Model-based Executive Control through Reactive Planning
for Autonomous Rovers

Alberto Finzi* Félix Ingrand Nicola Muscettola
DIS, Universita of Roma LAAS/CNRS NASA Ames
La Sapienza 7 Avenue du Colonel Roche, MS 269-2
Via Salaria, 113, 00198 Roma, Italy F31077 Toulouse Cedex 04, France Moffett Field, CA 94035, USA
finzi@dis.uniromal it felix@laas.fr mus@email.arc.nasa.gov

Abstract— This paper reports on the design and implementation of a
real-time executive for a mobile rover that uses a model-based, declarative
approach. The control system is based on the Intelligent Distributed
Execution Architecture (IDEA), an approach to planning and execution
that provides a unified representational and comp jonal fr Kk
for an autonomous agent. The basic hypothesis of IDEA is that a large
control system can be structured as a collection of interacting agents,
each with the same fundamental structure. We show that planning and
real-time resp are patible if the executive minimizes the size of
the planning problem. We detail the implementation of this approach on
an exploration rover (Gromit, an RWI ATRV Junior at NASA Ames)
presenting different IDEA controllers of the same domain and comparing
them with more classical approaches. We demonstrate that the approach
is scalable to complex coordination of functional modules needed for
autonomous navigation and exploration.

I. INTRODUCTION

As robotics research advances, planetary robotics is tackling in-
creasingly challenging mission scenarios. Rovers have demonstrated
autonomous traverse of several kilometers in Mars-analogue terrains [1]
and several field experiments are showing increasing effectiveness in
autonomously placing scientific instruments on observation targets [2],
[3]. The increased level of autonomy opens the possibility of much
more productive planetary science missions than present ones (e.g.,
each of the Mars Exploration Rovers is expected to perform close
investigation of 6 to 12 targets in 90 days). It also promises a reduction
of workload and stress for the ground crew, two factors that make it
impossible to use the traditional highly manual commanding process
for the more complex future rovers.

The increased mission and rover complexity requires more capable
on-board software. Not only individual modules must be more robust
and capable, but there must be a substantial increase in the ability o co-
ordinate these modules. This is a significant problem since complexity
increases exponentially with the number of possible interaction among
complex modules. In complex operational scenarios the interactions
that need to be considered also increases because of the number of
concurrent anomalies that must be handled robustly.

Several current approaches to autonomy tackle the coordination
problem by separating the control software into multiple layers of
increasing levels of abstraction and coordination complexity [4], [5].
For example, in a three-layered architecture the low level constitutes a
functional layer, including control modules such as platform mobility
drivers and more complex functionalities such as obstacle avoidance
and stereo-map construction. The middle layer is an execurive that
can run 2 library of procedures that monitor and activate lower level
functional modules to achieve different types of mission goals (e.g.,
“go to location X or “take a image mosaic of rock Y”). Finally, at
the highest level a planner takes several mission goals and schedules
them for execution over an extended period of time, determining which
execution procedures need to be invoked to achieve the selected goals
and which resources can be allocated for their achievement at what
time. Several current approaches to rover autonomy essentially follow
the previously described structure [6], [7].

The multi-layered approach has had some significant successes (e.g.,
the implementation of a highly autonomous spacecraft controller on
DS1 [4]) but integration and testing is difficult because of the technolog-
ical diversity of the different layers. Focusing on the relation between
the planner and the executive, while the planner typically uses a declar-
ative cause-effect model of the all possible behavior of the system and

of the external environment, the executive has only a compiled view of
such models into its procedure library. Such procedures are optimized
to achieve the few behaviors that they encode. Exceptional conditions
outside the covered behaviors must be caught-by more drastic fault
protection measures {e.g., putting the rover in standby and waiting for
external help from ground operators). The manual encoding of control
knowledge in the procedures has also the undesirable effect of making
the executive’s logic much more opaque than that of the planner. This
makes more difficult the testing, verification and validation with formal
methods such as model checking. Building autonomy software that is
easier to validate is essential for its adoption as the on-board controller
f a planetary mission.
Thxs paper describes the desiOn and implemenmtﬁon of a reaj tirre

L JUR T . P RO T

state-of-the-art field exploratxon rovers. The executive is sxgmﬁcanuy
different than traditional procedural executives since it uses reactive
planning as its only run-time reasoning engine. Our executive conforms
to the Intelligent Distributed Execution Architecture (IDEA) for the
development of multi-agent systems [8]. An IDEA control agent has a
model based on temporal planning operators that descnbes its internal
functioning and all of its communications with other agents or with the
controlled plant. The model is interpreted at run time by a planner and
the next planned task is then executed. Our model of plan execution
is an extension of the one used in Remote Agent to execute high-level
plans [9]. Reliance on a planner for on-line decision making has been
traditionally excluded from consideration due to the apparent incom-
patibility of real-time responses with possibly exponential computation.
We show that planning and real-time response are not incompatible if
the executive minimizes the size of the planning problem solved at each
execution cycle. Previous work [10] demonsirated the feasibility of the
approach for a simple rover. In this paper we demonstrates that the
approach is scalable to the more complex coordination of functional
modules necessary for the control of state-of-the-art rovers.

II. THE GROMIT DOMAIN

We illustrate our presentation with a simplified version of a real
world experiment, running on Gromit. an RWI ATRV Jr at NASA
Ames. The mission of the robot is to visit 2 number of waypoints, into
an initially unknown rough environment, while monitoring interesting
targets on its path. The robot uses stereo vision to continuously build
a model of the environment. Thus, considering the current position,
the targeted waypoints and the environment model, a 3D motion
planner continuously produces an arc trajectory which avoids obstacles,
maximizes stability and tries to reach each waypoint in turn. At the
same time, 2 monitoring task senses the surrounding environment and
upon detecting an interesting target, stops the robot and takes a picture
of it, tagged with its position for possible future study if the target is
considered worth reexamining by scientists.

The functional layer of Gromit has been implemented using the
functional modules built with GenoM that is one of the tool of the
LAAS Architecture [11]. Modules are programs providing services to
a client upon request and producing reply and data (called a poster)
to fulfill the service. For each module used in Gromit (see Fig. I,
arrows represent the “use” of the pointed poster) we briefly describe
the functional capabilities of the module, the request and the poster
{for more information on the implementation of each module see [3]).

o

Last, a third process interrupts regular way point visiting whenever an
interesting rock has been detected.

III. A PROCEDURAL CONTROLLER

Visit Way Foints and Monitor Rocks

Fig. 1
THE FUNCTIONAL MODULES OF THE EXAMPLE.

o RFLEX is interfaced with the low-level speed controller of the
wheels, to which it passes the speed available from a speed Fig. 2
reference found in a poster (in our example, the poster is produced EXAMPLE OF A PRS PROCEDURE.

by either P3D or Science). It also produces a poster containing . . oy s ;
the position of the robot based on its odometry robot pos. Both The aforementioned scenario was originally implemented using a
posters are produced/used at 25 Hz. To stop the robot one can set procedural executive (PRS : OpenPRS [13]). Fig. 2 shows the top level
up a poster with a null speed znd instruct RFLEX to use it procedure used then to properly sequence the calls to the functional
o Camera takes a pair of stereo calibrated images upon the modules. 15 pesieinn i, AuGnemONR navararion. i
camera_shot request and save them in the camera images PRS is composed of a set of tools and methods to represent and
poster. This takes between 1 and 7 tenth of a second. These images ~ SXeCUt€ plans and procedures. Proccdu@ ruso_ning differs from other
are tagged with the current position of the robot available in the commonly used knowledge representations as it preserves the control
robot_pos poster. information (ie. the sequence of actions and tests) embedded in
SCorrel takes the stereo pair in the camera images poster, procedures or plans, while kcep.ing some dgclarat%\'e aSpf”CtS' X i
produces a stereo correlated image and stores it in scorrel image In PRS, each plan/procedure is self-contained: it describes in which
upon receiving the scorrel_scorrel request. scorrelimage is conditions it is applicable and the goals it achieves. This is particularly
tacoed with tie robot_pos poster value. SCorrel takes a few well adapted to context based task refinement and to incremental robot
seconds (2-3) to complete. tasks. In our example, see Fig. 2, the top level procedure describes
« Lane builds a model of the environment by aggregating subse- € Proper sequencing to perform the navigation and the science
quent cloud of 3D points produced by SCorrel. It can service two ~ Sxperiment. One can see on the left part the two synchronized loops
requests lane_read to read the scorrel_image in an internal buffer (camera/scorrel and lane read/fuse), while on the right part, we have
and lane_fuse to fuse the read scorrel_image in its map which h€ 100p which monitor “rocks™ and take picture of them.
is available in the poster lame.map. It takes a second or so to Overall, the procedural approach does identify the control cycles but
complete. fails to tie them to the actual physics of the controlled devices and
thus to their states. This has negative effects on the ability to handle

e P3D is a rover navigation software using a méthod very close to ; il ;
the GESTALT rover navigation software operating on the Mars failures and analyze the validity of the control loops under all possible
T = execution circumstances.

Exploration Rovers [12]. It produces an arc trajectory which is

translated in a speed reference poster: p3d speed, to ty and IV IDEA A .
reach a waypoint, still avoiding “obstacles™ by making a stability ’ AARCHITECTURE
analysis in the environment available in the poster lane map. As IDEA [8] is a model-based autonomy architecture that supports the

long as it has not reached a particular waypoint, this module runs development of large, multi-agent control systems. Unlike three-layered
continuously and periodically (0.5 Hz) reevaluates the position and architectures, each IDEA agent strictly adheres to a single formal virtual
the environment to produce a new arc, thus a speed reference used machine and uses a model-based reactive planner as its core engine for
by RFLEX to get the robot moving. reasonine.
o Science This last module monitors a particular condition of interest a) fjw IDEA Virtual Machine: Fig. 3 gives an overview of the
to scientist (such as a detecting rocks with a particular features) components of an IDEA agent. The agent communicates with other
e - using a particular instrument. In our case. when such condition. agents (either controlling or controlled by the agent) using an Agent
arises while the robot is moving toward a waypoint, it stops (by Relgy. The agent relay maintains the IDEA agent’s execution context
instructing RFLEX to use Science_speed value which is null) and by sending or receiving message invocations (respectively, goals sent
takes a picture of the rock. to controlled agents or received from controlling agents) and receiving
or sending method return values (i.e. the achievement of a goal).

The execution context is synchronized with the internal state of a
Reactive Planner (RP). The RP is the control engine of the IDEA
agent: given a declarative (temporal) model of the agent activities
(i.e. the IDEA model maintained by the Model Manager) and the
execution context, it is responsible for generating the control procedure

In order for all of these module to correctly operate as an inte-
grated system, we need to specify how to coordinate their concurrent
execution. In particular we need to specify which sequences of poster
productions/consumptions performed by which modules yield a correct
overall rover behavior. The high-level description of rover operations
is the following. The robot continuously takes pictures of the terrain in
front of it, performs a stereo correlation to extract cloud of 3D points, ~ invocations.
merges these points in its model of environment and starts this process b) IDEA Execution Cycle: The Plan Runner (PR) executes a

again. In parallel, it continuously considers its current position, the next simple, finite state machine that implements the sense/plan/act cycle
waypoint to visit, the obstacles in the model of the environment built of the IDEA agent. Each cycle must be completed within the execution
and produces a piece of trajectory, which result in a speed reference. latency (i.e. the time interval between two agenr clock ticks). The PR
These two interdependent cyclic processes need to be synchronized. operates as follows:

trolling|
System |

Fig. 3
STRUCTURE OF AN IDEA AGENT.

1) The PR wakes up according to an agent clock at the first ime
after a2 message has been received from another agent or a wakeup
timer has gone off;

y The state of the Agent Relay is updated with respect to the

information resulting from the wakeup event (e.g., a procedure

has received a return value);

The RP is invoked and the planner synchronizes its internal state

with the Agent Relay through the Pian Service Layer compatibly

with the planning method used by the reactive planner;

When the RP terminates the agent relay loads the new context of

execution and sends appropriate messages to the external agents.

For example, if a procedure has been terminated by the reactive

planner, the corresponding return value (determined by the RP)

is sent to the controlling agent;

The RP is invoked to determine what is the next time at which

execution is expected to occur (barred any external communica-

tion). The time is set in the Timing Services module as the next
wakeup time for the agent;

6) The plan runner goes to sleep and waits for an external message

or the expiration of a wakeup timer.

¢} Arntributes, Tokens and Comparibilities: Although IDEA does
not prescribe the format of the internal organization of the RP, however,
its internal functioning must satisfv a declarative Model described
in a standard modeling language provided by IDEA. This model
assumes a semantic that is equivalent to that of the EUROPA planning
technology. [14].

The IDEA model represents the system as a set of arrribuzes whose
state changes over the time. Each attribute, called srare variable,
represents a concurrent thread, describing its history over time as a
sequence of states and activities (see Fig. 5). Both states and activities
are represented by temporal intervals called fokens. For example, given
a rover domain, position is a possible attribute, going(z, y) and at(y)
are tokens representing, respectively, an activity and a state. The interval
constraints among all possible values that must occur among tokens for
a plan to be legal are organized in a set compatibilities that absolve the
same function than temporally scoped operators in temporal planning
(see [15]). A compatibility is a conjunction of relations each defined by:
i. equality constraints between parameter vanables of different tokens;
ii. simple temporal constraints on the start and end variables. The latter
are specified in terms of metric version of temporal relations a la
Allen [16]: meets, met.by, contained by, contains, beforeld, D],
afterid, D], starts, ends, etc. For instance, going(z,y) meets at(y),
and going(z,y) met by at(z) specifies that each going interval is
followed and preceded by a state at.

d) Plan Database: The reactive planner continuously updates a
data structure, called Plan Database (PD) (see Fig. 4), which represents
the VO and internal state of the agent. The PD describes the past and
the future execution state of the agent as a set of rimelines (one for each
state variable). A timeline represents the history of a state variable over
a period of time. Each history is a sequence of tokens built by the RP
keeping the consistency with respect to the IDEA model. The reactive

S

)

4

=

W

planning is to refine the plan database checking for the consistency of
the PD with respect to the current execution state and providing an
execution plan up to a planning horizon. Given a timeline, the past
history represents ended activities/states (whose start and end times
are already defined), instead the future history is a complete plan of
activities with a maximal temporal flexibility: the temporal variables
are partially grounded to allow for on-line binding of time values.
For example, given the rover example, a future history could be: start
going(a,d) within [3, 10}, arrive at(d) within [4, 10], start going(d, e)
withi Note that even though the plan is flexible it can become
inconsistent with respect to the execution context. When the RP detects
this inconsistency, the future history is removed from the timelines and
a new plan is to be generated within the execution latency.

e) Reacrive and Deliberative Planning: In IDEA reactive plan-
ning determines the next action on the basis of sensory input and time
lapse wakeups. More complex problem solving (e.g., long-term task
planning) typically requires more time than the latency allows. IDEA
provides a rich environment for integrating any number of deliberative
planners within the core execution cycle (Fig. 4). Different specialized
planners can cooperate in building a single plan coherently with the
agent’s model. Also in IDEA the activation for a deliberative planner
is programmed in the model. This can be obtained by modeling the
planner like any other subsystem, i.e., by specifying a timeline that can
take tokens whose execution explicitly invokes the planner. This makes
it possible to appropriately plan the time at which deliberate planning
can occur compatibly with the internal and external state modeled by

Reactive planner is
activated within a plan
numner cycie

Reactive Planner -}

Long-term Planver
=

— =
Path Planner
e e i = Goal
Control planner activaton in
Plan Database Goal loader the same way as for external

controilers

Fig. 4
REACTIVE-DELIBERATIVE INTERACTION.
V. A MODEL-BASED CONTROLLER FOR GROMIT

The IDEA Gromit executive is a single IDEA agent that operates
as controlling agent for the functional modules of Gromit. For each of
them we shall consider the “visible” state variables of interest and the
associated compatibilities (See Fig. 5).

A. Anributes and Tokens
e RFLEX has a state variable for the position of the robot
position_sv, with each token representing a specific robot posi-
tion, and another one for the speed control of the robot speed. sv,
with each token representing the reference speed passed to the
wheels controller.

e Camera has one state variable (camera.sv) representing the

camera status (taking a picture, or idle).

e SCorrel has one state variable (scorrel_sv) representing the SCor-

rel process (performing the stereo correlation, or idle)

e Lane has one state variable (lane_sv) representing the model

building process (modeling or idle)

« P3D has one state variable (p3d._sv) for its state (idle or computing

the speed of the robot) and one for the way_ points to visit (wp sv).

o Science has one state variable (science sv) for its status (moni-

toring interesting rocks or idle).

For now, one will assume that the data themselves (e.g., pictures,
stereo correlated images, map) are available as a result of the associated
tokens on each state variable (e.g., the position value is available on
the considered token on robot_position_sv)

Fig. 5
PARTIAL GROMIT MODEL (ATTRIBUTES AND COMPATIBILITIES).

B. First Principles in Gromit

Now that we have the state variables of interest, we can consider
the compatibilities which link them. An IDEA model for Gromit is to
capture the following first principles:

« The p3d token to reach a waypoints (on the wp.sv) has to end
with a successful plan token on p3d_sv. This plan token needs the
waypoint token (on wp_sv), the current position on position sv
and the model of the environment on lane sv.

e lane_sv_fuse requires a read which requires a stereo correlation
on scorrei_sv,

« scorrel_sv requires a pair of picture taken by the camera with a
shot on the camera_sv timeline and requires that no other pictures
should be taken until it is done with the scorrel.

« the science_sv is started with a monitor token which will
trigger whenever an interesting rock is seen. This will require
stopping the robot (thus setting the speed ref to zero) and using
the camera_sv to shot a picture (thus interrupting the whole
navigation/mapping process). Following this shot, a science token
is performed (while the camera is idle).

One can see that by expressing causal and temporal relationships
between these tokens/attributes we describe how the overall experiment
may run. It is still up to the reactive planner to produce on each
timeline the proper sequence of tokens resulting in internal calls in
the modules. One of the interesting part in this problem is the handling
of the science activities which tightly interact with the navigation. Such
interaction, when dealt with the classical procedural approach, is the
potential source of many problems and pitfalls (deadlocks, corrupted
data, etc).

VI. MODELING WITH A PLANNING HORIZON

The core of an IDEA control agent is the reactive planner. All IDEA
agents implemented so far in this and other applications (e.g., for the
Personal Satellite Assistant at NASA Ames) use the EUROPA planning
technology as its base, with a simple heuristic-guided chronological
backtracking engine as the search mechanism used by the planner. The
key control parameter on the speed of the reactive planner is the length
of the horizon over which the reactive planner is requested to build a
consistent plan. As the horizon becomes shorfer, the size of the reactive
planning problem becomes smaller and, consequently, the size of the
planning search space and the maximum latency also become smaller.
In other words, the smaller the planning horizon is, the more reactive
the IDEA control agent becomes. However, the horizon reductions have
a complementary effect on the complexity of the domain model required
to achieve correct reactive execution. During execution the agent could
be required to achieve a goal (e.g., a standby state) that can only be
achieved over multiple reactive planning horizons. Since the reactive
planner has only visibility on subgoals and tokens that occur during one
planning horizon, the planning model will have to incorporate enough
contextal information to “look ahead” to decisions that may be crucial
to build a correct plan in future horizons and to achieve the futre
goal. Therefore, the shorter the planning horizon, the more contextual
information each subgoal must contain on future goals and, ultimately,
the more complex the declarative model becomes. This increase in

complexity makes the modeling task more difficult and reduces the
effectiveness of the model-based approach in capturing the structure
of the domain when compared to encoding a number of pre-scripted
control procedures.

In this section we present three different IDEA controllers for
Gromuit that illustrate the tradeoff between horizon duration, planner
performance and model complexity.

A. Minimal horizon model

To minimize the size of the reactive planner’s search space. it is -

necessary to expand as little as possible of the plan in one execution
cycle. One way to obtain this is to reduce the planning horizon to its
minimum possible length, i.e.. the granularity of the agent clock or one
execution latency. We provided a Gromit model for a reactive planner
operating over a one-latency planning horizon that fully duplicates
the PRS controller in Fig. 2. Fig. 5 shows the timelines, tokens
and some temporal relations representing a simplified version of this
model. Given the one-latency horizon, the planner can only expand
tokens to cover the next execution cycle by exploiting the model to
select tokens and to decide about their consistency. Since no backward
search can be emploved, subgoals can be interpreted as commands
and the temporal model must provide a complete description of the
control information: for each execution context the set of available
commands must be explicitly specified. It is easy to see that the one-
latency representation can become very complex. For instances, Fig. 6
depicts a possible execution context in the Gromit model: scorrel
ends while the first lane_fuse is still processing. In the same figure
we can find another context: scorrel ended during lane idle. Each
of these contexts must be associated with a suitable control rule,
e.g., in the previous case we have scorrel(s) meets scorrel_wait
and scorrel(s) meets lane_read(s’). Such conditional constraints
ramification is a typical phenomenon in the one-latency model: all the
possible choices a long horizon planner could explore, need to be folded
back into the next agent clock tick.

Fig 6
SCORREL-FUSE INTERACTION.

B. Reacrive Long Horizon

The increase of model complexity due to one-latency “myopia” can
be mitigated by having the reactive planner operate over a longer
horizon. If the horizon is long enough a simpler model of the domain
can be coded. In this context, the control information is much simpler
since the context needed to achieve long term goals can be reconstructed
on the fly during the planning search. This allows the model to be
devoid of practically all search control information and to adhere more
thoroughly to the principles of model-based declarative design.

Fig. 7 depicts the timelines involved in the mapping and observing
processes for a long horizon model for Gromit. Each mapping process
is started once a goal, e.g. map(2) (here the activities are indexed by
the cycle), is posted on the goal map timeline and the reactive planner
has to provide a plan for it within a latency. At the end of the latency,
if the planner is successful, a control sequence for a mapping cycle is
generated and the reactive planner can play in the role of an execution
monitor checking for the consistency of the plan database. While the
mapping activities are running, the next mapping cycle can be generated
(e.g. Fig. 7 shows map(3) posted after camera(2)). Note here that the

|
l""‘ sy goal posted { map(3)
. Long Reactive
] time /\;bnﬁmn

Delibera.

Reactive short |

Fig. 7

GROMIT PLAN DATABASE: LONG HORIZON.

long horzon ensures a reactive goal-driven behavior, and, since the
plan database stores a temporally fiexible plan, also event reactivity is
ensured. Fig. 7 illustrates also the monitor token (see science timeline)
triggering and posting the goal observe on the goal observe timeline.
Once the goal is posted, the reactive planner has to find a consistent
solution where the activities involved in both mapping and science are
coordinated. Note that the observing and the mapping processes can
be easily integrated in the long horizon model since their coordination
is managed by the reactive planner, instead. in the one-latency model,
the same integration determines a multiplicative effects on the number
of execution contexts.

The reactive long horizon controller is based on a simple and
natural domain representation and allows for a smooth and robust
behavior. The main drawback is performance because plan generation
is more complex and the latency, driven by the worst case cost of plan
generation. is higher.

C. Deliberative and Reactive Interaction

One way to address the dualism between performance and ease of
representation is to exploit “dead time” to look ahead while retaining
the capability to react immediately if an event signals an exceptional
situation. This approach was adopted by the Remote Agent Experi-
ment [4]. In that case the deliberative planning horizon covered an
entire day since the goal was to trade off between the achievement of
several conflicting goals over a long period of time. A very similar ap-
proach can be used for short term execution, appropriately augmenting
the long-horizon model described above with the information needed
to trigger and execute long-horizon planning in a deliberative manner.

We experimented with a rover model exploiting the cooperation
between the declarative and the reactive planner, and we tested it in
simulation. Our goal was to exploit the deliberative planner to pipeline
the reactive activities and thus reduce the long horizon latencv. This
new model is obtained as a very simple extension of the long-horizon
one. The deliberative planner is associated with a long horizon while the
reactive planner works with a one-latency horizon so that some control
rules are visible to the deliberative planner, but not to the reactive. In
this setting the two planners can concurrently work at different tasks.
Fig. 8 depicts again the observe-mapping cycle in the new setting. In
this case mapping map(2) is treated as a long term goal, while observe
is a short term one. In this scenario, the reactive planner can provide a
final plan for observe while the deliberative planner is still working at
map(2). and the experiment can be executed without waiting for the
camera.

Reactive execution with deliberative pipelining can speed-up execu-
tion in nominal conditions, when the predictions of the deliberative
planner are not invalidated by exceptional execution events. If a fauit
occurs, then it has to be guaranteed that the system can remain in
the off-nominal state during deliberative planning without endangering

Fig. 8
LONG HORIZON DELIBERATIVE PLANNING.

the safety of the rover. This requires the identification of immediate
standby states that can be reached in at most one step and can persist
for at least the duration of a deliberative planner. This is similar to
what was done in the Remote Agent Experiment where the response to
a fanit required the execution of a standby script and the planner was
activated only while the spacecraft was in standby. In the context of
reactive, real-time execution using on-line planning as its sole reasoning
method, the time to come up with the standby script is reduced to a
single latency horizon. To keep modeling as simple as in the long
horizon case therefore we have two possible ways. The first is to
identify immediate standby states and model the requirement that the
deliberative planner be invoked only if the standby state has been
achieved. The second, in case that an immediate standby cannot be
achieved for some fault conditions, is to resort to cached standby
plans. The reactive planner would then load the cached plan and start
immediately executing its first step after a failure. Clearly, cached plans
are analogous to procedural scripts but, in this approach, they will
be only need to achieve standby. Therefore, it is expected that their
number will be limited and their encoding will not require caching a
large number of conditional information in the plan. The explosion of
conditional information is a major limitation in achieving fully robust
reactive Scripts.

Our work so far has identified a framework on which to conduct
quantitative studies of the tradeoff between ease of programming,
encoding of search control and caching of limited standby plans. A
full examination of these issues will be conducted in future work.

VII. RESULTS

The previously presented example has been implemented using a
procedural executive. as well as the various IDEA models (one-latency
and long horizon), and deployed on Gromit. Gromit has a dual Pentium
IIT 1.3 Ghz CPU running Linux. As stated before, the real experiment
was more complex than the one presented here and involved three
odometry, POM for position management to combine the classical and
the stereo odometry and Platine to handle the pan and tilt unit.). All
the programs (i.e. functional modules, IDEA etc.) are running onboard.

We started the experiment using procedural reasoning, and by using
all available computational power, we were able to run the robot at
roughly 10cm/s (the two most computationally intensive processing
are the stereo correlation, and the stereo odometry) and to perform a
“complete” cycle (i.e. the time berween two subsequent camera shot) in
about one second. The monitor activity of the science module would
trigger the stop in a tenth of a second.

The same experiment was then programmed in IDEA using a
one-latency reactive model and, despite the difficulty of correctly
implementing the model, we were able to run with a latency of 0.3
seconds. The measurable reactivity of the system to new events (such

as a science_rmonitor triggering) was on the order of one second.
Using a long horizon model and a reactive planner, able to produce a
plan for the next cycle and change it when science monitor requires
it, we ran at latency 1.5 seconds. The reactivity was then in the order of
3 seconds. Note that the plan produced by the IDEA model presented
a better flexibility than the one produced by PRS (in particular, in
the complete example, we were getting a better sequence leading © a
camera_shot while lane_read was still executing). Moreover, although
a subtle race condition in the PRS procedure could lead to a situation
where one could take a science picture while the navigation stereo
correlation is still running, the IDEA based experiment did not have
such problem.

VIII. MODEL-BASED VS. PROCEDURAL EXECUTIVE

We have demonstrated that one can perform planning and execution
control using a model-based approach relying on temporal constraints
over some fairly low level rover control primitives. Still, beyond pure
numerical results, we need to analyze how such approach compares and
scales with classical approaches, in particular procedural executives.
We consider a number of properties and see how these two approaches
compare:

o Validation and Verification The IDEA approach has a clear
advantage on this issue. Indeed, using formal models to generate
plans at run tme is a guarantee that the model will always be
satisfied.

« Performance Doing a temporal mode] consistency checking has
a high tag price, compared to a simpie next step execution in a
procedure. Still, performing such checking on a limited horizon
provides some acceptable performance.

« Flexibility Procedure are usually hardcoding the execution paths,
while the control sequence generated by the IDEA reactive {long
horizon) planner is context dependent and temporally flexible,
hence we have a robust behavior associated with high parallelism.

o Error Detection/Recovery In IDEA the declarative model implic-
itly defines both nominal and non-nominal scenarios, thus is more
robust than a procedural representation centered on a nominal
scenario. In the procedural controller, each exceptional situations
must be explicitly captured in some particular decision points
during the course of execution. For example, the PRS controiler
depicted in Fig. 2 is not robust: a camera shot belonging to the
science cycle could be allowed during the stereo correlation. In
the IDEA context, instead, this behavior violates some explicit
constraints for the nominal execution, hence the planner has to
react to keep the plan database consistent. The planner activity
enables for smooth recoveries reducing the need for entering a
standby state.

« Ease of programming The relative success of procedural exec-
utives comes in part from the ease they offer at the first level to
express procedures, plans, scripts. This is a very natural way to
encode a process which is usually thought in the same way by
engineers and programmers. Meanwhile expressing planning and
execution control logic using a temporal model can be difficult, in
particular because of the limited horizon effects discussed in this
paper.

« Expandability/Composability The experimental development of
robust rover execution scenarios often requires adding new ca-
pabilities or processing on an existing system. Thus the need
to compose a new functionality in an existing control system.
On this aspect, the procedural executive performs poorly, as one
needs to reassess the consequences of the possible interactions
between the new functionality and the preexisting system. IDEA
in such situation can focus on the state variables and the related
compatibilities which interact between the new added functionality
and the system.

IX. CONCLUSION

We have presented a rover executive that uses IDEA, a novel architec-
ture paradigm which proposes 2 model based multi-agent organization
to deploy embedded autonomous systems such as mobile robots. Such
approach is quite different from the execution layer of traditional

three-layer architectures [17] and even goes beyond recent architecture
such as CLARAty [6] which aim at bridging the gap between the
traditional decisional and functional layers. Stll in CLARAty, one
can end up with different components for planning (CASPER) and
execution control (TDL), while in IDEA, the use of the same modeling
framework provides a seamless transition from planning to execution
control. The RMPL (Reactive Model Based Programming) approach
by [18]. is another interesting framework suitable for Reactive Model-
based control. RMPL is similar to reactive embedded languages such
as Esterel, with the added ability of directly interacting with the plant
state by reading and writing hidden state variables. Here it is the
responsibility of the language execution kemel to map between hidden
states and the plan variables. In IDEA, instead, the model is directly
integrated with the functional level (drivers and sensors). Moreover,
RMPL relies on HMM for mode estimation and uses abstract scripts
which are to be instantiated by a model-based executive engine (Titan).
In this way the control system design is simplified, but it is not clear
how the cost of diagnosis/planning undemneath can be controlled by the
script.

A model-based approach, such as IDEA, presents a number of advan-
tages with respect to the ambitious goal of designing an architecture and
systems supporting the deployment of autonomous systems. Compared
to procedural executive, it offers a more flexibie execution path and
has a more robust behavior for non nominal situations. Validation and
verification capabilities of such approach are superior to those intrinsic
in procedural execution. Integration with a high-level temporal planner
is also eased by the common modeling language

o] £ommen mogeliing iar 208,

ACKNOWLEDGMENT
This research was carried out while Alberto Finzi was a Fulbright
Visiting Researcher at Nasa Ames.

REFERENCES

{1} D. Wettergreen, M. B. Dias, B. Shamah, J. Teza, P. Tompkins, C. Urmson, M. D.
Wagner, and W. R. L. Whittaker, “First experiment in sun-synchronous exploration,”
in International Conference on Roborics and Automation, May 2002, pp. 3501—
3507.

[2] L. Pedersen, R. Sargent, M. Bualat. C. Kunz, S. Lee, and A. Wright, “Singlecycle

instrument deployment for mars rovers,” in Proceedings of i-SAIRAS, May 2003.

[3} S. Lacroix. A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and R. Chatila,
“Autonomous rover navigation on unknown terrains, funcuons and integration,”
Internarional Journal of Robotics Research, 2003.

[4] N. Muscertola, P. P. Nayak, B. Pell, and B. C. Wiiliams, “Remote agent: To boldly
go where no Al system has gone before.” Artificial Inzelligence, vol. 103, no. 1-2,
pp. 547, 1998.

{5] R. P. Bonasso, J. Firby, E. Gat. D. Kortenkamp, D. P. Miller, and M. G. Slack,
“Experiences with an architecture for intelligent, reactive agents.” Constrainss,
vol. 9, no. 2/3, pp. 237-256, April 1997.

[6] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The claraty
architecture for robotic autonomy.” in JEEE 2001 Aerospace Conference, March
2001

{7} C. Chouinard, F. Fisher, D. Gaines, T. Estlin, and S. Schaffer, “An approach 1o
Autonomous Operations for Remote Mobile Robotic Exploratnon,” in JEEE 2003
Aerospace Conference, March 2003.

{8] N. Muscettola, G. A. Dorass, C. Fry, R. Levinson, and C. Plaunt, “Idea: Planning
at the core of autonomous reacuve agents,” in Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space, October 2002.

[9]1 N. Muscettola, P. Mormis, B. Pell, and B. Smith, “Issues in temporai reasoning
for autonomous control systems,” in Proceedings of Agenrs'98, K. P. Sycara and
M. Wooldridge, Eds. New York: ACM Press, 9-13, 1998. pp. 362-368.

[10] S.Lemai. B. Dias, and N. Muscettola, “A real-time rover executive based on model-
based reactive planning.” in Proceedings of International Conference on Advanced
Roborics, June 2003. - -

(11] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An architecture for
autonomy,” International Journal of Roborics Research, Special Issue on Integrated
Architectures for Robor Control and Programming, vol. 17, no. 4, pp. 315-337,
April 1998.

[12] S. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation
software for planetary expioration,” in JEEE 2002 Aerospace Conference. March
2002.

[13] F. Ingrand, R. Chatila. R. Alami. and F. Robert, “PRS: A High Level Supervision
and Control Language for Autonomous Mobile Robots.” in JEEE Internarional
Conference on Robortics and Automarion, Mineapolis, USA, 1996.

[14] A.J. Jeremy Frank, “Constraint-based attribute and interval planning,” Constraints,
vol. 8, no. 4, pp. 339-364, October 2003.

{15] A. K Jonsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith, “Planning
in interplanetary space: Theory and practice.” in Artificial Inteiligence Planning
Systems, 2000, pp. 177-186.

[16] J. Allen, “An interval-based representation of temporal knowledge.” in [JCAZ, 1981.

{17) E. Gat, “On three-layer architectures,” in Artificial Intelligence and Mobile Robots.
MIT/AAAT Press, 1997.

[18] B. Williams, M. Ingham, S. Chung, P. Elliott. M. Hofbaur, and G. Sullivan. “Model-
based programming of fault-aware systems,” A/ Magazine, Winter 2003.

