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Abstmct-Tb& paper reports on the design and implementation of a 
real-time executive for a mobile rover that uws a model-based, declarative 
approach. The cnntrol system is based on the Intelligent Distriboted 
Execution Architecture (IDEA), an approach to planning and execution 
that provides a d f d  repr&ntationaJ and computational framework 
for an autonomous agent The basic hypothesis of IDEA is that a Luge 
control system can be strnctured as a collection of interacting agen& 
each with the same fundamental structure We show that planning and 
real-time response a= compatible if the executive minimizer the size of 
the planning problem. We detail the implementation of this approach on 
an expioration rover (Gromit an RU’I ATRV Junior at NASA hies )  
presenting different IDEA controllers of the same domain and comparing 
them with more classical approachg. W e  demonstrate that the approach 
is scalable to complex coordination of functional modules needed for 
autonomous navigation and exploration. 

I. INTRODUCTION 

As robotics research advances, planetary robotics is tackling in- 
creasingly challenging mission scenarios. Rovers have demonsmted 
autonomous traverse of s e v d  kilometers in Man-analogue terrains [I] 
and several field expeziments are showing increasing effectiveness in 
autonomously placing scientific instruments on observation targets [2], 
[3]. The increased level of autonomy opens the possibility of much 
more productive planetary science missions than present ones (e.g., 
each of the Mars Exploration Rovers is expected to perform close 
investigation of 6 to 12 targets in 90 days). It also promises a reduction 
of workload and stress for the ground crew, two factors that make it 
impossible to use the traditional highly manual commanding process 
for the more complex fntm rovers. 

The increased mission and rover complexity requires more capable 
o n - h z d  software. Not only individual modules must be more robust 
and capable, but there must be a substantial increase in the ability to c e  
ordinate these modules. This is a si,gh?cant problem since complexity 
increases exponentially with the number of possible interaction among 
complex modules. In complex operational scenarios the interactions 
that need to be considered also increases because of the number of 
concurrent anomalies that must be handled robustly. 

Several current approaches to autonomy taclile the coordination 
problem by separating the control software into multiple layers of 
increasing levels of abstraction and coordination complexity [4], [SI. 
For example, in a three-layered architecane the low level constitutes a 
funcrioml &er. including control modules such as platform mobility 
drivers and more complex functionalitis such as obstacle avoidance 
and stereo-map construction. The middle layer is an erecufive that 
can run a libmy of procedures &at monitor and activzte lower leve! 
functional modules to achieve different types of mission goals (eg,  
“go to location IC’ or “take a image mosaic of rock Y”). Finally, at 
the highest level a planner takes several mission goals and schedules 
them for execution over an extended period of time, determining which 
execution prccedures need to be invoked to achieve the selected goals 
and which resources can be allocated for their achievement a! what 
time. Several current approaches to rover autonomy essentially follow 
the previously described structure [6], [7]. 

The multi-layered approach has had some significant successes (e.g., 
the implementation of a highly autonomous spacecraft controller on 
DSl [4 ] )  but integration and testing is difficult because of the rechnolog- 
ical diversity of the different layers. Focusing on the relation between 
the planner and the executive, while the planner typically uses a declar- 
ative cause-effect model of the all possible behavior of the system and 

of the external environment, the executive has only a compiled view of 
such models into its procedure library. Such procedures are optimized 
to achieve the few behaviors that they encode. Ewceptional conditions 
outside the covered behaviors must be caugh-by more drastic -fault 
protection measures (e.g., putting the rover in standby and waiting for 
external help from ground operators). The manual encoding of control 
knowledge in the procedures has also the undesirable effect of making 
the executive’s logc much more opaque than that of the planner. This 
makes more difficult the testing, verification and validation with formal 
methods such as model checking. Budding autonomy software that is 
easier to validate is essential for its adoption as the on-board controller 
of a planerary mission. 

This paper describes the design and implementation of a real-time 

state-of-the-art field exploration rovers. The executive is significantly 
different than traditional procedural executives since it uses reactive 
planning as its only run-time reasoning engine. Our executive c o n f m  
to the IntelIigent Distributed Execution Architecture (IDEA) for the 
development of multi-agent systems [SI. An IDEA control agent has a 
model based on temporal planning operators that describes its internal 
functioning and all of its communications with other agents or with the 
controlled plant The model is interpreted at run time by a planner and 
the next planned task is then executed. Our model of plan execution 
is an extension of the one used in Remote Agent to execute high-level 
plans [9]. Reliance on a planner for on-line decision making has been 
traditionally excluded from consideration due to the apparent incom- 
patibility of real-time responses with possibly exponential computation. 
We show that planning and real-time response are not incompatible if 
the executive minimizes the size of the plannigEproblem solved at each 
execution cycle. Previous work [lo] demonsfrated the feisibilip of the 
approach for a simple rover. In this paper we demonstrates that the 
approach is scalable to the more complex coordination of functional 
modules necessaq for the control of state-of-the-art rovers. 
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11. THE GROMIT DOMAIN 

We illustrate our presentation with a simplified version of a real 
world experiment running on Gromit, an RWI ATRV Jr at NASA 
Ames. The mission of the robot is to visit a number of waypoints, into 
an initially unknown rough environment, while monitoring interesting 
w e t s  on its path. The robot uses stereo vision to continuously h i i d  
a model of the environment. Thus, considering the current position, 
the targeted waypoints and the environment model, a 3D motion 
planner continuously produces an arc najectory which avoids obstacles, 
maximizes stability and tries to reach each waypoint in turn. At the 
same time, a monitoring task senses the surrounding environment and 
upon detecting an interesting target stops the robot and takes a picture 
of it, tagged with its position for possible future study if the target is 
considered worth reexamining by scientists. 

The functional layer of Gromit has been implemented using the 
functional modules built with GenoM that is one of the tool of the 
LAAS Architecture [ll].  Modules are programs providing services to 
a client upon request and producing reply and data (called a poster) 
to fulfill the service. For each module used in Gromit (see Fig. 1, 
arrows represent the “use” of the pointed poster) we briefly describe 
the functional capabilities of the module, the request and the poster 
(for more information on the implementation of each module sez [3]). 
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Fi. 1 

THE FUNCTIONAL MODULES OF THE €-LE 

RFLEX is interfaced with the low-level speed controller of the 
wheels, to which it passes the speed available from a speed 
reference found in a poster (in our example, the poster is produced 
by either P3D or Science). It dso produces a poster containing 
the position of the robot based on its odometry robotpos. Both 
posters are produced/used at 25 Hz. To stop the robot one can set 
up a poster with a null speed and instruct RFLEX to use it. 
Camera takes a pair of stereo calibrated images upon the 
camera-shot request and save them in the cameraimages 
poster. This takes between 1 and 7 tenth of a second. These images 
are ragged with the current position of the robot available in the 
r o b o t p s  poster. 
Scorn1 takes the stereo pair in the cameraimages poster. 
produces a stereo correlated h a g e  and stores it in s c m e l  image 
upon receiving the s c a e l s c a e l  request. scorrdimage is 
tagged with the robdpos poster value. SCorrei takes a feu, 
seconds (2-3) to complete. . Lane builds a model of the environment by aggregating subse- 
quent cloud of 3D points produced by SCorrel. It can service two 
requests lane-read to read the scorreLimage in an internal buffer 
and lane-fuse to fuse the read scurreLimage in its map which 
is available in the poster lanemap. It takes a second or so to 
complete. 
P3D is a rover navigation software using a method very dose to 
the GESTALT rover navigation software operating on the Mars 
Exploration Rovers [12]. It produces an arc trajectory which is 
translated in a speed reference poster: p3dspeed. to try and 
reach a waypoint, stili avoiding “obstacles- by making a stability 
analysis in the environment available in the poster lane  map. As 
long as it has not reached a particular waypoint, this module runs 
continuously and periodically (0.5 Hz) reevaluates the position and 
the environment to produce a new arc, thus a speed reference used 
by RFLEX to get the robot moving. 
Science This last module monitors a particular condition of interest 
to scientist (such as a detecting rocks with a particular features) 
using a particular i n s m e n t  In our case, when such condition. 
arises while the robot is moving toward a waypoinf it stops (by 
instructing RFLM to use Sciacespeed value which is null) and 
takes a picture of the rock. 

In order for all of these module to correctly operate as an inte- 
grated system, we need to specify how to coordinate their concurrent 
execution. In particular we need to specify which sequences of poster 
production~’c0nsumptions performed by which modules yield a correct 
overall rover behavior. The high-level description of rover operations 
is the following. The robot continuously takes pictures of the terrain in 
front of if performs a stereo correlation to extract cloud of 3D points, 
merges these points in its model of environment and starts this process 
again. In parallel, it continuously considers its current position, the next 
waypoint to visit the obstacles in the model of the environment built 
and produces a piece of trajectory, which result in a speed reference. 
These two interdependent cyclic processes need to be synchronized. 

. .- - 

Last a ihird process intenupts regular way point visiting whenever an 
interesting rock has been detected 

111. A PROCEDURAL CONTROLLER 

Fig. 2 
EX4MPI.E OF A PRS PROCEDURE 

The aforementioned scenario was ori@nally implemented using a 
procedural executive (PRS : OpenPRS [13]). Fig. ’2 shows the top level 
procedure used then to properly sequence the calls to the functional 
modules to perform this autonomous navigation 

PRS is composed of a set of tools and methods to represent and 
execute plans and procedures. Procedural reasoning differs from other 
commonly used knowledge representations as it preserves the control 
information ( i e .  the sequence of actions and tests) embedded in 
procedures or plans. while keeping some declarative aspects. 

In PRS, each pladprocedure is self-contained: it describes in which 
conditions it is applicable and the goals it achieves. This is particularly 
well adapted to context based task refinement and to incremental robot 
tasks. In OUT example, see Fig. 2, the top level procedure describes 
the p r ~ p e ~  sequencing to perform the navigation and the science 
experiment One can see on the iefi part the two synchronized loops 
(camera/scorrel and lane readfuse), while on the right part, we have 
the loop which monitor “rocks” and take picture of them. 

Overall, the procedural approach does identify the control cycles but 
fails to tie them to the xtual physics of the controlled devices and 
thus to their states. This has negative effects on the ability to handle 
failures and analyze the validity of the control loops under all possible 
execution circumstances. 

IV. IDEA ARCHITECTURE 

IDEA 181 is a model-based autonomy architecture that supports the 
development of large, multi-agent control systems. Unlike three-layered 
architectures. each IDEA agent smctly adheres to a single formal virmal 
machine and uses a model-based reactive planner as its core engine for 
reasoning. 

a) The IDEA fimral Machine: Fig. 3 gives an overview of the 
components of an IDEA agent. The agent communicates with other 
agents (either controlling or controlled by the agent) using an Agent 
Relqv. The agent relay maintains the IDEA agent’s execution context 
by sending or receiving message invocations (respectively, goals sent 
to controlled agents or received from controlling agents) and receiving 
or sen%- method return values (i.e. the achievement of a goal). 

The execution context is synchronized with the internal state of a 
Reacrive P h e r  (RP). The RP is the control engine of the IDEA 
agent: given a declarative (temporal) model of the agent activities 
(i.e. the IDEA model maintained by the Model Manager) and the 
execution context, it is responsible for generating the control procedure 
invocations. 

b) IDEA Execution Cycle: The Plan Runner (PR) executes a 
simple, finite state machine that implements the sensefpldact cycle 
of the IDEA agent. Each cycle must be completed within the execution 
[arency (i.e. the time interval between two agent clock ticks). The PR 
operates as follows: 



Fg. 3 
STRUCTURE OF AN IDEA AGENT 

The PR wakes up according to an agent clock at the first time 
after a message has been received from another agent or a wakeup 
timer has gone off; 
The state of the Agent Relay is updated with respect io the 
information resulting fiom the wakeup event (e.8.. a procedure 
has received a rem value); 
The RP is invoked and the planner synchronizes its internal state 
vith the Agent Re12y &vu$. the P h  Service Layer coqatih!y 
with the planning method used by the reactive planner; 
When the RP terminates the agent relay loads the new context of 
execution and sends appropriate messages to the external agents. 
For example, if a procedure has been terminated by the reactive 
planner, the corresponding return value (determined by the RP) 
is sent to the controlling agenc 
The RF’ is invoked to determine what is the next time at which 
execution is expected to occur (barred any external communica- 
tion). The time is set in the Ziming Services module as the next 
wakeup time for &e agenc 

6) The plan mmer goes to sleep and waits for an external message 
or the expiration of a wakeup timer. 

ci Amibures, Tokens and ComparibiZifies: Although IDE.4 does 
not prescribe the format of the intern31 organization of the W, however, 
its internal functioning must satisfv a declarative Model described 
in a standard modeling language provided by IDEA. This model 
assumes a semantic that is equivalent to that of the ELROP.4 planning 
technology. [13]. 

The IDEA model represents the system as a set of anribures whose 
state changes over the time. Each attribute, called sture vanibie, 
represents a concurrent thread, describing its history over time as a 
sequence of states and activities (see Fig. 5). Both states and activities 
are represented by temporal intervals called tokens. For example, given 
a rover domain, position is a possible amibute, going(z, y) and at(y) 
are tokens representing, respectively, an activity and a state. The interval 
constraints among all possible values that must occur among tokens for 
a plan to be legal are organized in a set compatibilities that absolve the 
same function than temporally scopisd operates-in temporal planning 
(see [ 53.  A compatibility is a conjunction of relations each defined by: 
i. equality constmints between parameter variables of different tokens; 
ii. simple temporal constraints on the start and end variables. The latter 
are specified in terms of mehic version of temporal relations a la 
Allen [16]: meets, met-by, m t a i n e d b y ,  contains, beforejd. D] ,  
a f t e r [ d , D ] ,  starts, ends, etc. For instance, going(z, y) meets at(y), 
and going(z,y) met-by atjz)  s e f i e s  that each going interval is 
followed and preceded by a state at. 

dl Plan Darabase: The reactive planner continuously updates a 
data structure, called P h n  Database (PD) (see Fig. 41, which represents 
the I/O and intemal state of the agent The PD describes the past and 
the future execution state of the agent as a set of rimelines (one for each 
state variable). A timeline represents the history of a state variable over 
a period of time. Each history is a sequence of tokens built by the RP 

planning is to refine the plan database checking for the consistency of 
the PD wit!! respect to the current execution state and providing an 
execution plan up to a ploming horiyon. Given a timeline, the past 
history represents ended acti\+ties/states (whose st3 l t  and end times 
are already defined), instead the future history is a complete plan of 
activities with a maximal temporal flexibility: the temporal variables 
are partially grounded to allow for on-line binding of time values. 
For example, gven the rover example, a future history could be: start 
gmngja. d )  within i3: lo], arrive ut(d)  within [4; 101, start going(d, e) 
within 101. Note that even though the plan is flexible it can become 
inconsistent with respect to the execution context. When the RP detects 
this inconsistency, the future history is removed from the timelines and 
a new plan is to be generated within the execution latency. 

e)  Reactive and Deliberative Planning: In IDEA reactive plan- 
ning determines the next action on the basis of sensory input and time 
lapse wakeups. More complex problem solving (e.g., long-term task 
planning) typically requires more time than the latency allows. IDEA 
provides a rich environment for integrating any number of deliberative 
planners within the core execution cycle (Fig. 4). Different specialized 
planners can cooperate in building a single plan coherently with the 
agent’s model. Also in IDEA the activation for a deliberative planner 
is progammed in the model. This can be obtained by modeling the 
pianner like any other subsystem, i.e., by specifying a timeline that can 
take tokens whose execution explicitly invokes the planner. This makes 
it possible to appropriately plan the time at which deliberate planning 
can occur compatibly with the intemal and external state modeled by 
t!e agezt. 

I Database dlerrmcvn i o r a d  I 
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v A MODEL-BASED CONTROLLER FOR GROMIT 
The IDEA Grormt executive is a smgle IDEA agent that operates 

as controlling agent for the functional modules of Gromit For each of 
them we shall consider the “visible” state vanables of interest and the 
associated compahbifihes (See Fig 5)  

A Annbutes and Tokens 
RFJ-EX has a state variable for the position of the robot 
pos i t i uxsv ,  with each token representing a specific robot posi- 
tion, and another one for the speed control of the robot speed sv. 
with each token representing -the reference speed passed to the 
wheels controller. 
Camera has one state variable (camerasv) representing the 
camera status (taking a picture, or idle). 
SCorrei has one state variable ( scwre lsv)  representing the SCor- 
re1 process (performing the stereo correlation, or idle) 
Lane has one state variable (lancsv) representing the model 
building process (modesing or idle) 
P3D has one state variable @3dsv) for its state (idle or computing 
the speed of the robot) and one for the way- points to visit ( u p  sa). 
Science has one state variable (sciencesv) for its statw (moni- 
toring interesting rocks or idle). 

For now, one will assume that the data themselves (e.g.. pictures, 
stereo correlated images, map) are available as a result of the associated 
tokens on each state variable (e&, the position value is available on 

keeping the consistency with-respect io the IDEA model. The reactive the considered token on r o b o L p o s i t i a i v )  
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Rg 5 
PARTIAL GROMlT MODEL (ATTRIBUTES AhD COMPkTlBiLITIES) 

B Fzm P m z p l e s  in Growut 

Now that we have the state variables of interest we can cons.der 
the compatibtlities which hnk them An IDEA model for Gromt is to 
capture the following first pmciples . The p3d token to reach a waypoints (on the wpsv )  has to end 

with a successful plan token on p3d sv. This plan token needs the 
waypoint token (on wp-sv), the current posiuon on posz tzasu  
and the model of the environment on Ianesv.  
lanesv- fwe  requlres a read which requues a stereo correlabon 
on s m r e i s v ,  . scmrelsv requues a pair of picture taken by the camera with a 
shot on the camera-sv timeline and requres that no other pictures 
should be taken una1 it is done with the s m e l  

.) the snencesv is started wth  a m a z t o r  token whch wdl 
ingger whenever an interesung rock is seen Tlus will requue 
stopping the robot (thus semng the speehre f to zero) and using 
the camera-sv to shot a picture (thus mterrupnng the whole 
nav:gabodmappmg process) Following t h ~ s  shut, a sczence token 
IS performed (while the camera is d e ) .  

One can see that by expressing causal and temporal relauonslups 
between these tokendamibutes we descnbe how the overall expenment 
may run It is std l  up to the reacbve planner to prcduce on each 
tlmeline the proper sequence of tokens resultmg m mterrial calls 111 

the modules One of the interestmg part III h s  problem is the handhg 
of the science achvlhes whch t@tly mteract wth the navigation Such 
interaction, when dealt with the classical procedural approach, LS the 
potential source of man) problems and pitfalls (deadlocks. cormpted 
data, etc) 

VI %{ODELING WITH 4 PLAN'iING HORIZOY 
The core of an IDEA control agent 1s the reactlre planner All LOU 

agents implemented so far in this and other applicaaons (e g , for the 
Personal Satelhte Assistant at NASA Ames) use the EUROPA planrung 
technology as its base, wth a smple heunsuc-guided chronologd 
backtrackmg engme as the search mecharusm used by the planner. The 
key control parameter on the speed of the reacuve planner is the le& 
of the honzon over whch the reactwe piannex is requested to b d d  a 
consistent plan. As the horizon becomes shorter, the slze of the reacnve 
planrung problem becomes smaller and, consequent!y, the size of the 
p l m g  search space and the maximum latency also become smaller 
In other words, the smaller the planmng honzon is, the more reacbve 
the IDEA conwool agent becomes. However, the honzon reducuons have 
a complementary effect on the complexlty of the domam model requued 
to acheve correct reacuve execubon. Dunng execnuon the agent could 
be requned to aciueve a goal (e g , a standby state) that can only be 
acheved over multlple reactwe p l m g  honzons Since the reacuve 
planner has only visibility on subgoals and tokens that occur dumg one 
p l m n g  honzon, the planrung model wlll have to mcorporate enough 
contextual informanon to "look ahead" to decisions that may be crucial 
to build a correct plan in future honzons and to achieve the future 
goal Therefore, the shorter the planmng honzon, the more contextual 
informahon each subgoal must contam on future goals and, ulumatelj, 
the more complex the declaratlve model becomes Tlus mcrease m 

complexity makes the modeling task more difficult and reduces the 
effectiveness of the mode!-based approach in capturing the structure 
of the domain when compared to encoding a number of pre-scripted 
control procedures. 

In rh is  section we present three different IDEA controllers for 
Gromit that illustrate the tradeoff between horizon duration, planner 
performance and model complexity. 

A. Minimol horizon model 
To minimize the size of the reactive pianner's search spdce. it is 

necessary to expand as little as possible of the plan in one execution 
cycle. One way to obtain this is to reduce the planning horizon to its 
minimum possible length, Le.. the granularity of the agent clock or one 
execution latency. We provided a Gromit model for a reactive planner 
operating over a one-latency planning horizon that fully duplicates 
the PRS controller in Fig. 2. Fig. 5 shows the timelines, tokens 
and some temporal relations representing a simplified version of this 
model. Given the one-latency horizon, the planner can only expand 
tokens to cover the next execution cycle by exploiting the model to 
select tokens and to decide about their consistency. Since no backward 
search can be employed, subgoals can be interpreted as commands 
and the temporal model must provide a complete description of the 
control infomation: for each execution contcxt the set of avdable 
commands must be explicitly specified. It is easy to see that the one- 
latency representation can become very complex. For instances. Hg. 6 
depicts a possible execution context in the Gromit model: scorrel 

we can find another context: scorrel ended during laneidle. Each 
of these contexts must be associated with a suitable conuul rule, 
e g ,  in the previous case we have scmrel(s) meets scorrelwait 
and scorrel(s) meets lane-read(s'). Such conditional constraints 
ramification is a typical phenomenon in the one-latency model: all  the 
possible choices a long horizon planner could explore, need to be folded 
back into the next agent clock tick. 

p& .:&;'e &p, f i s t  lnze--fU~e is st21 nrgce~sig~ _ - - _  c- In I_.- thr I__. wme fi--e 

Fig 6 
SC0RRE.I-FUSE IKTERACTION. 

B. Reactive Long Horizon 
The increase of model complexity due to one-latency "myopia" can 

be mitigated by having the reactive planner operate over a longer 
horizon. If the horizon is long enough a simplei model of the domah - -  

can be coded L? this context the control information is moch sio?pler 
since the context needed to achieve long term goals can be reconstructed 
on the fly during the planning search. This allows the model to be 
devoid of practically all search control information and to adhere more 
thoroughly to the principles of model-based declarative design. 

Fig. 7 depicts the timelines involved in the mapping and observing 
processes for a long horizon model for Gromit. Each mapping process 
is started once a goal, e.g. map(2) (here the activities are indexed by 
the cycle), is posted on the goal-map timeline and the reactive planner 
has to provide a plan for it within a latency. At the end of the latency, 
if the planner is successful, a control sequence for a mapping cycle is 
generated and the reactive planner can play in the role of an execution 
monitor checking for the consistency of the plan database. While the 
mapping activities are running, the next mapping cycle can be generated 
(e.g. Fig. 7 shows map(3) posted after camera(2)). Note here that the 
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Fig. 1 
GROMIT PLAN D T A B A S E :  LONG HORIZON. 

long horizon ensum a reactive goal-driven behavior, a d ,  since the 
plan database stores a temporally flexible plan, also event reactivity is 
ensured. Fig. 7 illustrates also the monitor token (see science timeline) 
triggering and posting the goal observe on the gcdobserve timeline. 
Once the goal is posted, the reactive planner has to find a consistent 
solution where the activities involved in both mapping and science are 
coordinated. Note that the observing and the mapping processes can 
be easily integrated in the long horizon model since their coordination 
is managed by the reactive planner, instead, in the one-latency model. 
the same inte,mtion d e t e ~ n e s  a multiplicative effects on the number 
of execution contexts. 

The reactive long horizon controller is based on a simple and 
natural domain representation and allows for a smooth and robust 
behavior. The main drawback is performance because plan generation 
is more complex and the latency. driven by the worst case cost of plan 
generation. is higher. 

C. Deliberative and Reactive Inreracnon 

One way to address the dualism between performance and ease of 
representation is to exploit “dead time” to look ahead while retaining 
the capability to react immediately if an event signals an exceptional 
situation. This approach was adopted by the Remote Agent Experi- 
ment [4]. In that case the deliberative planning horizon covered an 
entire day since the goal was to hade off between the achievement of 
several conflicting goals over a long period of time. A very sirmlar ap- 
proach can be used for short tern execution, appropriately au,gnenting 
the long-horizon model described above with the information needed 
to higger and execute long-horizon planning in a deliberative manner. 

We experimented with a rover model exploiting the cooperation 
between the declarative and the reactive planner, and we tested it in 
simulation. Our goal was to exploit the deliberative planner to pipeline 
the reactive activities and thus reduce the long horizon latency. This 
new model is obtained as a very simple extension of the long-horizon 
cne. The deiikmtive plmxer is assxiate2 with a !mg hor’zcn while t!e 
reactive planner works with a one-latency horizon so that some control 
rules are visible to the deliberative planner, but not to the reactive. In 
t h i s  setting the two planners can concurrently w o k  at different tasks. 
Fig. 8 depicts again the observe-mapping cycle in the new setting. In 
this case mapping m a p ( 2 )  is treated as a long term goal, while observe 
is a short term one. In this scenario, the reactive planner can provide a 
final plan for observe while the deliberative planner is still working at 
mup(2) ,  and the experiment can be executed without waiting for the 
camera. 

Reactive execution with deliberative pipelining can speed-up execu- 
tion in nominal conditions, when the predictions of the deliberative 
planner are not invalidated by exceptional execution events. If a fault 
occurs, then it has to be guaranteed that the system can remain in 
the off-nominal state during deliberative planning without endangering 

Fig 8 
L o s G  HORIZON DELIBERATIVE PLAWLNG 

me safep of t!!e rover. This requires tlle identi5cation of irmdiare 
szandby stares that can be reached in at most one step and can persist 
for at least the duration of a deliberative planner. This is similar to 
what was done in the Remote Agent Experiment where the response to 
B fmlr requLd the exectition of a standby script and the planner was 
activated only while the spacecraft was in standby. In the context of 
reactive, real-time execution using on-line planning as its sole reasoning 
method, the time to come up with the standby script is reduced to a 
single latency horizon. To keep modeling as simple as in the long 
horizon use therefore we have two possible ways. The first is to 
identify immediate standby states and model the requirement that the 
deliberative planner be invoked only if the standby state has been 
achieved. The second, in case that an immediate standby cannot be 
achieved for some fault conditions, is to resort to cached standby 
plans. The reactive planner would then load the cached plan and srart 
immediately executing its first step after a failure. Clearly, cached plans 
are analogous to procedural scripts but, in this approach, they will 
be only need to achieve standby. Therefore, it is expected that rheir 
number will be limited and their encoding will not require caching a 
large number of conditional information in the plan. The explosion of 
condi66nal information is a major limitation in achieving fully robust 
reactive scripts. 

Our work so far has identified a framework on which to conduct 
quantitative studies of the tradeoff between ease of pro,gamming. 
encoding of search conno1 and caching of limited standby plans. A 
full examination of these issues will be conducted in future work. 

VII. RESULTS 

The previously presented example has been implemented using a 
procedural executive. as well as the various IDEA models (one-latency 
and long horizon), and deployed on Gromit. Gromit has a dual Pentium 
III 1.3 Ghz CPU running Linux. As stated before, the real experiment 
was m0-W complex than the one presenred here and involved three 
o k r s  modules we did not describe in this parper (STEO, for stereo 
odometq, POM for position management to combine the classical and 
the stereo odometq and Plutine to handle the pan and tilt unit). AU 
the programs (Le. functional modules, IDEA etc.) are running onboard. 

We started the experiment using procedural reasoning, and by using 
a l l  available computational power, we were able to run the robot at 
roughly I O c d s  (the two most computationally intensive processing 
are the stereo correlation. and the stereo odomeuy) and to perform a 
“complete” cycle (i.e. the time between two subsequent camera shot) in 
about one second. The monitor activity of the science module would 
eigger the stop in a tenth of a second. 

The same experiment was then programmed in IDEA using a 
one-latency reactive model and, despite the difficulty of correctly 
implementing the model, we were able to run with a latency of 0.3 
seconds. The measurable reactivity of the system to new events (such 



as a science-nunitor triggering) was on the order of one second. 
Using a long horizon model and a ieactivc planner, able to produce a 
plan for the next cycle and change it when sciencemomtor requires 
it. we ran at  latency 1.5 seconds. The reacti&y =as then in the order of 
3 seconds. Note that the plan produced by the IDEA model presenred 
a better flexibility than the one produced by PRS (in particular. in 
the complete example, we were getting a better sequence leading to a 
camerashot while laneread was still executing). Moreover, although 
a subtle race condition in the PRS procedure could lead to a situatlon 
where one could take. a science picture w.We the navigation stereo 
correlation is still running, the IDEA based experiment did not have 
such problem. 

VIII. MODEL-BASED vs. PROCEDURAL EXECUTIVE 
We have demonstrated that one can perform planning and execution 

control using a model-based approach relying on temporal consnaints 
over some fairly low level mver control primitives. Still, beyond pure 
numerical results, we need to analyze how such approach compares and 
scales with classical approaches, in particular procedural executives. 
We consider a numbex of propemes and see how these two approaches 
compare: 

Validation and Verification The IDEL4 approach has a clear 
advantage on this issue. Indeed, using fonnal models to seneme 
plans af mn time is a guarantee that the model will always be 
satisfied. . Performance Doing a temporal model consistency checking has 
a high tag price, compared LO a simpie next step execution in a 
procedure. Still, performing such checking on a limited horizon 

three-lager architectures [17j and even goes beyond recent architecture 
such as CLAfwty I61 which aim at bridging the gap between the 
traditional decisional and functional layers. Stili in CLAIWty, one 
can end up with different components for planning (CASPER) and 
execution control (TDL). whde in IDEA, the use of the same modeling 
framework provides a seamless transition from planning to execution 
control. The RMPL (Reactive Model Based P r o - d n g )  approach 
by [I@. is another interesting framework suitable for Reactive Model- 
based control. RMPL is similar to reactive embedded languages such 
as Esterel, with the added ability of directly interacting with the piant 
state by reading and writing hidden state variables. Here it is the 
responsibility of the language execution kemel to map between hidden 
states and the plan variables. In IDEA, instead, the model is directly 
integrated with the functional level (drivers and sensors). Moreover, 
RMPL relies on HMM for mode estimation and uses abstract scripts 
which are to be instantiated by a model-based executive engine (litan). 
In this way the contIol system design is simplified but it is not clear 
how the cost of diagnosis/planning underneath can be controlled by the 

A model-based approach, such as IDEA, presents a number of advm- 
tages with respect to the ambitious goal of designing an architecture and 
systems supporting the deployment of autonomous systems. Compared 
to procedural executtve, it offers a more flexibie execution path and 
has a more robust behavior for non nominal situations. Validation and 
verification capabilities of such approach are superior to those intrinsic 
in procedural execution. Inte,ption with a high-level temporal planner 
is a!sc d by +e CCI?Y??OZ nc?c'-e!ing !,~zze. 
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provides some acceptable performance. . FTexibfity Procedure are usually hardcoding the execution pa&s, 
while the control sequence generated by the IDEA reactive (Jon: 
horizon) planner is -context dependent- and temporally flexible, 
hence we have a robust behavior associated with high parallelism. 
Error DetectiodRemvery In IDEA the declarative model implic- 
idy defines both nominal and non-nominal scenarios, thus is 
robust than a procedural represenration centered on a nominal 
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