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Abstract—We propose a system that gives a mobile robot the interferences. We generally refer to this ability as toektail
ability to separate simultaneous sound sources. A micropli® party effect where a human listener is able to follow a
array is used along with a real-time dedicated implementatin conversation even when several people are speaking at the

of Geometric Source Separation and a post-filter that gives s1a fi = bil bot. it Id bei ble t
further reduction of interferences from other sources. We pesent S&Me UMe. or a mobiie robot, it would mean being able to

results and comparisons for separation of multiple non-stdonary ~ Separate all sound sources present in the environment at any
speech sources combined with noise sources. The main advage moment.

of our approach for mobile robots resides in the fact that boh Working toward that goal, our interest in this paper is to
the frequency-domain Geometric Source Separation algotitm describe a two-step approach for performing sound source

and the post-filter are able to adapt rapidly to new sources fi bil bot . d with f eight
and non-stationarity. Separation results are presented fothree ~ S€Paration on a mobile robot equipped with an array ot eig

simultaneous interfering speakers in the presence of noiseA l0W-cost microphones. The initial step consists of a linear
reduction of log spectral distortion (LSD) and increase of gnal- separation based on a simplified version of the Geometric
to-noise ratio (SNR) of approximately 10 dB and 14 dB are Source Separation approach proposed by Parra and Alvino
observed. [7] with a faster stochastic gradient estimation and shorte
|. INTRODUCTION time frames estimations. The second step is a generatsatio

Our hearing sense allows us to perceive all kinds of Soun(afsbeamformer post-filterind 18]L19] for multiple sourcesda

(speech, music, phone ring, closing a door, etc.) in ourayorS€S adaptive spectral estimation of background noise and

whether we are moving or not. To operate in human ar@lratgrfering sources to enhance the_signal produceq dunieg t
natural settings, autonomous mobile robots should be able"f't'al separation. The novelty of this post-filter resideshe

do the same. This requires the robots not just to detect ss;our'r ct that, for _each squrce of mteres_t, the noise estimate is
but also to localise their origin, separate the differentrgb ecomposed into stationary and transient components assum

sources (since sounds may occur simultaneously), andwoég be due to leakage between the output channels of the initia

all of this data to extract useful information about the lorl se_pl)_ﬁratlon stage. ised foll Sectdh 1l o
Even though artificial hearing would be an important sens- € paper IS organised as Tollows. Sec gives an

ing capability for autonomous systems, the research tor%etr.wewl of _ttr;]e sys;[jeg. ?(i%ﬁm pr.Esentths the I|nea‘r} Sep-
is still in its infancy. Only a few robots are using hearin ration aigorithm and Sect escribes the proposetr pos

capabilities: SAIL [1] uses one microphone to develop (mlin"ter' Results are presented in Sectigh V, followed by the

audio-driven behaviors; ROBITA[2] uses two microphone%ondus'on'
to follow a conversation between two persons; SIG [3], [4], Il. SYSTEM OVERVIEW
[5] uses one pair of mlcrophont_as to coIIe.ct §ound from the 1o proposed sound separation algorithm as shown in
externa_l world, and another pair placed inside the head ure[l is composed of three parts:
collect internal sounds (caused by motors) for noise cancel . .
) A microphone array;

o . ] : 1
lation; Sony SDR-4X has seven microphones; a service robotz) A linear source separation algorithm (LSS) implemented

uses eight microphones organlsgd in a circular array to do as a variant of the Geometric Source Separation (GSS)
speech enhancement and recognition [6]. Even though robots algorithm:;

are not limited to only two ears, they still have not shown the 3) A multi-channel postilter.

capabilities of the human hearing sense. . . .
We address the problem of isolating sound sources from! "€ Microphone array is composed of a number of omni-

the environment. The human hearing sense is very gooddglectlonal elements mounted on the robot. The microphone

focusing on a single source of interest despite all kinds allgnals are combined Il_ne_arI.y Ina flrst—.pas.s separatiop-alg
rithm. The output of this initial separation is then enhahce

0@©2004 IEEE. Personal use of this material is permitted. Pegion from by a (non-linear) post-filter designed to optimally atteteuthe
IEEE must be obtained for all other uses, in any current asréutmedia, remaining noise and interference from other sources.
including reprinting/republishing this material for adti®ing or promotional Wi that th detected d lised
purposes, creating new collective works, for resale orstetiution to servers € assume al these sources are ae e‘_: ed an Oca e
or lists, or reuse of any copyrighted component of this werlother works. by an algorithm such a$ [110] (our approach is not specific to
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Microphones 1) Decorrelation of the separation algorithm outputs, ex-

) X, (k1) SSESig(teesd pressed aRyy (k) — diag [Ryy (k)] = O
Sou/rces e » Geometric | Yk post. | 5k 2) The geo_metrk_: gonstrai_rWV({f)A(k) = I, which en-
S,(k,D) ® > SOUICE | f'i)s " sures unity gain in the direction of the source of interest
i separation liter and places zeros in the direction of interferences.
N In theory, constraint 2) could be used alone for separation

(the method is referred to as LS-C2 in [7]), but in practice,
the method does not take into account reverberation orserror
in localisation. It is also subject to instability iA(k) is

not invertible at a specific frequency. When used together,

any localisation algorithm). We also assume that sources nfgPnstraints 1) and 2) are too strong. For this reason, we
appear, disappear or move at any time. It is thus necessBfyPose “soft” constralnts.that are a comblnatlon of 1) and
to maximise the adaptation rate for both the LSS and t4e N the context of a gradient descent algorithm.
multi-channel post-filter. Mobile robotics also imposeslre ~ TWO cost functions are created by computing the square
time constraints: the algorithmic delay must be kept smdlf the error associated with constraints 1) and 2). These cos
and the complexity must be low enough for the data to Kfgnctions are respectively defined as:

processed in real-time on a conventional processor. JI(W(k)) = |Ryy(k)— diag [Ryy(k?)]H2 3)

Jo(W (k) W (k)A (k) — I° (4)

. . . 2 H

The LSS algorithm we propose in this section is based §1€re the matrix norm is defined g8/ = trace [MMH]
the Geometric Source Separation (GSS) approach propo@8d iS equal to the sum of the square of all elements in the
by Parra and Alvino[[7]. Unlike the Linearly Constrainednatrix. The gradient of the cost functions with respect to

Minimum Variance (LCMV) beamformer that minimises theW (k) is equal to[7]:

Figure 1. Overview of the separation system

I1l. LINEAR SOURCE SEPARATION

output power subject to a distortionless constraint, GSS ex 0J1(W(k))
plicitly minimises cross-talk, leading to faster adamatiThe OW* (k) = 4E(R)W(k)Rxx () ®)
method is also interesting for use in the mobile robotics 0J>(W (k)
context because it allows easy addition and removal of ssurc W) 2[W(k)A(k) —I] A(k) (6)

Using some approximations described in SubsedfionJilI-B, .
it is also possible to implement separation with relativelphereE(k) = Ryy (k) — diag [Ryy (k)].
low complexity (i.e. complexity that grows linearly witheh ~ The separation matri¥V (k) is then updated as follows:

number of microphones). 0J1 (W (k)) GJQ(W(k))(l

n+1 _ n _
A. Geometric Source Separation

The method operates in the frequency domain.4,gtk, ¢) where oz([)2 is an energy norr_nalisation factor equal to
be the real (unknown) sound sourge at time frame¢ and [[Rxx(K)[| "~ andu is the adaptation rate.
for discrete_ frequencye. We denote a$(k:,€_) the Vector g gtochastic Gradient Adaptation
corresponding to the sourcés, (k, £) and matrixA (k) is the
transfer function leading from the sources to the microgson
The signal received at the microphones is thus given by:

The difference between our algorithm and the original GSS
algorithm described in([7] is that instead of estimating the
correlation matriceRyx(k) andRy, (k) on several seconds

x(k,0) = A(k)s(k, ) + n(k, () (1) of data, our approach uses instantaneous estimations. This
is analogous to the approximation made in the Least Mean

wheren(k, ¢) is the non-coherent background noise receiveStuare (LMS) adaptive filtef [11]. We thus assume that:
at the microphones. The matrix (k) can be estimated using

— H
the result of a sound localisation algorithm. Assuming Hiht Rux(k) = X(k)x(k)H (®)
transfer functions have unity gain, the elementsAqf:) can Ryy(k) = y(k)y(k) 9)
be expressed as: ks It is then possible to rewrite the gradi ;,(VW((kk))) as:
aj(k) = e” 770 @)
0J1(W(k)) "
whered;; is the time delay (in samples) to reach microphone W = 4[E(k)W (k)x(k)] x(k) (10)

1 from sourcej.

The separation result is then defined g$k,¢) =
W(k, 0)x(k,¢), whereW (k, ¢) is the separation matrix that
must be eSt_|mate_d- This is done by prowpllng WO constraints pssyming non-stationary sources, second order statitiesufficient for
(the index/ is omitted for the sake of clarity): ensuring independence of the separated sources.

which only requires matrix-by-vector products, greatlgue-
ing the complexity of the algorithm. The normalisation act



(kD) For this post-filter, we consider that all interferencescégpt

I’ _____ \ the background noise) are localised (detected by the local-
/ Geometric Y(k,1) \ isation algorithm) sources and we assume that the leakage
source | N Attenuation:l> between channels is constant. This leakage is due to raverbe
1 separatior rule ation, localisation error, differences in microphone freqcy
Lo '”telrfeLence A€k ) responses, near-field effects, etc.
esﬁﬁaﬂon Sectior IV-A describes the estimation of noise variancas th
SNﬁ)g‘a?iﬂfeC are used to compute the weighting functiér, by which the
Stationary gstimaﬂoﬁ outputsY;, of the LSS is multiplied to generate a cleaned
noise signal whose spectrum is denotég,.
estimation | A, Stat(k ) (k)
A. Noise estimation
Figure 2. Overview of the post-filter. . The noise variance estimation, (k, ¢) is expressed as:

Xn(k,€),n=0...N—1: Microphone inputsYm (k,£), m =0... M — ek
_fi — — stat. ea
::r)mé)sutt_?”:grtgﬁtggts;flltersm(k,2) = Gm(k, 0)Ym(k,l), m=0. M A (e, £) = NP9t (K 0) + A9 (K, 0) (12)
where\stet- (k. ¢) is the estimate of the stationary component
o of the noise for sourcen at frame/{ for frequencyk, and
a(k) can also be simplified a%\x(k)”2 . From this work, \lak(k /) is the estimate of source leakage.
the instantaneous estimation of the correlation has notisho We compute the stationary noise estimafé': (k, ¢) using

any reduction in accuracy and furthermore eases real-tite Minima Controlled Recursive Average (MCRA) technique

integration. proposed by Cohemn [16].
o To estimate)s®* we assume that the interference from
C. Initialisation other sources is reduced by a facip(typically —10 dB <

The fact that sources can appear or disappear at any tim& —5 dB) by the separation algorithm (LSS). The leakage
imposes constraints on the initialisation of the sepamati@stimate is thus expressed as:

matrix W (k). The initialisation must provide the following: M1
« The initial weights for a new source; Nek (k0 =n > Zi(k, () (13)
« Acceptable separation (before adaptation). i=0,i#m

Furthermore, when a source appears or disappears, Omﬂérez (k, )
sources must be unaffected. ’
One easy way to satisfy both constraints is to initialise the"

is the smoothed spectrum of the'" source,
Y. (k,¢), and is recursively defined (with, = 0.7) as:

column of W(k) corresponding to the new souree as: Zm(k,0) = s Zm(k, 0 — 1) + (1 — a5)Yin(k, £) (14)
wm.i(k) = ai,i]nv(k:) (11) B. Suppression rule in the presence of speech

We now derive the suppression rule undér, the hypoth-

This initialisation is equivalent to a delay-and-sum beanesis that speech is present. From here on, unless otherwise
former, and is referred to as the I1 initialisation method istated, then index and the arguments are omitted for clarity
[7]. and the equations are given for eaehand for each.

The proposed noise suppression rule is based on mini-
mum mean-square error (MMSE) estimation of the spectral

In order to enhance the output of the GSS algorithmmplitude in the loudness domaiﬁ{(k)|l/2. The choice of
presented in Sectidnll, we derive a frequency-domain-poshe loudness domain over the spectral amplitidé [12] or log-
filter that is based on the optimal estimator originally megd spectral amplitude [13] is motivated by better results ivtete
by Ephraim and Malah[]12],[T13]. Several approaches tgsing this technique, mostly when dealing with speech pres-
microphone array post-filtering have been proposed in teace uncertainty (Sectign TV}C).
past. Most of these post-filters address reduction of statio  The loudness-domain amplitude estimator is defined by:
background noisd [14][ [15]. Recently, a multi-channeltpos . 1
filter taking into account non-stationary interferencesswa ~ A(k) = (E[[S(k)[" [Y(k)])* = Gu, (k) [Y (k)| (15)
proposed by Coher|8]. The novelty of our approach resid
in th(_e fact that, for a given channe_l output of the GSS, t ectral gain assuming that speech is present.
transient components of the corrupting sources IS assumed try,q spectral gain for arbitrary is derived from Equation
be due to leakage from the other channels during the G§§m [13]:
process. Furthermore, for a given channel, the stationagdy a
the transient components are combined into a single noi v(k) @ o >
estimator used for noise suppression, as shown in Flgure 2. 8H1 T (k) [F (1 + 5) M (7? L 7U(k))} (16)

IV. MULTI-CHANNEL POSFFILTER

Wherea = 1/2 for the loudness domain an@p, (k) is the




where M (a; ¢; z) is the confluent hypergeometric function,
(k) 2 (R /AK) and (k) 2 E [IS(R)] /AK) are
respectively thea posterioriSNR and thea priori SNR. We
also havev(k) £ v(k)é(k)/ (€(k) + 1) [12].

Thea priori SNR£(k) is estimated recursively as:

Ek,D) = oGy, (k0= 1)y(k, 0 1)

+ (1 - O‘p) max {V(kag) - 17 0} (17)
using the modifications proposed In [16] to take into account
speech presence uncertainty.

C. Optimal gain modification under speech presence uncer-
tainty

In order to take into account the probability of speech
presence, we derive the estimator for the loudness domain:

A(k) = (E [Aa(k” Y(k)])g (18) Figure 3. Pioneer 2 robot with an array of eight microphones
Considering H, the hypothesis of speech presence for

sourcem, and Hy, the hypothesis of speech absence, we
obtain: D. Initialisation

E[A(B)|[Y(K)] = plk)E[AY(k)| Hy,Y (k)] When a new source appears, post-filter state variables need
o to be initialised. Most of these variables may safely be set
+ [=p(R)EAT(R) Ho.Y(R)] (19) 5 sero. The exception i85t (k, ¢y), the initial stationary
wherep(k) is the probability of speech at frequenky noise estimation for source. The_MCRA algorithm requires
The optimally modified gain is thus given by: _se_veral seconds t(_) produce its first est|mate for soutcso
it is necessary to find another way to estimate the background
G(k) = [p(k) % (k) + (1 = p(k)) gm_n} = (20) noise until a better estimate is available. This initiaireate
is thus computed using noise estimations at the microphones
where Gy, (k) is defined in[(IB), and,,;, is the minimum Assuming the delay-and-sum initialisation of the weights
gain allowed when speech is absent. Unlike the log-ammitueiquation 11, the initial background noise estimate is thus:
case, it is possible to set,,;,, = 0 without running into

problems. Forx = 1/2, this leads to: o 1 M-l ,
) Xt (ko) = <5 D 0%, (k) (24)
G(k) = p*(k)Ga, (k) (21) n=0

Setting Gnin = 0 means that there is no arbitrary limitwhereos? (k) is the noise estimation for microphone
on attenuation. Therefore, when the signal is certain to be '

non-speech, the gain can tend toward zero. This is especiall

important when the interference is also speech since, ainlik V. RESULTS

stationary noise, residual babble noise always resultsugi-m

cal noise. Our system is evaluated on a Pioneer 2 robot, on which an
The probability of speech presence is computed as: array of eight microphones is installed. In order to test the

. system, three voices (two female, one male) were recorded
_ q(k) B N separately, in a quiet environment. The background noise wa
p(k) = { + 1—q(k) (1+&k))exp ( U(k))} (22) recorded on the robot and includes the room ventilation and

. o o the internal robot fans. All four signals were recorded gsin
whereq(k) is the_a priori probability of speech presence fore game microphone array and subsequently mixed together.
frequencyk and is defined as: This procedure was required in order to compute the distance

SO 1 measures (such as SNR) presented in this section. It is worth
4(k) = 1 = Plocat (k) Pototat (k) Pyrame (23) noting that although the signals were mixed artificiallye th
where Pocai(k), Pyiobar(k) and Pfrqme are defined in[[16] result still represents real conditions with backgroundseo
and correspond respectively to a speech measurement onifi@rfering sources, and reverberation.
current frame for a local frequency window, a larger frequyen In evaluating our source separation system, we use the
and for the whole frame. conventional signal-to-noise ratio (SNR) and the log seéct



Table | 2000

SIGNAL-TO-NOISE RATIO (SNR)FOR EACH OF THE THREE SEPARATED L0001 |
SOURCES 3
g o 1
| SNR (dB) | female 1] female 2] male 1| < Lio0or 1
Microphone inputs -1.8 -3.7 -5.2 2000 \ | : ! !
Delay-and-sum 73 44 12 0 ! 2 Time s 4 s 6
GSS 9.0 6.0 3.7 2000 w
GSS+single channe 9.9 6.9 4.5 » 10001 4
GSS+multi-channel| 12.1 9.5 9.4 R |
5
< - = -
Table Il 1000
LOG-SPECTRAL DISTORTION(LSD) FOR EACH OF THE THREE SEPARATED ~2000, 1 2 3 " s o
SOURCES 2000 Time [s]
| LSD (dB) | female 1] female 2] male 1| g 1000 1
Microphone inputs 175 15.9 14.8 é 0 7
Delay-and-sum 15.8 15.0 151 < 000k i
GSS 15.0 14.2 14.2 om0 ‘ ‘ ‘ ‘ ‘
GSS+single channe 9.7 9.5 10.4 0 1 2 3 4 5 6
GSS+multi-channel| 6.5 6.8 7.4 Time [<]

Figure 5. Signal amplitude for separation of first sourcenée voice). top:
signal at one microphone. middle: system output. bottorfereace (clean)

distortion (LSD), that is defined as: signal.
29 2
LSD — 11" 101 1Sk, 0)|° + € simultaneous sound sources. The linear source separator is
- Z K Z 0810 77 2 based on a simplification of the geometric source separation
£=0 k=0 S(k, 6)‘ Te algorithm that performs instantaneous estimation of theeeo

(25)  |ation matrix Ryx (k). The post-filter is based on a loudness-
where L is the number of framesK is the number of gomain MMSE estimator in the frequency domain with a noise
frequency bins and is meant to prevent extreme values fopstimate that is computed as the sum of a stationary noise
spectral regions of low energy. estimate and an estimation of leakage from the geometric

Tables[l and 1l compare the results obtained for differegbyrce separation algorithm. The proposed post-filterse al
configurations: unprocessed microphone inputs, delay-angficiently general to be used in addition to most linearseu
sum algorithm, GSS algorithm, GSS algorithm with 5i”9|95eparation algorithms.
channel post-filter, and GSS algorithm with multi-channel Experimental results show a reduction in log spectral dis-
post-filter (proposed). It is worth noting that the delay}an {ortion of up to11 dB and an increase of the signal-to-noise
sum algorithm corresponds to the initial value of the sepatig of 14dB compared to the noisy signal inputs. Preliminary
aration matrix provided to our algorithm. While it is Clearp_erceptive test and visual inspection of spectrograms siow
that GSS performs better than delay-and-sum, the lattér sfiat the distortions introduced by the system are accestabl
provides acceptable separation capabilities. Thesetseslsb 1,ost listeners.
show that our multi-channel post-filter provides a significa A possible next step for this work would consist of directly
improvement over both the single-channel post-filter ardhpl optimizing the separation results for speech recognition a
GSS. ) . i curacy. Also, a possible improvement to the algorithm would

The signals amplitude for the first source (female) aig {5 derive a method that automatically adapts the leakage

shown in Figuré b and the spectrograms are shown in FigWiSeticients, to track the leakage of the GSS algorithm.
[4. Even though the task involves non-stationary interfeeen

with the same frequency content as the signal of interest, we ACKNOWLEDGMENT
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In this paper we describe a microphone array linear source

separator and a post-filter in the context of multiple and
[1] Y. Zhang and J. Weng, “Grounded auditory development byeael-
2Audio signals and spectrograms for all three sources ardabie at: opmental robot,” inProc. INNS/IEEE International Joint Conference of
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