different minimization functions not necessarily
corresponding to normally distributed data. Many functions
have been proposed in the literature which allow uncertain
measures to be less likely considered and in some cases
completely rejected. In other words, the objective function
is modified to reduce the sensitivity to outliers. The robust
optimization problem is then given by:

∆R = ρ
(
s(r) − s∗

)
, (2)

where ρ(u) is a robust function [13] that grows sub-
quadratically and is monotonically nondecreasing with in-
creasing |u|. Iteratively Re-weighted Least Squares (IRLS)
is a common method of applying the M-estimator. It con-
verts the M-estimation problem into an equivalent weighted
least-squares problem.

To make use of robust minimization procedures in visual
servoing a modification of the control law is required in
order to reject outliers. Such a robust control law has
been presented in a recent paper [4] within a different

context. In [4] it is shown that a robust control law
simultaneously accomplishes a visual servoing positioning
task while remaining robust to a general class of image
processing errors. In this paper the duality of the robust
control law is used to perform pose estimation.

B. Robust control law

The objective of the control scheme is to minimize the
objective function given in equation (2). This new objective
is incorporated into the control law in the form of a weight
which is given to specify a confidence in each feature
location. Thus, the error to be regulated to 0 is defined
as:

e = D(s(r) − s∗), (3)

where D is a diagonal weighting matrix given by D =
diag(w1, . . . , wk). The computation of weights wi is de-
scribed in Section II-C.

A simple control law can be designed to try and ensure
an exponential decoupled decrease of e around the desired
position s∗ (see [4] for more details). The control law is
given by:

v = −λ(D̂L̂s)
+D
(
s(r) − s∗

)
, (4)

where v is the virtual camera velocity.
A classical approach in visual servoing considers the

Jacobian to be constant and it is calculated from the desired
depth Z∗ and the desired value of the features s∗. In the
VVS case, the desired depth is unknown but the initial
value of Zi is available, thus (D̂L̂s)

+ can be defined as:

(D̂L̂s)
+ = L+

s (si,Zi), (5)

Clearly, it is also necessary to ensure that a sufficient
number of features will not be rejected so that DLs is
always of full rank (6 to estimate the pose).

It has been shown that only local stability can be
demonstrated [4]. This means that the convergence may
not be obtained if the error s − s∗ is too large. However,
in tracking applications s and r are obtained from the
previous image, thus the motion between two successive
images acquired at video rate is sufficiently small to ensure
the convergence. In practice it has been observed that
the convergence is obtained, in general, when the camera
displacement has an orientation error less that 30o on each
axis. Thus, potential problems only appear for the very first
image where the initial value for r may be too coarse. In
the current algorithm the initialization is done by manually
clicking on the images and calculating the pose using a 4
point algorithm [5].

C. Computing confidence

This section gives a brief overview for the calculation
of weights for each image feature. The weights wi, which
represent the different elements of the D matrix and reflect
the confidence of each feature [13], are usually given by:

wi =
ψ(δi/σ)

δi/σ
, (6)



where ψ
(
u
)

=
∂ρ

(
u

)
∂s

(ψ is the influence function) and δi

is the normalized residue given by δi = ∆i − Med(∆)
(where Med(∆) is the median operator) and σ is the
standard deviation of the inlier data.

Of the various loss and corresponding influence func-
tions that exist in the literature Tukey’s hard re-descending
function is considered. Tukey’s function completely rejects
outliers and gives them a zero weight. This is of interest in
tracking applications so that a detected outlier has no effect
on the virtual camera motion. This influence function is
given by:

ψ(u) =

{
u(C2 − u2)2 , if |u| ≤ C
0 , else,

(7)

where the proportionality factor for Tukey’s function is
C = 4.6851 and represents 95% efficiency in the case
of Gaussian Noise.

In order to obtain a robust objective function, a value
describing the certainty of the measures is required. The
scale σ that is the estimated standard deviation of the inlier
data, is an important value for the efficiency of the method.
In non-linear regression for pose computation, this estimate
of the scale can vary dramatically during convergence.
Scale may be manually chosen as a tuning variable or may
be estimated online. In our case, we use a robust statistic to
estimate scale with the Median Absolute Deviation (MAD),
given by:

σ̂ =
1

Φ−1(0.75)
Medi(|δi −Medj(δj)|). (8)

where Φ() is the cumulative normal distribution function
and 1

Φ−1(0.75) = 1.48 represents one standard deviation of
the normal distribution.

III. VISUAL FEATURES

A. Interaction matrices

Any kind of geometrical feature can be considered
within the proposed control law as soon as it is possible to
compute its corresponding interaction matrix Ls. In [8], a
general framework to compute Ls is proposed. Indeed, it
is possible to compute the pose from a large set of image
information (points, lines, circles, quadratics, distances,
etc...) within the same framework. The combination of
different features is achieved by adding features to vector s

and by “stacking” each feature’s corresponding interaction
matrix into a large interaction matrix of size nd × 6
where n corresponds to the number of features and d their
dimension: 


e1

...
en


 =




L1

...
Ln


v (9)

The redundancy yields a more accurate result with the
computation of the pseudo-inverse of Ls as given in
equation (4). Furthermore if the number or the nature of
visual features is modified over time, the interaction matrix
Ls and the vector error s is easily modified consequently.

In this paper, a distance feature is considered as a set of
distances between local point features obtained from a fast
image processing step and the contours of a more global
CAD model. In this case the desired value of the distance
is equal to zero. The assumption is made that the contours
of the object in the image can be described as piecewise
linear segments. All distances are then treated according to
their corresponding segment.

The derivation of the interaction matrix that links the
variation of the distance between a fixed point and a
moving straight line to the virtual camera motion is now
given. In Figure 1 p is the tracked point feature position
and l(r) is the line feature position. The position of the

p
ρ

ρd

d⊥

l(r)

y

x

θ

Fig. 1. Distance of a point to a line

line is given by its polar coordinates representation,

x cos θ + y sin θ = ρ, ∀(x, y) ∈ l(r), (10)

The distance between a point p corresponding to a line l(r)
is characterized fully by the distance d⊥ perpendicular to
the line. The point found to the normal of the line does
not necessarily correspond to the departure point on the
line for the edge detection procedure. In other words the
distance parallel to the segment does not hold any useful
information unless a correspondence exists between a point
on the line and p (which is in general not the case). Thus
the distance feature from a line is given by:

dl = d⊥(p, l(r)) = ρ(l(r)) − ρd, (11)

where
ρd = xd cos θ + yd sin θ, (12)

with xd and yd being the coordinates of the tracked point.
Thus, the variation of the distance with time can be related
to the variation of the line parameters by:

ḋl = ρ̇− ρ̇d = ρ̇+ αθ̇, (13)

where α = xd sin θ − yd cos θ.
Using the relation (13), the interaction matrix for a

distance feature dl can be shown to be composed of the
interaction matrix for a line:

Ldl
= Lρ + αLθ. (14)



The interaction matrix related to a straight line is given by
(see [8] for its complete derivation):

Lθ=
(
λθcosθ λθsinθ −λθρ ρcos θ −ρsin θ −1

)

Lρ=
(
λρcosθ λρsinθ −λρρ (1+ρ2) sinθ −(1+ρ2) cosθ 0

)

where λθ = (A2 sin θ −B2 cos θ)/D2, λρ = (A2ρ cos θ +
B2ρ sin θ + C2)/D2, and A2X + B2Y + C2Z +D2 = 0
is the equation of a 3D plane which the line belongs to.

By evaluating (14) the following is obtained:

Ldl
=




λdl
cos θ

λdl
sin θ

−λdl
ρ

(1 + ρ2) sin θ − αρ cos θ
−(1 + ρ2) cos θ − αρ sin θ

−α




T

, (15)

where λdl
= λρ + αλθ .

Note that the case of a distance between a point and
the projection of a cylinder or a portion of an ellipse is
similar [3].

B. Tracking visual features

When dealing with low-level image processing, the
object model is projected onto the image and the contours
are sampled at a regular distance. At these sample points
a 1 dimensional search is performed to the normal of
the contour for corresponding edges. An oriented gradient
mask [1] is used to detect the presence of a similar contour.
One of the advantages of this method is that it only
searches for edges which are aligned in the same direction
as the parent contour. An array of 180 masks is generated
off-line which is indexed according to the contour angle.
This is therefore implemented with convolution efficiency,
and leads to real-time performance.

More precisely, the process consists of searching for the
corresponding point pt+1 in image It+1 for each point pt

(see Figure 2). A 1D search interval {Qj , j ∈ [−J, J ]} is
determined in the direction δ of the normal to the contour.
For each position Qj lying in the direction δ a mask
convolution Mδ corresponding to the square root of a log-
likelihood ratio ζj is computed. Then the new position pt+1

is given by:

Qj∗ = arg max
j∈[−J,J]

ζj with ζj =| It+1
ν(Qj ) ∗Mδ |

ν(.) is the neighborhood of the considered pixel. In this
paper the neighborhood is limited to a 7×7 pixel mask. It
should be noted that there is a trade-off to be made between
real-time performance and mask stability. Likewise there is
a trade-off to be made between the search distance, real-
time performance while considering the maximum inter-
frame movement of the object.

This low level search produces a list of k points which
are used to calculate distances from corresponding pro-
jected contours.

$Q^j$
$Q^{j+1}$

$Q^{j+n}$

$p^{t+1}$

$p^t$

(a) (b)

pt

δ

l(r)tl(r)t
100    100    100

0        0        0

100    100      0

(d)

(c)

 100      0    −100

−100 −100   −100

0       −100 −100

Fig. 2. Determining points position in the next image using the oriented
gradient algorithm: (a) calculating the normal at sample points, (b)
sampling along the normal (c-d) 2 out of 180 3x3 predetermined masks
(in practice 7x7 masks are used) (c) 180o (d) 45o.

IV. EXPERIMENTAL RESULTS

Any current visual servoing control law can be imple-
mented using the presented tracker (image-based, position-
based or hybrid scheme) because all 3D pose information
has been estimated. In the following experiments the 2D
1/2 visual servoing approach is used [2].

The visual feature vector s is selected as (T, x, y, θUz)
where T, expressed in the desired camera frame, is the
translation that the camera has to realize, x and y are
the coordinates of an image point, and θUz is the third
component of vector θU (where θ and U are the angle
and the axis of the rotation that the camera has to realize).
Using this control law, the camera translation is specified
such that it is a straight line in the Cartesian space (which is
a particularly satisfactory trajectory), and camera pan and
tilt are constrained such that the trajectory of the selected
point is a straight line in the image. The interaction matrix
related to s is given by [2]:

Ls =

(
R 03

1
Z
Lvω Lω

)
(16)

where R is the rotation matrix from current to desired
camera frames and:

Lvω =

(
−1 0 x
0 −1 y
0 0 0

)
and Lω =

[
xy −(1 + x2) y

(1 + y2) −xy −x
l1 l2 l3

]

(l1, l2, l3) being the third row of matrix given by:

II3 −
θ

2
Ũ +

(
1 −

sinc(θ)

sinc2( θ
2 )

)
Ũ2 (17)

with sinc(θ) = sin(θ)/θ, Ũ being the antisymmetric matrix
associated to U.

This interaction matrix is never singular except in degen-
erate cases and the following control scheme is applied:

v = −λLs
−1(s− sd) (18)

where λ is an adaptive gain that is function of the error
s− s∗ and is tuned in order to speed-up convergence.

The complete implementation of the robust visual ser-
voing task, including tracking and control, was carried
out on an experimental test-bed involving a CCD camera



mounted on the end effector of a six d.o.f robot. Images
were acquired and processed at video rate (50Hz). In
such experiments, the image processing is potentially very
complex. Indeed, extracting and tracking reliable points in
real environment is a non trivial issue. In all experiments,
the distances are computed using the “oriented” gradient
mask algorithm described previously. Tracking is always
performed at below frame rate (usually in less than 10ms).

All the figures depict the current position of the tracked
object in green while its desired position appears in blue.
Three objects where considered: a micro-controller (Fig-
ure 3), an industrial emergency switch (Figure 4) and a
video multiplexer (Figure 5).

To validate the robustness of the algorithm, the micro-
controller was placed in a highly textured environment
as shown in Fig. 3. Tracking and positioning tasks were
correctly achieved. Multiple temporary and partial occlu-
sions were made by a hand and various work-tools as well
as modification of the lighting conditions were imposed
during the realization of the positioning task. In the second
experiment the robot velocity reaches a velocity of 23 cm/s
in translation and 85 deg/s in rotation. Thus, less than 35
frames were acquired during the entire positioning task up
until convergence (see Figure 4e). On the third experiment
(Figure 5) after a complex positioning task (note that some
object faces appeared while others disappeared) the object
is handled by hand and moved around. In this case, since
the visual servoing task has not been stopped, the robot
continues to follow the object in order to maintain the rigid
link between the camera and the object.

For the latter two experiments, plots are also shown
which give an analysis of the pose parameters, the camera
velocity and the error vector (s− s∗). In other words, the
task was accomplished in less than 1 second. In all these
experiments, neither a Kalman filter (or other prediction
process) or the camera displacement were used to help the
tracking.

V. CONCLUSION AND FUTURE PERSPECTIVES

A method has been presented for robustly tracking com-
plex objects in an image sequence at a high processing rate
(50Hz) using virtual visual servoing techniques. High ro-
bustness has been demonstrated with a robust model-based
approach using an iteratively re-weighted least squares
implementation of a M-estimator. The use of a non-linear
minimization approach coupled with a redundant number
of distance-to-contour visual features leads to efficiency
and robustness. The presented method allows fast and accu-
rate positioning of a eye-in-hand robot with respect to real
objects (without any landmarks) in complex situations. The
algorithm has been tested on various real visual servoing
scenarios demonstrating a real usability of this approach.
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a b c d

Fig. 3. Tracking in a complex environment for a classical visual servoing experiment: Images are acquired and processed at video rate (25Hz). Blue:
desired position defined by the user. Green: position measured after pose calculation. (a) first image initialized by hand, (b) partial occlusion with
hand, (c) lighting variation, (d) final image with various occlusions
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Fig. 4. 2D 1/2 visual servoing experiments: on these five snapshots the tracked object appears in green and its desired position in the image in blue.
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Fig. 5. 2D 1/2 visual servoing experiments: in these images the tracked object appears in green and its desired position in the image in blue. The six
first images have been acquired in initial visual servoing step. In the reminder images object is moving along with the robot. Plots corresponds to (a)
Pose (translation) (b) Pose (rotation) (c-d) camera velocity in rotation and translation (e) error vector s− s
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