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Abstract— We present a robust method for detecting and
recognizing topological features in underground mines. Our
method involves performing Delaunay triangulations on range
scans to extract points of interest, such as intersecting cor-
ridors. By combining these interest points into a topological
map, we have a valuable tool for navigation and localization
in large scale, highly cyclic environments. We present results
from a research coal mine near Pittsburgh, PA.

I. I NTRODUCTION

The navigation and mapping of underground mines
presents both an opportunity and a significant challenge for
the field of robotics. In the U.S. alone, tens of thousands
of abandoned mines threaten nearby surface structures,
ecosystems, and ongoing mining operations [1]. Proactive
measures can be taken to prevent these threats from mani-
festing into disastrous situations; however, prevention relies
upon knowledge of mine layout and condition. Mine maps
are the primary source of such information. In the case of
abandoned mines, these maps, when they exist, are often
inaccurate if at all legible.

Robots are sensible tools for mapping mines since they
can potentially penetrate areas too small or too danger-
ous for people to enter. Autonomous mine navigation
for mobile robots, however, is a tremendous challenge as
underground mines are highly cyclic, rough environments.
Generating consistent large-scale maps in real-time for the
purpose of robot navigation is a difficult process [2].

In this paper, we present a method for the extraction of
topological features in underground mines based on the the-
ory of Voronoi diagrams and Delaunay triangulations [3].
These methods enable robust and consistent detection of
corridor intersections for the creation of topological mine
maps. This method can also extract unique characteristics
of each labeled feature for both localization and high-
level navigation. A full set of unique features can provide
global landmarks that can correct accumulated error in the
mapping system and assist in loop closure.

We begin by introducing our robot “Groundhog” and
provide some motivation for our current work. In Section
III we discuss related research in topological mapping. We
present our approach in Section IV and results from an
experimental mine in Section V. We conclude by proposing
a number of extensions to the current system.

II. T HE M INE MAPPING PROJECT

Our current research focuses on the problem of au-
tonomous mine mapping. We are interested in both the

Fig. 1. Groundhog, our current robotic mine mapping platform

creation of systems that can robustly explore mine environ-
ments and the development of algorithms that can generate
accurate maps of these environments.

Our current robotic system,Groundhog (Figure 1), is
a 700 kg custom-built platform equipped with onboard
computing, laser range finders, gas sensors, and a low-light
digital video camera. Groundhog is constructed from two
reinforced ATV front-ends, and is rugged enough to cope
with the difficult terrain inherent in abandoned mines. For
hardware details, see [4].

The Groundhog platform has been used extensively
in both test mine and abandoned mine environments.
Groundhog has accrued in excess of fifty hours of mine
navigation including 8 successful experiments in the aban-
doned Mathies mine outside of Pittsburgh, PA [4]. Over
the course of its lifetime, Groundhog has evolved into a
system that is highly proficient at traversing mine corri-
dors autonomously, successfully navigating over 2 km of
abandoned mine corridor.

In autonomous operation, Groundhog first pauses to take
a 3D scan of its local environment using a scanning laser
range finder mounted on the front of the robot. This scan
data is then projected onto a 2D gradient map, which is
used to plan local paths. Paths are then executed with the
assistance of a 2D scan matcher for position estimation.
Upon reaching the terminal point of its path, it repeats
the sense, plan, and act cycle. This approach enables
Groundhog to consider 3D mine structure for safe traversal
of mine corridors.

In its current state, Groundhog is unable to perform
general mine exploration. Achieving this capability would
require both the detection and unique identification of in-



tersections for localization and global navigation. In mines,
intersection identification and classification are comple-
mentary problems. Intersections encompass a variety of
geometric structures since mine corridors rarely cross at
right angles with well defined corners. These conditions
make it difficult to robustly detect intersections; however,
the large structural variance also provides ample unique-
ness to each intersection such that reliable classification is
possible. Therefore, consistent and reliable topological fea-
ture detection is a critical step towards general exploration.

III. T OPOLOGICAL MAPPING

A. Topological Maps

Mine environments, which consist almost exclusively
of narrow corridors and corridor intersections, are ide-
ally suited for Topological Mapping. A topological map
[5] is a graph representation of an agent’s environment.
Nodes in the graph correspond to distinct locations in
the environment (intersections), while edges correspond to
a direct path between two such locations (corridors). A
major advantage of topological maps over grid or feature
based approaches is a huge reduction in both the space and
time complexity of the representation and its associated
algorithms [6].

Topological maps have proven to be very useful in
robotic exploration tasks [7]. Unexplored edges in a topo-
logical map correspond to unexplored regions of the robot’s
environment. If the chosen topology is a roadmap [8],
exploring every edge in a topological map will allow the
robot to explore every part of the freespace. This can be
seen as accomplishing a sensor coverage task.

Implicit in this idea is that the robot has some way of
determining node locations from its sensor data, as well
as the edges leaving each node. Once on an edge, the
robot must be able to follow that edge to the next node. A
topology that is detectable from local sensor data is said
to be embedded in the robot’s environment.

B. Topological SLAM

Localization with a topological map can be performed by
exploiting the nature of the representation. When a robot is
at a node of an embedded topology, then in the absence of
any other information about the robot’s location, it knows
it is at one of a finite set of points in the environment (the
set of nodes). If a method exists for the robot to distinguish
which node from within this set it is presently at, then the
robot can determine its location in the environment simply
by looking up that node’s location in the topological map
[9]. Such a localization procedure depends on a previously
constructed topological map being available to the robot. It
does not depend on knowing the exact location of the node
in the environment. This allows the robot to navigate with
regard to the topology, without knowing its exact global
location.

When the robot explores an unknown environment and
preexisting maps are unavailable, it must engage in Simul-
taneous Localization and Mapping (SLAM) [10]. In this
context, a topological map is built while the robot performs

its exploration. Given a static environment, node locations
remain at fixed points, so returning to a previously visited
node provides an opportunity to determine and correct for
positioning error. This is referred to as topological SLAM
[11].

Performing topological SLAM in an acyclic environment
is relatively straightforward. The first node the robot detects
is made the root of the topological map. From then on, the
robot has a good idea of whether it is visiting a new node
or a previously explored node, just by keeping track of
whether the current edge has already been traversed.

Unfortunately, most environments, and especially mines
[12], contain cycles. Thus, every time the robot finishes
exploring a new edge, it must consider the possibility
that the next node has been previously visited and already
exists in its topological map. This is known as “closing the
loop”. Topological SLAM in such an environment requires
a robust method for performing this type of reasoning at
each stage of exploration.

Autonomous loop closure with topological maps has
recently been demonstrated by Lisien et al [13]. When
arriving at a node which may correspond to a node already
in the topological map, they use embedded properties of
each node to reduce the set of possible correspondences,
then restrict this set further by the use of engineered
landmarks along each edge.

In the following section, we describe our method of
topological feature extraction. We begin with some back-
ground on Voronoi diagrams and Delaunay triangulations.
We go on to describe how these ideas can be used to extract
interesting topological features from mine environments,
and how these features can be combined into topological
maps for navigation and localization.

IV. TOPOLOGICAL FEATURE EXTRACTION

A. Voronoi Diagrams and Delaunay Triangulations

Consider a set of pointsP in the plane. For every point
pi in P , the region of the plane that is closer topi than
to any other point inP is the Voronoi regionassociated
with pi, denotedVi. Every point in the plane belongs
to a Voronoi region. The boundary between two adjacent
regionsVi andVj is the set of points that are equidistant to
pi andpj , and are closer to these two points than any other
point in P . This boundary is aVoronoi edge, denotedEij .
Every Voronoi edge either extends to infinity, or terminates
at an intersection with two other Voronoi Edges. Such an
intersection occurs at a point in the plane that is equidistant
to 3 pointspi, pj andpk in P , and is closer to these three
points than any other point inP . A point of three way
equidistance is called aVoronoi node, denotedNijk. The
set of Voronoi nodes and Voronoi edges of a particular
point set is called theVoronoi diagram.

Different types of Voronoi diagrams can be produced
by changing the definition of distance . When the distance
metric used is the minimum distance to a single object in
the plane, rather than to a single point, the resulting struc-
ture is called the generalized Voronoi diagram (GVD)[14].
The GVD is an embedded roadmap that can be traced



Fig. 2. Extracting Features. On the left are the 2D points generated from a single range scan. In the center are the Delaunay triangles returned from
this set of points. On the right are the extracted features after thresholding the triangles and computing the center points and radii for those that remain.

from purely local sensory input, making it well suited for
topological mapping [11], [13].

The Delaunay Triangulation ofP is the set of triangles
T such that for every Voronoi nodeNijk, there is a triangle
in T that haspi, pj , andpk as its corners. This duality is
symmetric: every triangleTijk corresponds to a Voronoi
nodeNijk and the sides of the triangle are bisected by
Voronoi edgesEij , Ejk, and Eik. From this duality, it
can be shown that the Delaunay triangulation is a proper
triangulation of the setP in the plane. Another result of
this duality is that the circle centered atNijk and passing
through the pointspi, pj , andpk (the circumcircle ofTijk)
contains no other points inP . For a detailed discussion of
Voronoi diagrams and Delaunay triangulations, see [3].

B. Topological Features

The Delaunay triangulation has many properties that
lend to robust feature extraction from a planar point set
[15], [16]. The Delaunay triangulation is not affected
by rotations and translations applied to a point set; the
same points in the set form Delaunay triangles at their
new locations. Also, the Delaunay triangulation is robust
with respect to variations in point locations that are small
compared to the scale of the triangle. Finally, changes to
a small region of the point set do not propagate over the
entire triangulation, they have only local influence.

These properties motivate the application of Delaunay
triangulations to planar point sets created from laser range
scans. The idea is that a section of the environment
that is scanned from different robot configurations should
have approximately the same Delaunay triangulation once
the displacement of the robot is taken into account. The
differences in the two triangulations should then be solely
due to sensor noise.

The variation in the triangulation due to noise will
depend on the size of the triangle in question. The shorter
the side of a triangle, the more likely that side is to change
endpoints due to noise. Conversely, the longer the side of
a triangle, the more stable it is to noise. Triangles that
have three long sides are therefore robust features of the
environment.

Our feature extraction approach exploits these charac-
teristics as follows. First, the Delaunay triangulation is

computed from a laser range scan. Next, the sides of each
resulting triangle are tested against a distance threshold
Dmin. This threshold is set equal to the minimum corridor
width the robot is able to traverse. If any side of a triangle
does not pass this threshold, that triangle is eliminated.
It has been empirically observed that obtuse Delaunay
triangles are not as robust regardless of size, and so these
triangles are also removed. The remaining triangles are
stable, and their corresponding Voronoi nodes provide
robust features. This process is illustrated in Figure 2.

C. Topological Maps from Topological Features

To understand why this approach produces robust topo-
logical features, it must be viewed from a Voronoi context.
As mentioned previously, each side of a Delaunay triangle
corresponds to a Voronoi edgeEij . Each Voronoi edge
bisects the line between the corresponding pointspi and
pj . If the distance between these two points (the length of
the side of the triangle) is less thanDmin, then the robot
will be unable to traverse this edge. So our thresholding
procedure implicitly eliminates all Voronoi edges that pass
too close to the boundary of freespace for the robot to
trace. Since a Voronoi node is the mutual endpoint of
three Voronoi edges, eliminating Voronoi edges eliminates
Voronoi nodes. What is left is the set of Voronoi nodes for
which all neighboring edges are traversable by the robot.

This procedure is similar to that used by Mahkovic and
Slivnik in [17] to construct what they term the generalized
local Voronoi diagram (GLVD). The GLVD is a local ap-
proximation of the GVD built by clustering points together
into objects and computing the distance to these objects. A
key difference is that the clustering used by our approach
is not explicitly performed, but rather is inferred from
the Delaunay triangulation. Also, our clustering threshold
is defined not in terms of the local environment, but by
the physical dimensions of the robot. In this sense, our
approach can be seen as approximating the GVD in the
robot’s configuration space.

Since the GVD is an embedded roadmap, a topological
map may be constructed from the extracted features that
will allow for coverage of the entire space. However, not
all of the extracted topological features may correspond
to corridor intersections; any sufficiently large concavity
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Fig. 3. Example of the feature extraction and topological map construction. (a) The map created on the traverse into the mine. (b) The map created
on the way out. (c) The two maps overlaid onto one another. Notice the features in each map are in close correspondence even though the maps
themselves are not.

will satisfy our extraction algorithm. To determine whether
a topological feature corresponds to an intersection, the
Voronoi edges leaving a node are checked to determine
whether they will terminate near an obstacle within the
robot’s sensor range. If any edges leaving the node do
terminate in such a way, than that edge is not worth
exploring (the robot can already see the end of it) and so
the node is not an intersection of sufficiently long corridors.
This is equivalent to only keeping features that correspond
to nodes of the reduced generalized Voronoi diagram [18]
of the local environment. These are termed ’strong’ nodes;
nodes with boundary edges are termed ’weak’ since they
are more likely to appear and disappear due to sensor noise.
A topological map may then be built from only strong
nodes that provides the same coverage guarantee as the
full GVD. The remaining topological features may then
be stored purely for feature matching (Section IV-D), or
alternatively may be used in a traditional landmark based
SLAM architecture [19].

Since Voronoi nodes by definition are of degree three,
special care must be taken with intersections of more than
three corridors. In that case, a group of topological features
will be detected within a very small area. In the absence of

noise, each of the triangles corresponding to these features
will share an edge with some other triangle in the group.
Therefore, these intersections can be correctly classified by
checking pairs of triangles to determine if they share a side,
within some noise tolerance.

D. Feature Matching

Another nice property of these features is that they have
a number of characteristics that can be used to detect
correspondences between observed features. Along with
the position of the feature, these include: the degree of
the associated node, the radius of the circumcircle of the
associated triangle, and the relative angles of the edges
leaving the node. In [11], it was stated that relative edge
angles are not a stable characteristic of a GVD node. This
was empirically observed in [13], as well as in our own
experiments. Therefore, we use only the radius and degree
of the node. These attributes can be combined with local
scan information to produce feature correspondences even
without reliable position estimation, as described in the
next section.



Fig. 4. Matching Features. On the left are two local range maps, centered by their feature points, overlaid on one another. In the center is the
minimum error match using pure rotation in increments of 10 degrees. On the right is the final ICP minimum error match.

Fig. 5. Topological features extracted from a second mine corridor.

V. RESULTS

In order to test our topological feature detection al-
gorithm, a set of experimental runs was performed in a
research coal mine near Pittsburgh. For each run, features
were first extracted on a per scan basis. Features that
appeared in several consecutive scans were then recorded.
The first experiment was conducted inside a feature-rich
length of corridor to test the reliability of feature detection.
The second experiment was conducted in a separate stretch
of mine corridor for testing the consistency of features
taken from different vantages. Each corridor used for
testing exhibited many of the structural and environmen-
tal characteristics found in underground mines: intersec-
tions, minor excavations, mine carts and other equipment.
Groundhog autonomously traversed these corridors and
produced the maps seen throughout this section.

In the first experiment, Groundhog traversed a relatively
straight corridor that contained several intersections and
excavated sections. Figure 5 displays the map and topo-
logical interest points detected along the 100 meter stretch
of mine corridor. In total, 9 features met the criteria for
interest point selection. Of these 9 features, 5 features
corresponded to the 5 intersections within this section of
corridor. The remaining features were pockets of excavated
coal or other concavities. Altogether, the feature detector
correctly identified all corridor intersections as topological
features, thus demonstrating the reliability of this approach.

For the second experiment, Groundhog traversed another
100 meter stretch of mine corridor in two directions:
inwards and outwards. These two traverses examined the
same section of mine from different vantages to test prelim-
inary correspondences between feature characteristics. Fig-
ure 3(a) shows the map created along the inward traverse
with the extracted feature points. Figure 3(b) shows the
map and features generated on the outward traverse, after
the robot autonomously reversed its direction at the end of
its inwards run. In total, 10 unique features were identified
where 7 of these feature appeared in both traverses. The 3
that did not appear in both traverses occurred as a result of
occlusions made visible and vice versa when the vantage
was flipped. These non-consistent features were found to
be weak nodes, which do not effect the overall topology.

As shown by the overlay of these maps in Figure 3(c),
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Fig. 6. The pairwise matching error between the features recorded during the inwards and outwards runs. On the left is the difference between the
radii of each pair of features, on the right is the minimum error achieved by performing ICP with the two feature point clouds. A darker cell indicates
less error. The true correspondences are labeled with white circles. The minimum error correspondences(from the outward to the inward traverse) are
labeled with white ’X’s

no position or feature information was utilized between
experiments. Both the inwards and outwards traverses were
treated as independent runs. Thus, in both runs the 2
intersections in this corridor were correctly identified along
with 5 other topological areas of interest. Such consistency
across multiple independent runs from different vantages
demonstrates the potential for reliable topological map
generation.

In addition to extracting topological features from both
traversals in the second experiment, preliminary feature
matching between these sets was performed using two
criteria. The first criteria correlated features by comparing
the radii of the feature circumcircle between the inwards
and outwards run. Figure 6(a) shows the correspondence
among these features and demonstrates that radii alone are
reasonable indicators of feature correspondences. While
radii comparison is not a completely accurate method of
comparison, it can be used to reduce the set of possible
correspondences for better, more computationally expen-
sive correspondence methods.

The second criteria compared local range maps acquired
around each feature for detecting correspondences. In this
comparison, each selected feature from both runs had an
associated set of 2-D range scans that best represented
the local geometry of the interest point. Using the Iter-
ative Closest Point (ICP) [20] algorithm, each feature was
compared with every other identified feature. To ensure
completeness of this comparison, both sets of scans were
translated so that the feature point was at the origin. Next,
one scan was held fixed while the other was rotated in 10
degree increments. For each rotation, the ICP error was
calculated. After rotating a full 360 degrees, the minimum
error rotation across all angles was used to seed ICP. This
rough scan of the entire space of rotations is necessary to
ensure proper convergence of ICP; Voronoi edge angles
were found to contain too much noise to provide a reliable
alignment.

After computing the seed displacement, ICP was run un-
til convergence. The final ICP error was considered as the
final correspondence value between the two sets of scans.
Figure 4 shows the pairwise matching process. Figure 6(b)
shows the final error returned by ICP for each pair of
features. As can be seen from the figure, the minimum
error correspondence is the correct correspondence in each
case.

VI. D ISCUSSION

In summary, our results have demonstrated the concepts
of reliable topological feature detection in coal mine en-
vironments. In both experiments, every intersection was
identified as a feature. This kind of detection consistency
is required since intersections will ultimately form the
nodes in a topological representation of the mine. This
topological representation will also form the basis of many
autonomous processes such as navigation, localization, and
general purpose exploration.

In addition to intersection detection, our feature iden-
tification method was shown to be beneficial in the cor-
relation of interest points, even from varying perspectives
and without any regard to approximate feature position.
With information about the radii corresponding to each
feature, several un-correlated features can be eliminated
with minimal computational overhead. This correlation can
be refined further using ICP on the 2D geometric data
surrounding the points of interest. Although this refinement
may not always guarantee an absolute correlation between
two features, it will significantly reduce the size of the
candidate set.

While feature identification is a necessary step towards
reliable autonomy in coal mines, it is only the base com-
ponent in a number of processes that will push Groundhog
and the mine mapping project towards the goal of general
purpose mine exploration. With robust feature detection
and intersection classification, a reliable topological map



of these mine spaces can be constructed. As discussed pre-
viously, these maps are excellent geometric representations
of mine environments with little computational or memory
overhead for storage or processing. Such maps are ideal
for global navigation.

In addition to feature detection and classification, a
3D correlation process is required to accurately build the
topological map. Such a process will enable loop closure
in these topological structures as well as localization of
the robot to a specific node in the map with certainty.
Taking advantage of the feature-rich, and unique nature of
these mine intersections, the challenge of loop closure is
greatly simplified. As already shown, with 2D information
our method was capable of correctly establishing feature
correspondences from different vantages. While we know
absolute correlation may not always occur, using these 2D
methods to efficiently reduce the search space will allow
more complex 3D registration techniques to be feasible in
real time.

While the future challenges and possible solutions are
well known, much remains to be done. We are currently
implementing extensions of the feature extraction and
localization algorithm on Groundhog that would enable
control decisions to be influenced by the uncertainty as-
sociated with its position within its topological map (e.g.
when closing a large loop). We are also incorporating the
3D scan information into into the process for more accurate
classification and correlation. Finally, we are exploring
the possibility of incorporating the extracted features not
used as nodes into a traditional landmark based SLAM
framework [19].

VII. C ONCLUSION

We have presented a robust method for detecting and
recognizing topological features in underground mines. To
detect features, our approach involves performing Delaunay
triangulations on range scans and restricting attention to
the subset of resulting triangles that are of a sufficient
size and persist over a number of consecutive scans. These
features correspond to nodes of the generalized Voronoi
diagram. Corridor intersections form a subset of these
features. Feature matching is performed by comparing pairs
of features in terms of their estimated positions, radii,
and local point clouds. The resulting system can be used
to perform localization and high-level navigation in mine
environments.
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