
1
Model-based Executive Control through Reactive Planning

for Autonomous Rovers
Albert0 Finzi’ FClix I n s a n d Nicola Muscenola

7 Avenue du Colonel Roche.
F31077 Taiilouse Cedex 04, F m e

jinzi@ dis. uniromal. it felid& laasfr rnus@email.arc.nasagov

DIS, Universid of Roma L U S / C N R S NASA Ames
MS 269-2 La Sapienza

%a Sal&& 113, 00198 Roma, Italy Moffen field, CA 94035, USA

Abstmct-Tb& paper reports on the design and implementation of a
real-time executive for a mobile rover that uws a model-based, declarative
approach. The cnntrol system is based on the Intelligent Distriboted
Execution Architecture (IDEA), an approach to planning and execution
that provides a d f d repr&ntationaJ and computational framework
for an autonomous agent The basic hypothesis of IDEA is that a Luge
control system can be strnctured as a collection of interacting agen&
each with the same fundamental structure We show that planning and
real-time response a= compatible if the executive minimizer the size of
the planning problem. We detail the implementation of this approach on
an expioration rover (Gromit an RU’I ATRV Junior at NASA hies)
presenting different IDEA controllers of the same domain and comparing
them with more classical approachg. W e demonstrate that the approach
is scalable to complex coordination of functional modules needed for
autonomous navigation and exploration.

I. INTRODUCTION

As robotics research advances, planetary robotics is tackling in-
creasingly challenging mission scenarios. Rovers have demonsmted
autonomous traverse of s e v d kilometers in Man-analogue terrains [I]
and several field expeziments are showing increasing effectiveness in
autonomously placing scientific instruments on observation targets [2],
[3]. The increased level of autonomy opens the possibility of much
more productive planetary science missions than present ones (e.g.,
each of the Mars Exploration Rovers is expected to perform close
investigation of 6 to 12 targets in 90 days). It also promises a reduction
of workload and stress for the ground crew, two factors that make it
impossible to use the traditional highly manual commanding process
for the more complex fntm rovers.

The increased mission and rover complexity requires more capable
o n - h z d software. Not only individual modules must be more robust
and capable, but there must be a substantial increase in the ability to c e
ordinate these modules. This is a si,gh?cant problem since complexity
increases exponentially with the number of possible interaction among
complex modules. In complex operational scenarios the interactions
that need to be considered also increases because of the number of
concurrent anomalies that must be handled robustly.

Several current approaches to autonomy taclile the coordination
problem by separating the control software into multiple layers of
increasing levels of abstraction and coordination complexity [4], [SI.
For example, in a three-layered architecane the low level constitutes a
funcrioml &er. including control modules such as platform mobility
drivers and more complex functionalitis such as obstacle avoidance
and stereo-map construction. The middle layer is an erecufive that
can run a libmy of procedures &at monitor and activzte lower leve!
functional modules to achieve different types of mission goals (eg,
“go to location IC’ or “take a image mosaic of rock Y”). Finally, at
the highest level a planner takes several mission goals and schedules
them for execution over an extended period of time, determining which
execution prccedures need to be invoked to achieve the selected goals
and which resources can be allocated for their achievement a! what
time. Several current approaches to rover autonomy essentially follow
the previously described structure [6], [7].

The multi-layered approach has had some significant successes (e.g.,
the implementation of a highly autonomous spacecraft controller on
DSl [4]) but integration and testing is difficult because of the rechnolog-
ical diversity of the different layers. Focusing on the relation between
the planner and the executive, while the planner typically uses a declar-
ative cause-effect model of the all possible behavior of the system and

of the external environment, the executive has only a compiled view of
such models into its procedure library. Such procedures are optimized
to achieve the few behaviors that they encode. Ewceptional conditions
outside the covered behaviors must be caugh-by more drastic -fault
protection measures (e.g., putting the rover in standby and waiting for
external help from ground operators). The manual encoding of control
knowledge in the procedures has also the undesirable effect of making
the executive’s logc much more opaque than that of the planner. This
makes more difficult the testing, verification and validation with formal
methods such as model checking. Budding autonomy software that is
easier to validate is essential for its adoption as the on-board controller
of a planerary mission.

This paper describes the design and implementation of a real-time

state-of-the-art field exploration rovers. The executive is significantly
different than traditional procedural executives since it uses reactive
planning as its only run-time reasoning engine. Our executive c o n f m
to the IntelIigent Distributed Execution Architecture (IDEA) for the
development of multi-agent systems [SI. An IDEA control agent has a
model based on temporal planning operators that describes its internal
functioning and all of its communications with other agents or with the
controlled plant The model is interpreted at run time by a planner and
the next planned task is then executed. Our model of plan execution
is an extension of the one used in Remote Agent to execute high-level
plans [9]. Reliance on a planner for on-line decision making has been
traditionally excluded from consideration due to the apparent incom-
patibility of real-time responses with possibly exponential computation.
We show that planning and real-time response are not incompatible if
the executive minimizes the size of the plannigEproblem solved at each
execution cycle. Previous work [lo] demonsfrated the feisibilip of the
approach for a simple rover. In this paper we demonstrates that the
approach is scalable to the more complex coordination of functional
modules necessaq for the control of state-of-the-art rovers.

cxzuGve fOi GiU&, a mob;;e iObot .*iL\ zpa5i>uc5 qi‘v.&i;t tG

11. THE GROMIT DOMAIN

We illustrate our presentation with a simplified version of a real
world experiment running on Gromit, an RWI ATRV Jr at NASA
Ames. The mission of the robot is to visit a number of waypoints, into
an initially unknown rough environment, while monitoring interesting
w e t s on its path. The robot uses stereo vision to continuously h i i d
a model of the environment. Thus, considering the current position,
the targeted waypoints and the environment model, a 3D motion
planner continuously produces an arc najectory which avoids obstacles,
maximizes stability and tries to reach each waypoint in turn. At the
same time, a monitoring task senses the surrounding environment and
upon detecting an interesting target stops the robot and takes a picture
of it, tagged with its position for possible future study if the target is
considered worth reexamining by scientists.

The functional layer of Gromit has been implemented using the
functional modules built with GenoM that is one of the tool of the
LAAS Architecture [ll]. Modules are programs providing services to
a client upon request and producing reply and data (called a poster)
to fulfill the service. For each module used in Gromit (see Fig. 1,
arrows represent the “use” of the pointed poster) we briefly describe
the functional capabilities of the module, the request and the poster
(for more information on the implementation of each module sez [3]).

,

I I

1 I I

Fi. 1

THE FUNCTIONAL MODULES OF THE €-LE

RFLEX is interfaced with the low-level speed controller of the
wheels, to which it passes the speed available from a speed
reference found in a poster (in our example, the poster is produced
by either P3D or Science). It dso produces a poster containing
the position of the robot based on its odometry robotpos. Both
posters are produced/used at 25 Hz. To stop the robot one can set
up a poster with a null speed and instruct RFLEX to use it.
Camera takes a pair of stereo calibrated images upon the
camera-shot request and save them in the cameraimages
poster. This takes between 1 and 7 tenth of a second. These images
are ragged with the current position of the robot available in the
r o b o t p s poster.
Scorn1 takes the stereo pair in the cameraimages poster.
produces a stereo correlated h a g e and stores it in s c m e l image
upon receiving the s c a e l s c a e l request. scorrdimage is
tagged with the robdpos poster value. SCorrei takes a feu,
seconds (2-3) to complete. . Lane builds a model of the environment by aggregating subse-
quent cloud of 3D points produced by SCorrel. It can service two
requests lane-read to read the scorreLimage in an internal buffer
and lane-fuse to fuse the read scurreLimage in its map which
is available in the poster lanemap. It takes a second or so to
complete.
P3D is a rover navigation software using a method very dose to
the GESTALT rover navigation software operating on the Mars
Exploration Rovers [12]. It produces an arc trajectory which is
translated in a speed reference poster: p3dspeed. to try and
reach a waypoint, stili avoiding “obstacles- by making a stability
analysis in the environment available in the poster lane map. As
long as it has not reached a particular waypoint, this module runs
continuously and periodically (0.5 Hz) reevaluates the position and
the environment to produce a new arc, thus a speed reference used
by RFLEX to get the robot moving.
Science This last module monitors a particular condition of interest
to scientist (such as a detecting rocks with a particular features)
using a particular i n s m e n t In our case, when such condition.
arises while the robot is moving toward a waypoinf it stops (by
instructing RFLM to use Sciacespeed value which is null) and
takes a picture of the rock.

In order for all of these module to correctly operate as an inte-
grated system, we need to specify how to coordinate their concurrent
execution. In particular we need to specify which sequences of poster
production~’c0nsumptions performed by which modules yield a correct
overall rover behavior. The high-level description of rover operations
is the following. The robot continuously takes pictures of the terrain in
front of if performs a stereo correlation to extract cloud of 3D points,
merges these points in its model of environment and starts this process
again. In parallel, it continuously considers its current position, the next
waypoint to visit the obstacles in the model of the environment built
and produces a piece of trajectory, which result in a speed reference.
These two interdependent cyclic processes need to be synchronized.

. .- -

Last a ihird process intenupts regular way point visiting whenever an
interesting rock has been detected

111. A PROCEDURAL CONTROLLER

Fig. 2
EX4MPI.E OF A PRS PROCEDURE

The aforementioned scenario was ori@nally implemented using a
procedural executive (PRS : OpenPRS [13]). Fig. ’2 shows the top level
procedure used then to properly sequence the calls to the functional
modules to perform this autonomous navigation

PRS is composed of a set of tools and methods to represent and
execute plans and procedures. Procedural reasoning differs from other
commonly used knowledge representations as it preserves the control
information (i e . the sequence of actions and tests) embedded in
procedures or plans. while keeping some declarative aspects.

In PRS, each pladprocedure is self-contained: it describes in which
conditions it is applicable and the goals it achieves. This is particularly
well adapted to context based task refinement and to incremental robot
tasks. In OUT example, see Fig. 2, the top level procedure describes
the p r ~ p e ~ sequencing to perform the navigation and the science
experiment One can see on the iefi part the two synchronized loops
(camera/scorrel and lane readfuse), while on the right part, we have
the loop which monitor “rocks” and take picture of them.

Overall, the procedural approach does identify the control cycles but
fails to tie them to the xtual physics of the controlled devices and
thus to their states. This has negative effects on the ability to handle
failures and analyze the validity of the control loops under all possible
execution circumstances.

IV. IDEA ARCHITECTURE

IDEA 181 is a model-based autonomy architecture that supports the
development of large, multi-agent control systems. Unlike three-layered
architectures. each IDEA agent smctly adheres to a single formal virmal
machine and uses a model-based reactive planner as its core engine for
reasoning.

a) The IDEA fimral Machine: Fig. 3 gives an overview of the
components of an IDEA agent. The agent communicates with other
agents (either controlling or controlled by the agent) using an Agent
Relqv. The agent relay maintains the IDEA agent’s execution context
by sending or receiving message invocations (respectively, goals sent
to controlled agents or received from controlling agents) and receiving
or sen%- method return values (i.e. the achievement of a goal).

The execution context is synchronized with the internal state of a
Reacrive P h e r (RP). The RP is the control engine of the IDEA
agent: given a declarative (temporal) model of the agent activities
(i.e. the IDEA model maintained by the Model Manager) and the
execution context, it is responsible for generating the control procedure
invocations.

b) IDEA Execution Cycle: The Plan Runner (PR) executes a
simple, finite state machine that implements the sensefpldact cycle
of the IDEA agent. Each cycle must be completed within the execution
[arency (i.e. the time interval between two agent clock ticks). The PR
operates as follows:

Fg. 3
STRUCTURE OF AN IDEA AGENT

The PR wakes up according to an agent clock at the first time
after a message has been received from another agent or a wakeup
timer has gone off;
The state of the Agent Relay is updated with respect io the
information resulting fiom the wakeup event (e.8.. a procedure
has received a rem value);
The RP is invoked and the planner synchronizes its internal state
vith the Agent Re12y &vu$. the P h Service Layer coqatih!y
with the planning method used by the reactive planner;
When the RP terminates the agent relay loads the new context of
execution and sends appropriate messages to the external agents.
For example, if a procedure has been terminated by the reactive
planner, the corresponding return value (determined by the RP)
is sent to the controlling agenc
The RF’ is invoked to determine what is the next time at which
execution is expected to occur (barred any external communica-
tion). The time is set in the Ziming Services module as the next
wakeup time for &e agenc

6) The plan mmer goes to sleep and waits for an external message
or the expiration of a wakeup timer.

ci Amibures, Tokens and ComparibiZifies: Although IDE.4 does
not prescribe the format of the intern31 organization of the W, however,
its internal functioning must satisfv a declarative Model described
in a standard modeling language provided by IDEA. This model
assumes a semantic that is equivalent to that of the ELROP.4 planning
technology. [13].

The IDEA model represents the system as a set of anribures whose
state changes over the time. Each attribute, called sture vanibie,
represents a concurrent thread, describing its history over time as a
sequence of states and activities (see Fig. 5). Both states and activities
are represented by temporal intervals called tokens. For example, given
a rover domain, position is a possible amibute, going(z, y) and at(y)
are tokens representing, respectively, an activity and a state. The interval
constraints among all possible values that must occur among tokens for
a plan to be legal are organized in a set compatibilities that absolve the
same function than temporally scopisd operates-in temporal planning
(see [53. A compatibility is a conjunction of relations each defined by:
i. equality constmints between parameter variables of different tokens;
ii. simple temporal constraints on the start and end variables. The latter
are specified in terms of mehic version of temporal relations a la
Allen [16]: meets, met-by, m t a i n e d b y , contains, beforejd. D] ,
a f t e r [d , D] , starts, ends, etc. For instance, going(z, y) meets at(y),
and going(z,y) met-by atjz) s e f i e s that each going interval is
followed and preceded by a state at.

dl Plan Darabase: The reactive planner continuously updates a
data structure, called P h n Database (PD) (see Fig. 41, which represents
the I/O and intemal state of the agent The PD describes the past and
the future execution state of the agent as a set of rimelines (one for each
state variable). A timeline represents the history of a state variable over
a period of time. Each history is a sequence of tokens built by the RP

planning is to refine the plan database checking for the consistency of
the PD wit!! respect to the current execution state and providing an
execution plan up to a ploming horiyon. Given a timeline, the past
history represents ended acti\+ties/states (whose st3 l t and end times
are already defined), instead the future history is a complete plan of
activities with a maximal temporal flexibility: the temporal variables
are partially grounded to allow for on-line binding of time values.
For example, gven the rover example, a future history could be: start
gmngja. d) within i3: lo], arrive ut(d) within [4; 101, start going(d, e)
within 101. Note that even though the plan is flexible it can become
inconsistent with respect to the execution context. When the RP detects
this inconsistency, the future history is removed from the timelines and
a new plan is to be generated within the execution latency.

e) Reactive and Deliberative Planning: In IDEA reactive plan-
ning determines the next action on the basis of sensory input and time
lapse wakeups. More complex problem solving (e.g., long-term task
planning) typically requires more time than the latency allows. IDEA
provides a rich environment for integrating any number of deliberative
planners within the core execution cycle (Fig. 4). Different specialized
planners can cooperate in building a single plan coherently with the
agent’s model. Also in IDEA the activation for a deliberative planner
is progammed in the model. This can be obtained by modeling the
pianner like any other subsystem, i.e., by specifying a timeline that can
take tokens whose execution explicitly invokes the planner. This makes
it possible to appropriately plan the time at which deliberate planning
can occur compatibly with the intemal and external state modeled by
t!e agezt.

I Database dlerrmcvn i o r a d I
*II .<I ____

Fxz A

&ACXl\.E DELIBERATIVE LVYERACTION

v A MODEL-BASED CONTROLLER FOR GROMIT
The IDEA Grormt executive is a smgle IDEA agent that operates

as controlling agent for the functional modules of Gromit For each of
them we shall consider the “visible” state vanables of interest and the
associated compahbifihes (See Fig 5)

A Annbutes and Tokens
RFJ-EX has a state variable for the position of the robot
pos i t i uxsv , with each token representing a specific robot posi-
tion, and another one for the speed control of the robot speed sv.
with each token representing -the reference speed passed to the
wheels controller.
Camera has one state variable (camerasv) representing the
camera status (taking a picture, or idle).
SCorrei has one state variable (scwre lsv) representing the SCor-
re1 process (performing the stereo correlation, or idle)
Lane has one state variable (lancsv) representing the model
building process (modesing or idle)
P3D has one state variable @3dsv) for its state (idle or computing
the speed of the robot) and one for the way- points to visit (u p sa).
Science has one state variable (sciencesv) for its statw (moni-
toring interesting rocks or idle).

For now, one will assume that the data themselves (e.g.. pictures,
stereo correlated images, map) are available as a result of the associated
tokens on each state variable (e&, the position value is available on

keeping the consistency with-respect io the IDEA model. The reactive the considered token on r o b o L p o s i t i a i v)

mb- 5 - *

ClUERI ---
XORaa
rmrclp

VWE
-.a

p91

m-=
BLa

@_-

-n
I '

>

Rg 5
PARTIAL GROMlT MODEL (ATTRIBUTES AhD COMPkTlBiLITIES)

B Fzm P m z p l e s in Growut

Now that we have the state variables of interest we can cons.der
the compatibtlities which hnk them An IDEA model for Gromt is to
capture the following first pmciples . The p3d token to reach a waypoints (on the wpsv) has to end

with a successful plan token on p3d sv. This plan token needs the
waypoint token (on wp-sv), the current posiuon on posz tzasu
and the model of the environment on Ianesv.
lanesv- fwe requlres a read which requues a stereo correlabon
on s m r e i s v , . scmrelsv requues a pair of picture taken by the camera with a
shot on the camera-sv timeline and requres that no other pictures
should be taken una1 it is done with the s m e l

.) the snencesv is started wth a m a z t o r token whch wdl
ingger whenever an interesung rock is seen Tlus will requue
stopping the robot (thus semng the speehre f to zero) and using
the camera-sv to shot a picture (thus mterrupnng the whole
nav:gabodmappmg process) Following t h ~ s shut, a sczence token
IS performed (while the camera is d e) .

One can see that by expressing causal and temporal relauonslups
between these tokendamibutes we descnbe how the overall expenment
may run It is std l up to the reacbve planner to prcduce on each
tlmeline the proper sequence of tokens resultmg m mterrial calls 111

the modules One of the interestmg part III h s problem is the handhg
of the science achvlhes whch t@tly mteract wth the navigation Such
interaction, when dealt with the classical procedural approach, LS the
potential source of man) problems and pitfalls (deadlocks. cormpted
data, etc)

VI %{ODELING WITH 4 PLAN'iING HORIZOY
The core of an IDEA control agent 1s the reactlre planner All LOU

agents implemented so far in this and other applicaaons (e g , for the
Personal Satelhte Assistant at NASA Ames) use the EUROPA planrung
technology as its base, wth a smple heunsuc-guided chronologd
backtrackmg engme as the search mecharusm used by the planner. The
key control parameter on the speed of the reacuve planner is the le&
of the honzon over whch the reactwe piannex is requested to b d d a
consistent plan. As the horizon becomes shorter, the slze of the reacnve
planrung problem becomes smaller and, consequent!y, the size of the
p l m g search space and the maximum latency also become smaller
In other words, the smaller the planmng honzon is, the more reacbve
the IDEA conwool agent becomes. However, the honzon reducuons have
a complementary effect on the complexlty of the domam model requued
to acheve correct reacuve execubon. Dunng execnuon the agent could
be requned to aciueve a goal (e g , a standby state) that can only be
acheved over multlple reactwe p l m g honzons Since the reacuve
planner has only visibility on subgoals and tokens that occur dumg one
p l m n g honzon, the planrung model wlll have to mcorporate enough
contextual informanon to "look ahead" to decisions that may be crucial
to build a correct plan in future honzons and to achieve the future
goal Therefore, the shorter the planmng honzon, the more contextual
informahon each subgoal must contam on future goals and, ulumatelj,
the more complex the declaratlve model becomes Tlus mcrease m

complexity makes the modeling task more difficult and reduces the
effectiveness of the mode!-based approach in capturing the structure
of the domain when compared to encoding a number of pre-scripted
control procedures.

In rh is section we present three different IDEA controllers for
Gromit that illustrate the tradeoff between horizon duration, planner
performance and model complexity.

A. Minimol horizon model
To minimize the size of the reactive pianner's search spdce. it is

necessary to expand as little as possible of the plan in one execution
cycle. One way to obtain this is to reduce the planning horizon to its
minimum possible length, Le.. the granularity of the agent clock or one
execution latency. We provided a Gromit model for a reactive planner
operating over a one-latency planning horizon that fully duplicates
the PRS controller in Fig. 2. Fig. 5 shows the timelines, tokens
and some temporal relations representing a simplified version of this
model. Given the one-latency horizon, the planner can only expand
tokens to cover the next execution cycle by exploiting the model to
select tokens and to decide about their consistency. Since no backward
search can be employed, subgoals can be interpreted as commands
and the temporal model must provide a complete description of the
control infomation: for each execution contcxt the set of avdable
commands must be explicitly specified. It is easy to see that the one-
latency representation can become very complex. For instances. Hg. 6
depicts a possible execution context in the Gromit model: scorrel

we can find another context: scorrel ended during laneidle. Each
of these contexts must be associated with a suitable conuul rule,
e g , in the previous case we have scmrel(s) meets scorrelwait
and scorrel(s) meets lane-read(s'). Such conditional constraints
ramification is a typical phenomenon in the one-latency model: all the
possible choices a long horizon planner could explore, need to be folded
back into the next agent clock tick.

p& .:&;'e &p, f i s t lnze--fU~e is st21 nrgce~sig~ _ - - _ c- In I_.- thr I__. wme fi--e

Fig 6
SC0RRE.I-FUSE IKTERACTION.

B. Reactive Long Horizon
The increase of model complexity due to one-latency "myopia" can

be mitigated by having the reactive planner operate over a longer
horizon. If the horizon is long enough a simplei model of the domah - -

can be coded L? this context the control information is moch sio?pler
since the context needed to achieve long term goals can be reconstructed
on the fly during the planning search. This allows the model to be
devoid of practically all search control information and to adhere more
thoroughly to the principles of model-based declarative design.

Fig. 7 depicts the timelines involved in the mapping and observing
processes for a long horizon model for Gromit. Each mapping process
is started once a goal, e.g. map(2) (here the activities are indexed by
the cycle), is posted on the goal-map timeline and the reactive planner
has to provide a plan for it within a latency. At the end of the latency,
if the planner is successful, a control sequence for a mapping cycle is
generated and the reactive planner can play in the role of an execution
monitor checking for the consistency of the plan database. While the
mapping activities are running, the next mapping cycle can be generated
(e.g. Fig. 7 shows map(3) posted after camera(2)). Note here that the

, -

Fig. 1
GROMIT PLAN D T A B A S E : LONG HORIZON.

long horizon ensum a reactive goal-driven behavior, a d , since the
plan database stores a temporally flexible plan, also event reactivity is
ensured. Fig. 7 illustrates also the monitor token (see science timeline)
triggering and posting the goal observe on the gcdobserve timeline.
Once the goal is posted, the reactive planner has to find a consistent
solution where the activities involved in both mapping and science are
coordinated. Note that the observing and the mapping processes can
be easily integrated in the long horizon model since their coordination
is managed by the reactive planner, instead, in the one-latency model.
the same inte,mtion d e t e ~ n e s a multiplicative effects on the number
of execution contexts.

The reactive long horizon controller is based on a simple and
natural domain representation and allows for a smooth and robust
behavior. The main drawback is performance because plan generation
is more complex and the latency. driven by the worst case cost of plan
generation. is higher.

C. Deliberative and Reactive Inreracnon

One way to address the dualism between performance and ease of
representation is to exploit “dead time” to look ahead while retaining
the capability to react immediately if an event signals an exceptional
situation. This approach was adopted by the Remote Agent Experi-
ment [4]. In that case the deliberative planning horizon covered an
entire day since the goal was to hade off between the achievement of
several conflicting goals over a long period of time. A very sirmlar ap-
proach can be used for short tern execution, appropriately au,gnenting
the long-horizon model described above with the information needed
to higger and execute long-horizon planning in a deliberative manner.

We experimented with a rover model exploiting the cooperation
between the declarative and the reactive planner, and we tested it in
simulation. Our goal was to exploit the deliberative planner to pipeline
the reactive activities and thus reduce the long horizon latency. This
new model is obtained as a very simple extension of the long-horizon
cne. The deiikmtive plmxer is assxiate2 with a !mg hor’zcn while t!e
reactive planner works with a one-latency horizon so that some control
rules are visible to the deliberative planner, but not to the reactive. In
t h i s setting the two planners can concurrently w o k at different tasks.
Fig. 8 depicts again the observe-mapping cycle in the new setting. In
this case mapping m a p (2) is treated as a long term goal, while observe
is a short term one. In this scenario, the reactive planner can provide a
final plan for observe while the deliberative planner is still working at
mup(2) , and the experiment can be executed without waiting for the
camera.

Reactive execution with deliberative pipelining can speed-up execu-
tion in nominal conditions, when the predictions of the deliberative
planner are not invalidated by exceptional execution events. If a fault
occurs, then it has to be guaranteed that the system can remain in
the off-nominal state during deliberative planning without endangering

Fig 8
L o s G HORIZON DELIBERATIVE PLAWLNG

me safep of t!!e rover. This requires tlle identi5cation of irmdiare
szandby stares that can be reached in at most one step and can persist
for at least the duration of a deliberative planner. This is similar to
what was done in the Remote Agent Experiment where the response to
B fmlr requLd the exectition of a standby script and the planner was
activated only while the spacecraft was in standby. In the context of
reactive, real-time execution using on-line planning as its sole reasoning
method, the time to come up with the standby script is reduced to a
single latency horizon. To keep modeling as simple as in the long
horizon use therefore we have two possible ways. The first is to
identify immediate standby states and model the requirement that the
deliberative planner be invoked only if the standby state has been
achieved. The second, in case that an immediate standby cannot be
achieved for some fault conditions, is to resort to cached standby
plans. The reactive planner would then load the cached plan and srart
immediately executing its first step after a failure. Clearly, cached plans
are analogous to procedural scripts but, in this approach, they will
be only need to achieve standby. Therefore, it is expected that rheir
number will be limited and their encoding will not require caching a
large number of conditional information in the plan. The explosion of
condi66nal information is a major limitation in achieving fully robust
reactive scripts.

Our work so far has identified a framework on which to conduct
quantitative studies of the tradeoff between ease of pro,gamming.
encoding of search conno1 and caching of limited standby plans. A
full examination of these issues will be conducted in future work.

VII. RESULTS

The previously presented example has been implemented using a
procedural executive. as well as the various IDEA models (one-latency
and long horizon), and deployed on Gromit. Gromit has a dual Pentium
III 1.3 Ghz CPU running Linux. As stated before, the real experiment
was m0-W complex than the one presenred here and involved three
o k r s modules we did not describe in this parper (STEO, for stereo
odometq, POM for position management to combine the classical and
the stereo odometq and Plutine to handle the pan and tilt unit). AU
the programs (Le. functional modules, IDEA etc.) are running onboard.

We started the experiment using procedural reasoning, and by using
a l l available computational power, we were able to run the robot at
roughly I O c d s (the two most computationally intensive processing
are the stereo correlation. and the stereo odomeuy) and to perform a
“complete” cycle (i.e. the time between two subsequent camera shot) in
about one second. The monitor activity of the science module would
eigger the stop in a tenth of a second.

The same experiment was then programmed in IDEA using a
one-latency reactive model and, despite the difficulty of correctly
implementing the model, we were able to run with a latency of 0.3
seconds. The measurable reactivity of the system to new events (such

as a science-nunitor triggering) was on the order of one second.
Using a long horizon model and a ieactivc planner, able to produce a
plan for the next cycle and change it when sciencemomtor requires
it. we ran at latency 1.5 seconds. The reacti&y =as then in the order of
3 seconds. Note that the plan produced by the IDEA model presenred
a better flexibility than the one produced by PRS (in particular. in
the complete example, we were getting a better sequence leading to a
camerashot while laneread was still executing). Moreover, although
a subtle race condition in the PRS procedure could lead to a situatlon
where one could take. a science picture w.We the navigation stereo
correlation is still running, the IDEA based experiment did not have
such problem.

VIII. MODEL-BASED vs. PROCEDURAL EXECUTIVE
We have demonstrated that one can perform planning and execution

control using a model-based approach relying on temporal consnaints
over some fairly low level mver control primitives. Still, beyond pure
numerical results, we need to analyze how such approach compares and
scales with classical approaches, in particular procedural executives.
We consider a numbex of propemes and see how these two approaches
compare:

Validation and Verification The IDEL4 approach has a clear
advantage on this issue. Indeed, using fonnal models to seneme
plans af mn time is a guarantee that the model will always be
satisfied. . Performance Doing a temporal model consistency checking has
a high tag price, compared LO a simpie next step execution in a
procedure. Still, performing such checking on a limited horizon

three-lager architectures [17j and even goes beyond recent architecture
such as CLAfwty I61 which aim at bridging the gap between the
traditional decisional and functional layers. Stili in CLAIWty, one
can end up with different components for planning (CASPER) and
execution control (TDL). whde in IDEA, the use of the same modeling
framework provides a seamless transition from planning to execution
control. The RMPL (Reactive Model Based P r o - d n g) approach
by [I@. is another interesting framework suitable for Reactive Model-
based control. RMPL is similar to reactive embedded languages such
as Esterel, with the added ability of directly interacting with the piant
state by reading and writing hidden state variables. Here it is the
responsibility of the language execution kemel to map between hidden
states and the plan variables. In IDEA, instead, the model is directly
integrated with the functional level (drivers and sensors). Moreover,
RMPL relies on HMM for mode estimation and uses abstract scripts
which are to be instantiated by a model-based executive engine (litan).
In this way the contIol system design is simplified but it is not clear
how the cost of diagnosis/planning underneath can be controlled by the

A model-based approach, such as IDEA, presents a number of advm-
tages with respect to the ambitious goal of designing an architecture and
systems supporting the deployment of autonomous systems. Compared
to procedural executtve, it offers a more flexibie execution path and
has a more robust behavior for non nominal situations. Validation and
verification capabilities of such approach are superior to those intrinsic
in procedural execution. Inte,ption with a high-level temporal planner
is a!sc d by +e CCI?Y??OZ nc?c'-e!ing !,~zze.

ACKNOWLEDGMENT

script.

- . .

This research was carried out while Albert0 Finzi was a FuIbright
v~siting Researcher at Nasa Ames.

provides some acceptable performance. . FTexibfity Procedure are usually hardcoding the execution pa&s,
while the control sequence generated by the IDEA reactive (Jon:
horizon) planner is -context dependent- and temporally flexible,
hence we have a robust behavior associated with high parallelism.
Error DetectiodRemvery In IDEA the declarative model implic-
idy defines both nominal and non-nominal scenarios, thus is
robust than a procedural represenration centered on a nominal

REFERENCES
[I] D. W e t m e e n , M. B. Bas. B. Shamah. I. Tz~. P Tompkins, c. u r n & M. D.

Wagner, and W. R. L. Wmaker. "Fmt expcrimcntin m-s).nchromxlsexplorauon."
in Inremrionnl Confennce on Roborus and Aylomr io~ May 2002. pp. 3501-
3507.

121 L. Pedcrseh R. Sament M. Bualat C. Kunr S. Lce. and A. Wriht. Sindeecvclc
I -~ ..

scenario. In th; procedd &,muer, each si&ons
mllSt be explicitly captured in some particular decision points
during the course of execution. For example, the PRS controller

inmumcnt dcploynkt for man mvm:' in Pmceedimgs of i-SAIRAS. May 2003.
I31 S . Laooix. A. Mallet D. Bonnafws, G. B a d , S. Flcury. M. Herrb, and R Chatila,

''Auumomous mvcr navigation on unknown tcmns. fuocuons and integranoh"
Inremtional Journal of Robotics Research. 2003.

depicted in Fig. 2 is not robust: a came& shot beionping he
science cycle could be allowed during the stereo correlation. In
the IDEA context. instead, this behavior violates some explicit
cons-ts for the no& execution. hence the has to
react to keep the plan database The Planner actiiiv
enables for smooth recoveries reducing the need for entering a

[41 N. Muscettola, P. P. Sayak B. PeU. and B. C. Wdliams. *Remote agent: To boldty
go where no .%l systcm has gone bcfore:'Amfiul Inrel!igme. vol. 103. no. 1-2.
pp. 5-47. 1998.

[SI R. P Bowxl. J. Firby. E. Gat D. Konenkamp. D. P !&tier, and M. G. Slack
"Expenences with an arch~temue for intelligenf reactive agcnts: Comraim,
vol. 9. no. 2 3 . pp. 237-256, April 1997.

I61 R. Volpe, I. Nesnas. T. E d i & D. MUQ. R. P e m , and H. Das, 7 h e claraty
archirecrure for mhotic autonomv," in IEEE 2WI Aerospace Conference. March

standby state.
Ease of programming The relative success of procedural exec-
utives comes in part from the ease they offer at the first level to
express procedures, plans, scripts. This is a very natural way to
encode a process which is usually thought in the same way by
engineers and pro,orammeIs. Meanwhile expressing planning and
execution control logic using a temporal model can be difficult, in
particular because of the limited horizon effects discussed in this
Paper.
Expandability/Compbility The experimental development of
robust rover execution scei~atios often requkes addiig new cz-
pabilities or processing on an existing system. Thus the need
to compose a new functionality in an existing control system.
On this aspecs the procedural executive performs poorly, as one
needs to reassess the consequences of the possible interactions
between the new functionality and the preexisting system. IDEA
in such situation can focus on the state variables and the related
compatibilities which interact between the new added functionality
and the system.

IX. CONCLUSION
We have presented a rover executive that uses IDEA, a novel architec-

ture paradism which proposes a model based multi-agent organization
to deploy embedded autonomous systems such as mobile robots. Such
approach is quite different from the execution layer of traditional

2001.
F] C. Chuuinani F. Fisher. D. Games. T. Esflin. and S . Schaffer, "AT approach to

Autonomous Operations for Remote Mobile Robot~c Eqlmuon." in IEEE ZW3
Aemspace Conference. March 2003.

181 N. Musceuola. G. A. Doms. C. Fry. R. Levinso% and C. PlaunL "Idea: Planning
at the core of autonomous reamve agents," in Proceedings of ;he 3rd Inrernatiod
NASA Workhop on Planning and Scheduling for Space. October 2002.

191 N. Musccmla. P. Moms. B. PeU, and B. Smith, "Issues in temporal m m g
for autonomous conml systems:' in Proceedings of Agmrs'98. K. P. S y m and
M. Wboldridge. Eds. New Yo& ACM Press. 9-13. 1998. pp. 362-368.

[lo] S. Lcmai. B. Dias, and N. Muscenola, ".a rea-nme rover executive based on model-
bascd d v e planning:' in Proceedings of lnrrmnrional Cony>mnce on ildvmced
Robotics. June 2003.

[I l l R Alami R Chaula. S. Fleury, M. Ghallab. and F. Ingrand, -An architemm for
autonomy;' Inlcmalional J o u d of Roborics Resenrch Special Issue on Inregrazed
Airhirecruns for Robor Gnrml and Programming, voL 17, no. 4. pp. 315337,
April 1998.

[I21 S. G o l m , M. W. Maimonc, and L. Mnnhies, "Sterco vision and rover navigation
software for planetary explodon," in IEEE 2W2 Aemspce Confcmnce. Mzch
2002.

[131 F. Ingrand, R. Chaula R Alami, and F. Robcn "'F'RS: 4 High Level Supenision
and Control Language for Autonomous Mobile Robon," in IEEE Inrem.onal
Confemue on Roborics and Auromrim. Mineapolis. USA. 1996.

[I41 A. J. Jeremy Frank, "Constraint-basedamibute and interval planmng:' Comraintr.
vol. 8. no. 4, pp. 339-364. October 2003.

[I51 A. K Jonsson. P H. Moms. N. Muscenola, K. Rajan. and B. D. Smith. "Planning
in metplanetary spacc: Theory and practice:' in Anifcial InreUtgcnce Planning
S>sremr, ZOOO, pp. 177-186.

I161 J. -4Ilen. Ib interval-basedreprrsenrarionof temporal knowledge." in IJCAI, 1981.
[I71 E. Gat. "on three-layer architectures: tn .4m$ml Imelligence and Mobile Robors.

[I81 B. Wiliams. M. Ingham. S. Chung, P. Elliou M. Hofbaur, and G. SuUivan, "Model-
MIT/AAAl Press. 1997.

based p r o - d n g of fault-aware systems," AI .Vugazine. Wmter 2003.

