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Abstract— Acquiring models of the environment belongs to
the fundamental tasks of mobile robots. In the last few years
several researchers have focused on the problem of simultaneous
localization and mapping (SLAM). Classic SLAM approaches
are passive in the sense that they only process the perceived
sensor data and do not influence the motion of the mobile robot.
In this paper we present a novel and integrated approach that
combines autonomous exploration with simultaneous localization
and mapping. Our method uses a grid-based version of the
FastSLAM algorithm and at each point in time considers actions
to actively close loops during exploration. By re-entering already . . oA
visited areas the robot reduces its localization error and this 4
way learns more accurate maps. Experimental results presented
in this paper illustrate the advantage of our method over pervious
approaches lacking the ability to actively close loops.
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[. INTRODUCTION >~ start £
In general, the task of acquiring models of unknown en-

vironments requires solutions to three sub-tasks, which &rg: 2. This figure shows two maps obtained by a real world experiment
' erformed at Sieg Hall, University of Washington. The top image depicts an

mapping, localization and control (see Figure 1). Mapping &periment in which the robot drove around the loop once and then entered

the problem of integrating the information gathered with thige long corridor. As can be seen robot was unable to localize itself correctly
robot's sensors into a given representation. Localization is tPFéore entering the corridor. This leaded to a big error in the orientation of

. . . . thé horizontal corridor. If the robot did active loop-closing and re-visited the
problem of estimating the position of the robot. Finally, thgyp it typically performed much better (bottom image).

control problem involves the question of how to steer a vehicle

in order to efficiently guide it to a desired location. guiding the robot efficiently through the environment to build
The diagram also shows the overlapping areas of th€s&nan The center area of Figure 1 represents the so-called

sub-tasks. Simultaneous localization and mapping, also cal|gghgrated approaches which simultaneously address mapping,
SLAM, is the problem of building a map based on a positiop -5jization and motion control.

estimation and simultaneously localizing the robot within the

tmhapr cg) ntsiruclted tiscr’1 fa\;itﬁﬁt'\{ﬁ I?Tc]:ahz?tminm srec;:‘/ks trt10 gwqg combine a SLAM algorithm with an exploration procedure.
€ robot fo locations € map 10 Improve the posg; .. exploration strategies try to explore unknown terrain as

estimation. In contrast to this, exploration approaches focus]%gt as possible, they focus on reducing the amount of unseen

SLAM area and thus avoid repeatedly traveling through known areas.
This strategy, however, is suboptimal in the context of the

A naive approach to realize an integrated technique could be

apping localization SLAM problem, because the robot typically needs to re-visit
places to localize itself again. A good pose estimation is nec-
essary to make the correct data association, i.e., to determine
integrated if the current measurements fit into the map built so far. If
approaches the robot uses an exploration strategy that avoids multiple
visits of the same place, the probability of making the correct
. active associations is reduced. This indicates that combinations of
exploration localization

exploration strategies and SLAM algorithms should consider
whether it is worth re-entering already covered spaces or to
explore new terrain. It can be expected that a system which
takes this decision into account can improve the quality of the
Fig. 1. Sub-tasks that need to be solved by a robot to acquire accurate mofiesulting map.

of the environment [10]. The overlapping areas represent combinations OfFigUl’e 2 gives an example that illustrates Why an integrated
these sub-tasks. approach doing active place re-visiting provides better results

motion control



than approaches that do not consider re-entering known terregduction of the pose uncertainty. This approach is similar
during the exploration phase. In the situation shown in the the work done by Feder et al. [5] who consider local
upper image the robot traversed the loop just once. The roligcisions to improve the pose estimate during mapping. Both
was not able to correctly determine the angle between tteehniques, however, rely on the fact that the environment
loop and the straight corridor, because it did not collecbntains landmarks that can be uniquely determined during
enough data to accurately localize itself. The second mampping.
shown in the lower image has been obtained with the approachn contrast to this, the approach presented in this paper
described in this paper after the robot traveled twice arounthkes no assumptions about distinguishable landmarks in the
the loop before entering the corridor. As can be seen from thavironment. It uses raw laser range scans to compute accurate
figure, this reduces the orientation error from approximatelygrid maps. It considers the utility of re-entering known parts of
degrees (top image) tbdegree (bottom image). This exampleghe environment and following an encountered loop to reduce
illustrates that the capability to actively close loops durinthe uncertainty of the robot in its pose. This way the resulting
exploration allows the robot to reduce its pose uncertaintyaps become highly accurate.
during exploration and thus to learn more accurate maps.
The contribution of this paper is an integrated algorithm for I1l. GRID-BASED FASTSLAM
generating trajectories to actively close loops during SLAM. To estimate the map of the environment we use a highly
Our algorithm uses a grid-based version of the FastSLARfficient variant of the FastSLAM algorithm [11] which itself
algorithm and explicitely takes into account the uncertaint§ an extension of the Rao-Blackwellized particle filter for
about the pose of the robot during the exploration taskimultaneous localization and mapping proposed by Murphy
Additionally it avoids that the robot becomes overly confiderfit @l. [3]. The key idea of the Rao-Blackwellized particle filter
in its pose when actively closing loops which is a typicdlor SLAM is to estimate a posterigi(z1.¢ | z1.¢, uo:t—1) about
problem of particle filters in this context. As a result we obtaiRotential trajectoriesy.; of the robot given its observations
more accurate maps compared to combinations of SLAM with:: and its odometry measurements.;—; and to use this
greedy exploration. posterior to compute a posterior over maps and trajectories:
This paper is organized as follows. After the discussion of
related work in the following section, we explain the idea of
grid-based FastSLAM, the SLAM algorithm used throughout p(m | 21, 21:)P(1e | 210, voi-1)- @)
this work. In Section IV we present our integrated explorationhis can be done efficiently, since the quantipym |
technique. We furthermore describe how to take into accoupt, Z1.4, ug—1) can be computed analytically oneg.; and
the pose uncertainty and how to actively close loops. Section,Y, are known. To estimate the posterigtry.; | 1.4, uos—1)
then presents experiments carried out on real robots as Weler the potential trajectories FastSLAM uses a particle filter
as in simulation. in which an individual map is associated to every sample.
Each map is constructed given the observatiens and the
trajectoryzx;.; represented by the corresponding particle. Dur-
This paper presents an integrated technique to simultanegys resampling, the weight;, of each particle is proportional
localization, mapping, and exploration. Several previous agy the likelihoodp(z; | m,z;) of the most recent observation
proaches to SLAM and mobile robot exploration are relevargiven the mapm associated to this particle and the pase
In the context of exploration, most of the techniques presentgflthe corresponding trajectory.
so far focus on generating motion commands that minimizeThe FastSLAM algorithm used throughout this paper com-
the time needed to cover the whole terrain [1, 9, 17, 18ytes grid maps. It applies a scan-matching procedure to
Other methods seek to optimize the view-points of the robot ggmpute highly accurate odometry data and uses this corrected
maximize the expected information gain and to minimize thgjometry in the prediction step of the particle filter [8]. This
Uncertainty of the robot about grld cells [6, 14] Most of theS\ﬁay the number of partides can be reduced so that maps
techniques, however, assume that the location of the rok@teven large environments can be constructed online. In the
is known during exploration. In the area of SLAM the vasfollowing section we describe how the FastSLAM algorithm
majority of papers focuses on the aspect of state estimationf@sgrid maps can be extended to actively close loops during
well as belief representation and update [2, 3, 4, 7, 8, 11, Xploration.
15]. These techniques, however, are passive and only consume
incoming sensor data without explicitely generating controls. V- EXPLORATION WITH ACTIVE LOOP-CLOSING FOR
Recently, some techniques have been proposed which ac- FASTSLAM
tively control the robot during simultaneous mapping and During FastSLAM, whenever the robot explores new terrain,
localization. For example, Makarenko et al. [10] extract landdl samples have more or less the same importance weight,
marks out of laser range scans and use an Extended Kalmsaote the most recent measurement is typically consistent with
Filter to solve the SLAM problem. They furthermore introduc¢he part of the map constructed from the immediately preced-
a utility function which trades-off the cost of reaching frontiering observations. As a result, the uncertainty of the particle
with the utility of selected positions with respect to a potentidilter increases. As soon as it re-enters known terrain, however,

p(ﬂhzt,m | Z1;t,U0:t—1) =
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Fig. 3. Evolution of a particle set and the map of the most likely partitle Fig. 4. The red dots and lines in these three image represent the nodes and
at three different time steps. In the left two images the vehicle traveled througtiges ofG[*!. In the left imageZ(s) contained two nodes and in the middle
unknown terrain, so that the uncertainty increased. In the right image the rolratige the robot closed the loop until the pose uncertainty is reduced. After
re-entered known terrain so that samples representing unlikely trajectornie it continued with the acquisition of unknown terrain (right image).

were depleted.

. : . the topological ma!*! is printed on top of metric map:!*.
the maps of some particles are consistent with the CurreIanmotivate the idea of our approach we would like to refer

measurement and some are not. Accordingly the WelghtstRe reader to the left image of this figure. Here the robot was

the samples differ largely. Due to the resampling step th‘:fmost closing a loop. This can be detected by the fact that
uncertainty about the pose of the robot usually decreases. GQne

typical example is shown in Figure 3. In the left two images thee length of the shortest path between the current pose of the

. . r nd previously visi | ions in th logical m
robot explores new terrain and the uncertainty of the sam%b]Ot and previously visited locations in the topological map

: . . was large, where as it was small in the grid-maf!.
set increases. In the right image the robot travels throu hThus to 3§£ermier1§ whether ofnot a Iooec?ar?be cﬁosed we
known terrain and unlikely particles have vanished. Note that ’ P .
mpute for each samplethe setZ(s) of positions of interest,

this effect is much smaller if the robot just moves backward " : ,
which contains all nodes that are close to current p:ﬁeof

a few meters to re-visit previously scanned areas. This IS le s based h i ) b ¢ i
because each map associated to a particle is generally locBijficle s based on the grid mam'™ but are far away given
fpe topological mag!*! of s:

consistent. Inconsistencies mostly arise when the robot
enters areas explored some time ago. Therefore, visiting place

_ 1l [s] : [s] ls]
seen further back in the history has a stronger effect on th (s) ={zy € nodes(G) | distypie (', 277) <1 A

differences between the importance weights and typically also distgrs (azf], xf]) > co}. (3)
on the reduction of uncertainty compared to places recently
observed. Here dist pq(z1,22) is the length of the shortest path from

The key idea of our approach is to identify opportunities for1 t0 z2 given the representatioM. The distance between
closing loops during terrain acquisition. Here closing a lodjwo nodes inGll is given by the length of the shortest path
means actively re-entering the known terrain and followingetween both nodes, whereas the length of a path is computed
a previously traversed path. To determine, whether thedg the sum over the lengths of the traversed edges between
exists a possibility to close a loop we consider two differetiiese nodes. The terms and c; are constants that must
representations of the environment. In our current system watisfy the constraint; < c. In our current implementation
associate to each particiean occupancy grid mam/s) and a the values of these constants afe= 6m andc, = 20m.
topological mapG!*! which both are updated while the robot If Z(s) # () there exist so-called shortcuts frcmﬁf] to the
is performing the exploration task. In the topological ngafi  positions inZ(s). These shortcuts represent edges that would
the vertices represent positions visited by the robot. The edgdsse a loop in the topological mapl®. The left image of
represent the trajectory corresponding to the particléfo Figure 4 illustrates a situation in which a robot encounters the
construct the topological map we initialize it with one nodepportunity to close a loop sindgs) contains two nodes. The
corresponding to the starting location of the robot. &t be key idea of our approach is to use such shortcuts whenever
the pose of particle at the current time step We add a new the uncertainty of the robot in its pose becomes too large. The
node ata;f] to G*! if the distance betweem,[f] and all other robot then re-visits portions of the previously explored area
nodes inG!*! exceeds a threshold ef= 2.5m or if none of and this way reduces the uncertainty in its position.

the other nodes igl*! is visible fromz}*: To determine the most likely movement allowing the robot
(o to follow a previous path of a loop, one in principle has to
Vn € nodes(Gl)) [distm[s] (zi,n) >c V integrate over all particles and consider all potential outcomes

of that particular action. Since this would be too time con-
suming for online-processing we consider only the parti¢le
@ the highest accumulated importance weight:

not_visible,, s (:c,[fs],n)} . @

Whenever a new node is added, we also add an edge from ¥

node to the most recently visited node. To determine whether ¢

or not a node is visible from another node we perform a ray- - argmaleog%[s]. 4)

casting operation in the occupancy grid®!. s I
Figure 4 depicts such a graph for one particular particle

during different phases of an exploration task. In each imageerewl[s] is the weight of sample at time step. If Z(s*) # (



Algorithm 1 The loop-closing algorithm
ComputeZ(s*)
if Z(s*) # () then begin
H — H(te) )
path «— x;° L shortest,pathg[s*](xtﬂ,xgs ])
while H(t) > H A H(t) > threshold do
robot _follow(path)

Fig. 5. The particle depletion problem: a robot traveled through the inner end
loop several times (left image). After this the diversity of hypotheses about

s e L T made ™4 depleton of particles representing ambiguities abaut
by aborting the loop-closing behavior & as soon as the
we choose the node,, from Z(s*) which is closest IOULS*]: uncertainty drops below the uncertainty stemming frdm
. Finally we have to describe how we actually measure
Ty, = argmin di5t7n[5*](x7[ts ]aﬂ?)- (5) the uncertainty in the position estimate. The typical way of
2€Z(s7) measuring the uncertainty of a posterior is to calculate the
In the sequelr,, is denoted as thentry pointat which the entropy. In the case of multi-modal distributions, however, the
robot has the possibility to close a loap.corresponds to the entropy does not consider the distance between the different
last time the robot was at the nodeg . modes. In our experiments we figured out that we obtain better
To determine whether or not the robot should activatesults if we use the volume expanded by the samples instead
the loop-closing behavior our system constantly monitors tloé the entropy of the posterior. We therefore calculate the pose
uncertainty’(¢t) about the robot’s pose at the current timencertainty by determining the volume of the oriented bound-
step. The necessary condition for starting the loop-closimgg box around the particle cloud. A good approximation of
process is the existence of an entry paipt and thatH(¢) the minimal oriented bounding box can be obtained efficiently
exceeds a given threshold. Once the loop-closing process hgsa principal component analysis.
been activated, the robot approachgsand then follows the  As long as the robot is localized well enough or no loop
path taken after arriving previously at, . During this process can be closed, we use a frontier-based exploration strategy [1]
the uncertainty in the pose of the vehicle typically decreases,choose target points for the robot. In our current system we
because the robot is able to localize itself in the map built sietermine frontiers based on the map of the most likely particle
far and unlikely particles vanish. s*. Here a frontier is any known cell that is an immediate
We furthermore have to define a criterion for deciding whemeighbor of an unknown, unexplored cell [18].
the robot actually has to stop following a loop. A first attempt A precise formulation of the loop-closing strategy is given
could be to introduce a threshold and to simply stop the trgy Algorithm 1. In our implementation this algorithm runs as
jectory following behavior as soon as the uncertainty becomgshackground process that is able interrupt the frontier-based
smaller than a given threshold. This criterion, however, can Eﬁploration procedure. An application of this algorithm in a
problematic especially in the case of nested loops. Supp@sgulation run is illustrated in Figure 4.
the robot encounters the opportunity to close a loop that is
nested within an outer and so far unclosed loop. If it eliminat%\s
all of its uncertainty by repeatedly traversing the inner loop,’
particles necessary to close the outer loop may vanish. As alote that our loop-closing technique can also handle mul-
result, the filter diverges and the robot fails to build a corretiple nested loops. During the loop-closing process the robot
map (see Figure 5). To remedy this so-called particle depletifmllows its previously taken trajectory to re-localize. It does not
problem [16] we introduce a constraint on the uncertainty édave this trajectory until the termination criterion, described
the robot. LetH(t.) denote the uncertainty of the posterioin previous section, is fulfilled. Therefore it never starts a
when the robot visited the entry point last time. Then the nemew loop-closing process before the current one is completed.
constraint allows the robot to re-traverse the loop only as lodg typical example with multiple nested loops is shown in
as its current uncertainty(t) exceeds(t.). If the constraint Figure 6. In the situation depicted in the left image the robot
is violated the robot resumes its frontier-based explorati@tarts with the loop-closing process for the inner loop. After
process. The idea of this constraint is to avoid the depletioompleting this loop it moves to the second inner one and
of relevant particles during the loop-closing process. again starts the loop-closing process. Since our algorithm
To better illustrate the importance of this constraint consideonsiders the uncertainty at the entry point it keeps enough
the following example: a robot moves from pladeto place variance in the filter to close the outer loop. In general,
B and then repeatedly observés. While it is mapping the quality of the solution and whether or not the overall
B it does not get any further information abodt Since process succeeds depends on the number of particles used.
each particle represents a whole trajectory of the robot alStnce determining this quantity is an open research problem
hypotheses representing ambiguities abéuwtill vanish when the number of particles has to be defined by the user in our
reducing potential uncertainties abdgit Our constraint avoids current system.

Handling Multiple Nested Loops
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V. EXPERIMENTS

Our approach has been implemented and evaluated i@ 7. This image shows the resulting map of an exploration experiment

series of real world and simulation experiments. For the rearied out using a Pioneer Il robot equipped with a laser range scanner in

world experiments we used an iRobot B21r robot and élﬁe entrance hall of the Department for Computer Science at the University
f Freiburg. Also shown is the path of the robot as well as entry and exit

ActivMedia Pioneer Il robot. Both are equipped with a SICI%oints where the robot started and stopped the active loop-closing process.
laser range finder. For the simulation experiments we used the

real-time simulator of the Carnegie Mellon Robot Navigatior
Toolkit (CARMEN) [13]. This simulator generates realistic
noise in the odometry and laser range sensor data.

The experiments described in this section are designed
illustrate that our approach can be used to actively lea
accurate maps of large indoor environments. Furthermore, th
demonstrate that our integrated approach yields better rest
than an approach without active loop-closing. Additionally
we analyze how the active termination of the loop-closur
influences the result of the mapping process.

A. Real World Exploration , L , _ _
. . . . Fig. 8. This figure depicts an environment with two large loops. The outer
The first experiment was carried out to illustrate that our cubop has a length of over 220m. The left image show the resulting map of a

rent system can effectively control a mobile robot to activelgjectory in whi_ch the robot drove th_rough the qups only once. In the second
. . . . n the robot visited every loop twice and obtained a highly accurate map
close loops during exploration. To perform this experlmer(liee right image).
we used a Pioneer Il robot to explore the main lobby of
the Department for Computer Science at the University apper image of Figure 2, an approach that does not actively re-
Freiburg. The size of this environment is 51m times 18nenter the loop fails to correctly estimate the angle between the
Figure 7 depicts the final result obtained by a completelgop and the corridor which should be oriented horizontally
autonomous exploration run using our active loop-closirig that figure. Whereas the angular erroffidegrees with the
technique. It also depicts the trajectory of the robot, whicftandard approach it is only degree with our method. Both
has an overall length of 280m. The robot decided four timesaps correspond to the particle with the highest accumulated
to re-enter a previously visited loop in order to reduce thimportance factor.
uncertainty in its pose. Figure 7 also shows the correspondingA further experiment that illustrates the advantage of place
entry points as well as the positions where the robot left the-visiting is shown in Figure 8. The environment used in this
loops (“exit points”). In this experiment the FastSLAM routingimulation run is 80 times 80 meters and contains two large
used 250 particles. As can be seen the resulting map is quitssted loops with nearly featureless corridors. The left image
accurate. shows the result of the frontier-based approach which traversed
each loop only once. Since the robot is not able to correct
the accumulated pose error, the resulting map contains large
The second experiment was carried out to compare QHtonsistencies and two of the corridors are mapped onto each
algorithm with a standard exploration strategy that does n@her. Our approach, in contrast, first revisits the outer loop

consider loop closing actions. The lower image of Figure gefore entering the inner one (see right image). Accordingly,
shows the map obtained with a B21r robot in the Sieg Hafke resulting map is quite accurate.

at the University of Washington using our algorithm. To o )

eliminate the influence of measurement noise and differéat A Quantitative Analysis

movements of the robot we removed the data corresponding tdo quantitatively evaluate the advantage of the loop-closing
the second loop traversal from the recorded data file and udmthavior we performed a series of simulation experiments
this data as input to our FastSLAM algorithm. This way wan an environment similar to the Sieg Hall. We performed
simulated the behavior of a greed exploration strategy whi@0® experiments, 10 with active loop-closing and 10 without.
forces the robot to directly enter the corridor after returningfter completing the exploration task we measured the average
to the starting location in the loop. As can be seen from tlegror in the relative distances between positions lying on the

B. Active Loop-Closing vs. Frontier-Based Exploration
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Fig. 9. This figure compares our loop-closing strategy with a pure frontier-
based exploration technique. The left bar in this graph plots the average eri
in the pose of the robot obtained with our loop-closing strategy. The rigk
one shows the average error if a frontier-based approach was used. As car
seen our technique significantly reduces the distances between the estime
positions and the ground truth (confidence intervals do not overlap).

| —

resulting estimated trajectory and the ground truth provide J_;_._j

by the simulator. The results are depicted in Figure 9. As ce ‘] -

be seen the active loop-closing behavior significantly reduce i [J

the error in the position of the robot. A
@ T

D. Importance of the Termination Criterion

In this final experiment we analyze the importance of thgg- 10. .Thjsﬁ images degigt S”apjhOtS of our '_OOD'C'?Si”g Sl”ate,gy- Lhe
. . . . . rohot explored the terrain and detected an opportunity to close a loop in order
constraint that terminates the active Ioop-closmg behavior égeduce its uncertainty (a). It then traversed parts of the inner loop until its

soon as the current uncertairit(t) of the belief drops under uncertainty*(t) did not exceed the uncertainty(t.) of the posterior when

the uncertaintyH(t.) of the posterior when the robot was athe robot at the entry point anymore. It then turned back and left the loop
the entry point last time. to explore new terrain (b). After this, enough hypotheses are left to correctly

. . . close the outer loop (c) and (d). In contrast to that, a system considering
In this simulated experiment the robot had to explore afly a constant threshold criterion fails to map the environment correctly as

environment containing two nested loops (see Figure 10 (dj§picted in Figure S.
In one case we simply used a constant threshold to determine o o ]
whether or not the loop-closing behavior should be stoppd@darded as a contribution to limit the number of particles
In the second case we applied the additional constraint tif4fing FastSLAM.
the uncertainty should not become smaller tiéft. ).

Figure 5 shows the map of the particle with the highest
accumulated importance weight obtained with our algorithm In this paper we presented a novel approach for active
using a constant threshold instead of considertig@.). In loop-closing during autonomous exploration. We combined a
this case the robot repeatedly traversed the inner loop (IE¥0-Blackwellized particle filter for localization and mapping
image) until its uncertainty was reduced below a thresholith a frontier-based exploration technique extended by the
After three and a half rounds it decided to again explo@bility to actively close loops. Our algorithm forces the robot
unknown terrain, but the diversity of hypotheses had decreadedraverse previously visited loops again and this way reduces
too much (middle image). Accordingly the robot was unabl@e uncertainty in the pose estimation. As a result, we obtain
to accurately close the outer loop (right image). We repeat8tpre accurate maps compared to standard combinations of
this experiment several times and in no case the robot wakAM algorithms with exploration techniques.
able to correctly map the environment. In contrast to that, ourOne general problem of FastSLAM is that the number of
approach using the additional constraint always generatedR@fticles needed to build an accurate map is not known in
accurate map. One example run is shown in Figure 10. H&@vance. Even our technique does not provide tools to estimate
the robot stopped the loop-closing after traversing half of tfigis quantity but it produces better maps with a given number
inner loop. In both cases we used 80 particles. of particles compared to a naive combination of frontier-based

As this experiment illustrates, the termination of the loogeXploration with FastSLAM. The major restrictions of our
closing is important for the convergence of the filter and t@lgorithm are similar to those of FastSLAM, e.g, there are
obtain accurate maps in environments with several (nesté) means to recover from divergence without a complete re-
|Oops_ Note that similar results in princip|e can also ban of the whole algorithm. Such issues are SUbjECt of future
obtained without this termination constraint if the numbéiesearch.
of particles is dramatically increased. Since exploration is an
online problem and since every particle carries its own map
it is of utmost importance to keep the number of particles This work has partly been supported by the German Science
as small as possible. Therefore our approach also can Hmindation (DFG) under contract number SFB/TR-8 (A3)

VI. CONCLUSION
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