
An Evolutionary Approach To Gait Learning For
Four-Legged Robots

Sonia Chernova, Manuela Veloso
Computer Science Department
Carnegie Mellon University
{soniac, veloso}@cs.cmu.edu

Abstract—
Developing fast gaits for legged robots is a dif-
ficult task that requires optimizing parameters
in a highly irregular, multidimensional space. In
the past, walk optimization for quadruped robots,
namely the Sony AIBO robot, was done by hand-
tuning the parameterized gaits. In addition to
requiring a lot of time and human expertise, this
process produced sub-optimal results. Several re-
cent projects have focused on using machine learn-
ing to automate the parameter search. Algorithms
utilizing Powell’s minimization method and policy
gradient reinforcement learning have shown signifi-
cant improvement over previous walk optimization
results. In this paper we present a new algorithm
for walk optimization based on an evolutionary
approach. Unlike previous methods, our algorithm
does not attempt to approximate the gradient of
the multidimensional space. This makes it more
robust to noise in parameter evaluations and avoids
prematurely converging to local optima, a problem
encountered by both of the algorithms mentioned
above. Our evolutionary algorithm matches the
best previous learning method, achieving several
different walks of high quality. Furthermore, the
best learned walks represent an impressive 20%
improvement over our own best hand-tuned walks.

I. INTRODUCTION

Creating effective motion in four-legged robots is a very
challenging task, as there is a large number of degrees
of freedom and therefore parameters to be set. We have
extensively addressed this task for several years and have
developed motions for a few different versions of the Sony
AIBO four-legged robots. The process of defining success-
ful motions is tedious and rather brittle, as it strongly
depends on the particular walking environment. Every
new walking surface, e.g., the specific carpet or the floor,
changes the performance of a walk, potentially affecting the
robot’s walking speed and stability. The walk parameters
then need to be recalibrated, a process that can easily
take several hundred trials for an expert. Nevertheless
researchers using the Sony AIBO robots, in particular for
robot soccer, have developed effective motions. Our own
best hand tuned walk is at 235mm/sec.

With multiple changes of hardware for new robots and
an increasing number of different environments where the
robots need to walk, there was recently a drive to develop
automated approaches for selecting motion parameters.
Two recent papers, namely from the UNSW and the UT

Austin robot soccer teams, [1], [2], contributed the first
learning approaches for four-legged robot motion. The
UNSW learned walk was impressively acquired while at
RoboCup-2003 [3] and the robots reached a speed of
270mm/sec. The UT Austin effort was later successful in
reaching a learned walk of 291mm/sec. Both groups used
locus-based motion systems and gradient descent based
learning methods. A summary of the best hand tuned and
learned walks can be seen in Table I.

Following up on these recent learning accomplishments,
we engaged in researching for a new learning algorithm
robust to evaluation noise. Both of the gradient-based
learning methods mentioned above were sensitive to noise
in parameter evaluations and were prone to prematurely
converge to local optima. Additionally, the motion system
developed by our team is not locus-based, and the search
space is less continuous with a large number of local
optima.

In this paper, we contribute an evolutionary approach
that was used to successfully learn effective motion pa-
rameters that have allowed the robot to sustain maximum
speeds of 296mm/sec. Since we have observed that the
last digit is of great sensitivity to the time computation,
we feel confident presenting our results as a maximum
of 290 ± 6mm/sec, closely matching the performance of
the UT Austin work. Our algorithm encountered a set of
high quality and fast walks, improving the speed of our
robot’s walk by approximately 20% over our own best
hand-written walk. Most importantly we have developed
an algorithm that allows us to autonomously optimize
our motion parameters for various surface conditions and
different robot platforms, such as the ERS-7, in a relatively
short amount of time. Furthermore, the approach presented
in this paper is of value not only for ourselves but also for
many other teams that use our motion system which has
been freely available for several years.

The paper is organized as follows. We first present in

Hand-tuned Gaits Learned Gaits
UNSW UTAustin CMPack UNSW UTAustin CMPack

254 245 235 270 291 296

TABLE I

FORWARD VELOCITIES OF THE BEST HAND TUNED AND LEARNED

GAITS IN MM/SEC.



detail our robot motion system, highlighting its ability to
test for kinematic errors. We then present the genetic learn-
ing algorithm, including the representation, operators, and
fitness used. We present in detail the experimental learning
setup, providing empirical results. We finally conclude the
paper.

II. ROBOT MOTION

A. The Motion System

At the lowest level, the goal of the motion system is
to define a path for the legs in three-dimensional space
that will provide fast and stable locomotion. To achieve
this goal the task is abstracted to a higher level, and the
motion is defined in terms of parameters describing the
behavior of the body and legs.

Various approaches to robot motion have resulted in
different parameterization methods. One popular approach
is to define the path of each leg using loci of various
shapes ranging from rectangles to ellipses. Variations of
this method were used by the UNSW and UTAustin teams
for their gait optimization algorithms [4], [5].

Our motion system focuses on the problem from a
different perspective by approaching it from the point of
view of the body instead of the legs [6]. The trajectory
of the body is represented by an acceleration model which
maintains the desired direction of motion. The behavior of
each leg depends on whether the foot is in the air or on
the ground. While the foot is on the ground, the leg moves
relative to the body to satisfy the kinematic constraint of
body motion without slipping. While in the air, the leg
moves toward a specified target location where it will be
set down.

The air path and the target position for foot placement
are key factors in keeping the robot stable and maintaining
the leg within reachable space. Unlike other approaches
which aim to finely control the air path of the leg, our
approach leaves the exact path unspecified, and the only
requirement is that the foot clear the ground while it is
moving forward. The target position is chosen such that
once the robot’s foot is set down, and is following the
body’s trajectory, it will pass through the neutral position of
that foot at a specific time in the walk cycle (usually about
half way through the ground cycle). When calculating
the target position it is assumed that the body trajectory
will remain unchanged for this short period of time. The
position of the body is then evaluated at a future point
when the foot is to be set down, and at the time when
the foot will be passing through the neutral position. The
target position can then be calculated from this data. The
target point for setting the foot, the projected velocity of
the body along the ground plane, and the current position
and velocity of the foot are then used to specify a spline
path for the leg to follow through the air.

In some cases our assumption of a constant body tra-
jectory does not hold because the direction of motion is
changed in the middle of a step cycle. When this occurs the
foot passes close to, but not through the neutral position.

Since the path remains smooth, this method performs well
in the majority of cases.

Calculations of the air path of the legs and target position
also take into account additional specified parameters.
These include the desired height and angle of the body,
the total cycle time of the walk, and velocities of the
legs. Additional hop and sway parameters control the
movement of the shoulder and hip joints in vertical and
lateral sinusoidal patterns.

The complete set of the 54 motions parameters used to
control the walking motions is as follows:

• Neutral positions of the legs (12 parameters: x-pos.,y-
pos.,z-pos. for each leg)

• Lift velocities of the legs (12 parameters: x-vel., y-
vel., z-vel. for each leg)

• Set velocities of the legs (12 parameters: x-vel., y-vel.,
z-vel. for each leg)

• Leg pickup time (4 parameters)
• Leg set-down time (4 parameters)
• Body angle
• Body height
• Body hop amplitude
• Body sway amplitude
• Time of one walk cycle
• Maximum height of airpath (2 parameters: front and

rear legs)
• Maximum velocities allowed (3 parameters: forward,

lateral and angular)

By hand-tuning these parameters we have achieved
walks with speeds of up to 235mm/s.

B. Kinematic Test of Parameters

Part of the process of generating new motion parame-
ters is the motion system’s kinematic test. Before being
executed on the robot, each parameter set is tested to see
if the resulting walk maintains the legs within reachable
space using the forward kinematic model. If the planned
path of the legs is beyond the physical limits of the robot,
the motion of the legs can become unpredictable. In many
cases this can lead to motions that put excessive strain
on the motors and are otherwise dangerous for the robot.
The kinematic test procedure calculates the number of
8ms motion frames during which each leg is beyond the
physical bounds of the joints. This data allows the user to
decide whether the parameter set should be tested on the
robot. A small number of error frames are usually allowed
for testing.

III. THE LEARNING ALGORITHM

With the parameterization described above, the problem
of optimizing the gait speed becomes a parameter opti-
mization problem in multi-dimensional space. A variety
of algorithms exists for solving this type of problem,
but the selected approach must possess specific desirable
characteristics. The algorithm must:

• Handle non differentiable search space since no gra-
dient information is available.



Algorithm III.1: GA(Population, F, G)

F ← FitnessFunction
Ft ← TerminationF itness
G← NumberOfGenerations
M ← SizeOfPopulation
pc ← FrequencyOfCrossover
pm ← FrequencyOfMutation
Population← RANDOM POPULATION()
CALCFITNESSOFEACHINDIVIDUAL(Population)
while F(BestIndividual) < Ft and GenerationNum < G

do































if RadiationOn = true
then

{

CHECKFORRADIATION()

Parents← Population
Children← CROSSOVER(Parents, pc)
Children← MUTATION(Parents, pm)
CALCFITNESSOFEACHINDIVIDUAL(Children)
Population← MERGE(Parents, Children)
Population← CROPPOPULATION()

return (BestIndividual)

TABLE II

PSEUDOCODE FOR THE MODIFIED GENETIC ALGORITHM USED TO

OPTIMIZE THE ROBOT’S GAIT.

• Have high convergence rate since every evaluation is
expensive.

• Be able to find the true optimum solution independent
of the initial parameters.

• Be resistant to noise in the evaluation function.
• Allow a parallelized approach.

Our chosen solution for this problem is an evolutionary
approach based on genetic algorithms. The algorithm is
based on the conventional GA [7], [8] but has several
important modifications1.

A. Genetic Representation

A summary of our genetic algorithm is presented in
Table II. Each walk parameter set is represented by an
integer vector with one element per walk parameter. All
parameter values are bounded to loosely represent the
physical constraints of the robot. For example we bound the
height to be in the range of 85-120mm since values outside
of this range are impossible to satisfy using a crouched
walk.

The crossover operation uses two-point crossover to
form two new individuals from two parents. Two crossover
points are randomly selected and the vector elements be-
tween these positions on the parent vectors are exchanged
to form the child vectors. Pc controls how many new
individuals are created by applying the crossover operator.

The mutation operator uses Gaussian mutation to create
one new offspring from a single parent. The procedure
consists of adding a random integer value from a Gaussian
distribution to some elements of the parent vector. Pm

effects the number of individuals mutated, as well as the
number of mutated elements per vector.

The fitness function aims to maximize the forward
velocity of the robot and for the purposes of this experiment

1Implementation based on the GAlib package developed by Matthew
Wall at the Massachusetts Institute of Technology.

depends only on the forward distance traveled during the
alloted time period.

The algorithm uses overlapping populations in order to
always preserve the best individuals in the population.
During each generation the algorithm creates a temporary
population of children from the parent population by using
the crossover and mutation operators. Each new child is
tested using the kinematic parameter test and only indi-
viduals that pass the test are admitted into the population.
Crossover and mutation is repeated until the desired num-
ber of valid children is reached. Each new individual is then
evaluated and the populations are combined into one large
population. The worst M individuals are then removed in
order to return the population to its original size. This
assures that the population will continue improving or will
plateau when no better individuals can be found.

An additional improvement over traditional GAs is an
optional method to prevent premature convergence to sub-
optimal extremes. This method targets individuals that are
in a local extreme by adding radiation to the neighboring
area [9]. If a large group of individuals is clustered within
the same locality, radiation is placed into the middle of
that region. In effect this increases the mutation rate in the
area dramatically, causing all of the individuals to mutate
during the next generation and to disperse to other areas
of the space. The influence of the radiation falls off with
distance from the radiation point, and the level of radiation
decreases over time. We found this method to be useful in
controlling the learning behavior of the algorithm as will
be described in the next section.

B. The Learning Process

All experiments took place on a robot soccer field
designed for RoboCup competitions. This allowed us to
reuse many of the features present in CMPack code, such
as the vision and localization systems.

During each evaluation the robot walks across the field
for a specified amount of time, calculating its velocity
based on how far it has traveled. The localization system
of the robot uses the uniquely colored landmarks located
around the field to triangulate the robot’s position and
track its progress. Since the uneven movement of the
robot’s camera during the walk can introduce noise into the
measurements, the robot evaluates its starting and ending
positions while standing still.

The learning algorithm itself is executed on an off-
board computer which communicates with the robots over a
wireless network. Each parameter set is sent to an available
robot to be evaluated. Once evaluation is completed the
robot replies with an evaluation score. The distributed setup
provides greater processing power, allows for parallel eval-
uation by using several robots, and assures that all results
are logged without loss of data in case of robot failure. The
algorithm can easily scale to an arbitrary number of robots.
In our case we were able to simultaneously use four robots
on the same field (see Figure 1). The learning process itself
is completely autonomous; the only human intervention
required is to replace discharged robot batteries.



Fig. 1. The training environment. Four robots evaluate different param-
eter sets simultaneously. The colored markers around the field are used
for localization.

For our setup we limited the number of motion param-
eters being varied to 12. The parameter space is partially
simplified by the fact that since the AIBO robots are fairly
symmetric, the same foot offset values are used for the
left and right legs. Other parameter values were set to
fixed values in order to simplify the search space. Since
previously motion parameters had always been done by
hand, safe values could easily be established for these
parameters. The twelve parameters used in the learning
process are the ones that have the greatest effect on the
walking motion. The parameters that were learned are:
body height, body angle, cycle time, front x offset, front y

offset, rear x offset, rear y offset, front lift-time offset, front
set-time offset, rear lift-time offset, rear set-time offset, and
hop amplitude.

The lift-time and set-time offset parameters represent
offsets from the original lift and set times of the legs. The
traditional gait for the AIBO robots is a trot which involves
diagonal pairs of legs moving in unison. The robot has
only two feet in contact with the ground at any one time.
The lift and set-time offsets allow the learning algorithm
to modify the timing of the legs so that front and rear legs
move slightly out of synch. Changes to these parameters
can cause the robot to have all four feet on the ground for
longer periods of time, or to attempt to lift all four feet off
the ground at the same time. Previous results have shown
that the fastest learned walks tries to keep each foot on the
ground only 43% of the time [2].

We found that for the populations size, 30 individuals
was a good compromise between a fast algorithm and
a diverse population. A larger population increases the
evaluation time of each epoch. Since one of our goals is
to be able to run the algorithm during competitions and
demos where the time before presentation is limited, it is

not practical to have very large population sizes since this
will limit us to running fewer generations of the algorithm
and slowing down the learning. A smaller population size
may not provide enough variation, causing the algorithm
to converge to local extremes more often than necessary.

The population can be initialized with random or hand
selected parameters. The learning process takes place in
two phases:

Phase1: The goal of Phase1 is to explore a wide range
of parameter values, never focusing too much on one area.
The mutation and crossover rates are set high, P (m) =
0.5 and P (c) = 0.6, causing the parameters to vary over
a large range. The radiation method is turned on during
this phase, so that if by chance a population does become
too homogeneous radiation is placed in that neighborhood.
During this phase we avoid converging to any optimum at
all but spend the time exploring a wide range of parameters.

Phase2: During Phase2 the goal is to converge to the
optimal walk. A handful of the best individuals discovered
during Phase1 forms the initial population in this phase.
Now the algorithm is changed to explore in detail the
neighborhoods surrounding these few parameters. Radia-
tion is turned off, and mutation and crossover probabilities
are turned down to P (m) = 0.3 and P (c) = 0.2.

An important decision point in this approach is the
termination of Phase1 and initiation of Phase2. Staying
in Phase1 too long will slow down the algorithm because
the large mutation rate combined with the radiation factor
force the algorithm to constantly find new areas to explore
even if it has found a global optimum. Switching into
Phase2 too early could also have a slowing effect if none of
the parameters from Phase1 are very good. The algorithm
would then be limited to exploring a small set of local
regions of optimality; since the mutation rate is fairly low,
it may take a while for a random mutation to find another
area with better values.

During testing we found that this decision is not difficult
if the scope of the evaluation function is known. In other
words, with the knowledge that walks with velocities
upward of 260mm/sec were considered good we terminated
the algorithm once several such promising walks had been
found. Although it is not possible to guarantee that the
algorithm converges to the global optimum since the entire
space has not been searched, the algorithm finds highly
optimized walks with speeds that have not been previously
achieved through hand tuning.

C. Dealing With Noise

Even though during the evaluation the robots remain
stationary while calculating their positions, some error due
to noisy sensors still remains in the system. Several steps
were taken to minimize the effect of these errors.

By keeping only the best members after every genera-
tion, it is assured that the next generation will be created
from the strongest individuals. Unfortunately, if due to
accidental noise one individual receives an abnormally high
score, this individual could remain in the population forever



even though it may not be very good. To counteract this
problem, walks with reported velocities over 240mm/sec
were evaluated two times, and the final score is the average
of the two runs.

Additionally, all the individuals in the population are
reevaluated every ten to fifteen generations. Although this
slows the algorithm slightly because repeated calculations
are made, it limits the effect noise has on the system.
Individuals that accidentally received high scores because
of noise will be reevaluated and will drop down in ranking.

A segment of the learning process showing the effects
of this method can be seen in Figures 2 and 3. During
the 10th generation one parameter set is evaluated at a
very high value due to noise from the sensors. During the
following generation the entire population is reevaluated
and the individual is ranked correctly. Learning progresses
until a plateau is reached.

30 40 50 60 70 80 90
235

240

245

250

255

260

265

270

Generation

V
el

oc
ity

 (
m

m
/s

ec
)

Average Velocity of Population Over Time

Fig. 2. The average fitness of the population over time. Due to our
approach always maintaining the best individuals from combined parent-
child population, the average fitness of the populations monotonically
increases except when the members of the population are reevaluated
during the 11th epoch.

0 10 20 30 40 50 60
260

270

280

290

300

310

320

330

Generation

V
el

oc
ity

 (
m

m
/s

ec
)

Best Individual Per Population

Fig. 3. The fitness of the best individual in each population over time.
This is an example of why keeping only a single best individual can lead
the algorithm astray if the evaluation function contains noise.

Parameter Walk1 Walk2
Body Height(mm) 108 107
Body Angle(deg) 11 12
Cycle Time(ms) 679 673

Front x Offset(mm) 108 116
Front y Offset(mm) 60 61
Rear x Offset(mm) 89 93
Rear y Offset(mm) 60 60

Front Lift-Time Offset(%) 0 2
Front Set-Time Offset(%) 4 5
Rear Lift-Time Offset(%) 1 1
Rear Set-Time Offset(%) -1 -1

Hop Amplitude(mm) 0 0

TABLE III

PARAMETER VALUES FOR THE TWO BEST WALKS LEARNED BY OUR

ALGORITHM.

IV. RESULTS

Using the algorithm described above we were able to
find two different parameter sets that allow the robot to
move at 290 ± 6mm/sec. These results are a dramatic
improvement over our previous hand-tuned walk which had
the speed of 235mm/sec. The optimal velocity achieved by
the robot closely matches the fastest known walk for the
AIBOs achieved by the UT Austin Villa team [2] with
their learning method.

The optimal parameters learned by the algorithm are
shown in Table III. A negative lift or set-time offset
percentage represents the event happening earlier than the
original lift or set time for that leg. Positive percentages
represent events happening slightly later than normal.

Images of the robot walking using these parameters are
shown in Figure 4. Both parameter sets resulted in very
similar walks. The legs move parallel to the body with very
little side velocity. The legs are always picked up cleanly
and there is no sliding motion along the ground. Both walks
seem to be optimized to take long fluid strides to cover as
much ground as possible. An apparent side effect of this is
that occasionally the elbows and knees come close enough
together that they touch. For one of the motions this contact
is fairly rare while in the other walk it is very regular. Since
the contact is brief and not very strong, it does not seem
to interfere with the walking motion or damage the joints.

Several testing runs of the algorithm during which we
experimented with parameters preceded the final learning
run. The main learning experiment was started only a
single time and ran to completion, successfully finding two
optimal parameter sets. The starting population was ini-
tialized with random parameters that passed the kinematic
test. During Phase1 we executed 40 generations for a total
of approximately 1500 field traversals. During Phase2, 70
generations were executed for a total of over 2500 field
traversals. The total running time of the algorithm was
approximately 5 hours.

V. CONCLUSION

In this paper we present an evolutionary approach to
autonomously optimizing fast forward gaits on quadruped
robots. Our approach has proven to be very effective and



Fig. 4. The fastest learned walk.

has resulted in a 20% increase in speed over our previous
walking motion. The algorithm has many strengths over
alternate methods. We have shown that even if starting
from a random population the algorithm is able to match
the best previously known AIBO gait within a matter
of hours. The GA-based approach is resistant to noise
and avoids converging to local extremes. Additionally, we
believe that the results presented in this paper will benefit a
large number of other groups that have adopted our motion
model.

VI. ACKNOWLEDGEMENTS

We would like to thank the members of the CMPack
team, as well as James Bruce who originally developed
the motion system. We would also like to thank Matthew
Wall for making the GAlib package available.

REFERENCES

[1] M. S. Kim and W. Uther, “Automatic gait optimisation for quadruped
robots,” in Proceedings of the Australasian Conference on Robotics
and Automation, Brisbane, Australia, December 2003.

[2] N. Kohl and P. Stone, “Policy gradient reinforcement learning for
fast quadrupedal locomotion,” November 2003.

[3] RoboCup2003, “(http://www.robocup2003.org).” [Online]. Available:
http://www.RoboCup2003.org

[4] J. Chen, E. Chung, R. Edwards, N. Wong, E. Mak, R. Sheh,
M. S. Kim, A. Tang, N. Sutanto, B. Hengst, C. Sammut, and
W. Uther, “A description of the runswift 2003 legged robot soccer
team,” University Of New South Wales, Tech. Rep., 2003. [Online].
Available: http://www.cse.unsw.edu.au/ robocup/reports.html

[5] P. Stone, K. Dresner, S. Erdogan, P. Fidelman, N. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan,
“Ut austin villa 2003: A new robocup four-legged team,” University
Of New South Wales, Tech. Rep., 2003. [Online]. Available:
http://www.cs.utexas.edu/users/AustinVilla/legged/2003/

[6] J. Bruce, S. Lenser, and M. Veloso, “Fast parametric transitions
for quadrupedal locomotion,” in Prodeedings of the International
Conference on Intelligent Robots and Systems., November 2003.

[7] T. Back, “Optimization by means of genetic algorithms,” in
36th International Scientific Colloquium, E. Khler, Ed., Technical
University of Ilmenau, 1991, pp. 163–169. [Online]. Available:
citeseer.ist.psu.edu/71967.html

[8] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Berkeley, CA, Tech. Rep. TR-95-012, 1995. [Online]. Available:
citeseer.ist.psu.edu/article/storn95differential.html

[9] CERAF, “CERAF (http://klobouk.fsv.cvut.cz/˜ondra/about ga/ceraf.html).”
[Online]. Available: http://klobouk.fsv.cvut.cz/˜ondra/about ga/ceraf.html


