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Abstract— We present an approach for scale recovery from
monocular stereo images of an endoscopic camera with simul-
taneous registration to dense 3D surface models. We assume
the camera motion to be unknown or at least uncertain.
An example application is the registration of endoscope
images to pre-operative CT scans that allows instrument
navigation during surgical procedures. The application field
is not restricted to the medical field. It can be extended
to registration of monocular video images to laser-based
surface reconstructions in, e.g., mobile navigation area or to
autonomous aircraft navigation from topological surveys. A
novel way for depth estimation from arbitrary camera motion
is presented.

In this paper, we focus on the robust initialization of
the system and on the scale recovery for the reconstructed
3D point clouds with accurate registration to the candidate
surfaces extracted from the CT data. We provide experimen-
tal validation of the algorithm with data obtained from our
experiments with a phantom skull.

I. MOTIVATION

In endonasal surgery and other medical minimally inva-
sive procedures, an endoscopic camera is used to provide
information about the current instrument location to the
surgeon. Since some sinus surgical procedures are close to
optic nerves, the eyes, and the brain, surgeons require the
best possible information during the surgery to guide the
surgical instruments inside of the nasal cavities (Fig. 1).

Fig. 1. Endoscopic inspection of the nasal Sinus cavities depicting the
limited information provided to the surgeon.

The necessary information is supplied primarily through
the endoscope requiring from the surgeon a good knowl-
edge of anatomy.

Computer Integrated Surgery techniques has been em-
ployed in the endonasal approach. Image-guided surgery
system (IGS), that integrates pre-operative medical images
with the endoscope information, supplies valuable infor-
mation beyond what the endoscope alone can provide.

In IGS, data from a preoperative CT scan is downloaded
into the computer in the operating room and localizers are
attached to surgical instruments. Once the patient’s head

position is registered, the software provides the surgeon
with the 3D location of the tip of the instrument visualized
relative to the pre-operative CT-scan. The current frame-
less registration method for IGS is based on anatomic
fiducial points or based on contour mapping [6]. The
accuracy of registration is crucial for any image-guided
system. If registration errors occur, the localization ac-
curacy suffers. Therefore, the operating surgeon must re-
align the registration at several points in the operative field
throughout the procedure.

Fig. 2. Our experimental sys-
tem with the Johns Hopkins Steady
Hand Robot and an OPTOTRAK

system for accuracy validation.

In our JHU-Steady
Hand Surgical Robot Sys-
tem [9], we incorporate the
surgeon in the loop. The
surgeon holds the instru-
ment and moves it the
same way s/he does it
in traditional surgery. The
robot reads surgeon’s in-
put and provides appropri-
ate assistance to him, such
as: to avoid collisions be-
tween instruments and im-
portant anatomical structures, and to guide the surgeon to
the target accurately. With the assistance of the robot, the
surgeon is released from dealing with trivial issues such
as the fine control of the motion of the instruments. S/he
can concentrate on the surgical region of interest [7]. In this
kind of a robotic assistant system, the registration accuracy
and the real-time aspects are crucial. In our system, we
use a new registration method, which can validate the pre-
surgical registration and update the system in real time
without distracting the surgeon with the additional task of
landmark localization. In this way, the autonomy of the
navigation system is significantly increased.

Fig. 3. The Endoscope
relative to the CT scan.

Our approach addresses the
problem of registration of the
endoscopic images to the pre-
operative CT-scan without the us-
age of external fiducials. The pre-
sented system recovers a scaled
3D structure of the inspected en-
donasal cavity from endoscopic
images and registers it to the sur-
face points of the CT scan. This
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way, the position of the instrument is localized in the frame
of the CT scan that can now be used for virtual fixtures
and path planning (Fig. 3) [4].

The presented task requires a Simultaneous Localization
and Mapping capability in the given environment. The
3D structures need to be reconstructed in parallel to the lo-
calization from the monocular image stream. The problem
of Simultaneous Localization and Mapping, also known as
SLAM, has attracted immense attraction especially in the
mobile robotics literature. SLAM addresses the problem of
building a map of an environment from a sequence of land-
mark measurements obtained from a moving system. Since
the motion especially of hand-operated devices is unknown,
the mapping problem induces a localization problem to
register the image frames relative to each other. The
dominant approach to the SLAM problem was introduced
in a seminal paper by Smith, Self, and Cheeseman [8]. This
paper proposed the use of the extended Kalman filter (EKF)
for incrementally estimating the posterior distribution over
the robot pose along with the positions of the landmarks.
Many popular SLAM implementations use laser range in-
formation as input to the process to simplify the estimation
process to a pure localization and mapping since laser
range finders estimate directly the 3D locations of the
imaged points. We extended this approach to a vision-based
system where the information from a monocular camera is
used as input [1], [2].

The paper is structured as follows. In Section II, we
describe the underlying processing that allows us to recover
the 3D-structure and the motion from monocular image of
the endoscopic camera and the way we align the data using
a modified ICP approach. In Section III, we present some
experimental results on the phantom skull. We conclude in
Section IV with an evaluation of the presented approach
and present our future research goals.

II. APPROACH

We presented already in [1] a system that localizes
a monocular camera based on tracked landmarks in the
image. This system uses a Sum of Square Distances
(SSD) tracking algorithm [3] to establish correspondences
between two images. The geometrical relation between
the tracked features was known from a teaching step. We
presented an extension to this approach that performs geo-
metrical mapping of the features in parallel to the camera
localization (SLAM) and, therefore, omits the necessity
of a dedicated teaching step in [2] that was necessary to
build the model representation a-priori. The problem in our
SLAM extension is the recovery of the correct scale for the
reconstruction. In case of a mobile robot, the correct scale
is not always necessary. In applications, where the system
is used as a replacement for the inertial unit, merely the
orientation of the robot may be of interest. On the other
hand, the scale can also be recovered using the odometry
information. The situation is different in the presented case
of endoscopic surgeries. Our goal was the development of
a camera navigation system that could be used in freehand
endoscope procedures without the assistance of the robot

as well. The 3D information of the CT scan that defines the
reference frame for our localization turns out to provide all
the necessary information for the scale recovery.

In this section, we recapitulate the key steps of our
vision-based reconstruction, followed by a detailed discus-
sion of the scale recovery and alignment of the camera data
to the CT surface data.

A. Localization and Mapping Step.

A known solution for recovery of the camera motion,
in cases where eight point correspondences between the
two images can be established, is the eight-point-algorithm.
The recovered Essential Matrix contains the information
about the translation direction T ′ and rotation R between
the images. The translation information can be recovered
just up to a scale because of the way, how this matrix is
constructed [10].

In our case, the number of corresponding (detectable)
points between two camera frames varies significantly
during the sinus surgery. There are situations, when less
than eight points can be matched. The above approach
fails in these cases, therefore, we use it just to bootstrap the
system and switch to our new localization method requiring
merely 3 point correspondences afterward. We will sketch
out the process below.

1) Feature Extraction: The algorithm described below
assumes that point features are extracted from the images,
which uniquely represent a specific area in them. Possible
features are: intersections of contours resulting from edge
filters or the areas themselves.

The problem in real endonasal images is the sparse
density of points that actually can be used for a model
reconstruction. Another problem that we needed to ad-
dress here is the moving light source, which is attached
to the endoscope (Fig. 2). This violates the brightness
constancy assumption in most common stereo algorithms.
We obtained preliminary results showing that the blood
vessel structure provides sufficient information for tracking
(Fig. 1). In real images, we compensate the brightness
variations by running a gradient filter on the original
images and doing an SSD search on the resulting gradient
images.

Fig. 4. Example of corresponding
points on our phantom.

Our current results
are based on experi-
ments with a phantom
skull. This skull does
not have any detectable
texture. We added col-
ored points on the sur-
face that we segment in
the hue space of the color representation. This way, we
are able to identify and track the point features in image
sequences using a simple color blob tracker despite the
changing lighting conditions (Fig. 4).

2) Motion Estimation: We assume that each 3D
point Pi imaged in a unifocal camera frame pi = (uivi1)T

can be represented by its direction vector ni = pi/||pi|| and
the distance to the real point Di to Pi = Di · ni. Since in



typical applications the scale m of the reconstruction may
be unknown, the system can also operate with a scaled
version of the distance λi = Di/m. In our approach, we
calculate an estimate for the rotation R̃ and the scaled
translation T

′∗ between the points {Pi} in the current
frame and points {P ∗

i } in the next frame to
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n
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T
, [U D V T ] = svd(M̃),

R̃ = V · UT , T′∗ = P̄ ∗ − R̃∗P̄ .

(1)

The approach requires an initial knowledge of the values
for λi for the first frame and it estimates a guess for
translation T

′∗ and rotation R̃ from the bootstrap proce-
dure. In the first iteration step, it assumes λ′

i = λi and,
afterward, it iteratively converges to the true R̃,T′∗ by
updating λ′

i. Details and simplifications of the algorithm
are discussed in [1]. This algorithm requires a minimum of
three corresponding points between both images to actually
compute the pose difference between two camera frames
(R̃,T′∗), which makes it more suitable for the given
application.

This step requires a knowledge about the scaled relation
between distances to the observed features {λi}. The
resulting 3D reconstruction has the same scale m as the
initial distances λi.

3) Initialization: The function of the algorithm de-
scribed in the previous section relies on the knowledge
of the values λi for one of the images. During the steady
state of the operation, these λi values are updated based
on the motion estimates (R̃,T′) in (1).

In the initial step or in cases, where the number of
available corresponding points between the two images is
smaller then the minimum set of three points, there are two
ways to initialize the system:

- the eight-point-algorithm based on the estimation of
the Essential Matrix of the system from 8 point cor-
respondences that provides the necessary information
about (R̃,T′∗);

- manual feature selection in the endoscope image,
where the user selects three points with known cor-
respondences to 3D surface data and the system uses
this information to build a map of the entire space.

Fig. 5. Initialization based on known points (larger points in the image)
with known geometrical distances to each other or from minimum of eight
point correspondences between the smaller points.

Eight point correspondences allow us to calculate
the so called Essential Matrix using the eight-point-

algorithm [10]. The Essential Matrix Ẽ consists of the
product of the two matrices Ẽ = R̃ · sk(T) with R̃ being
the rotation matrix and sk(T) being the skew matrix of the
translation vector T.

This allows us to calculate the rotation matrix R̃. We can
solve for normalized T

′ from Ẽ by calculating the position
of the epipole [10] representing directly the translation
vector between the two images.

This way we are able to calculate a modified form of
the point transformation equation as (2)

λ∗
i n

∗
i = R̃ · λini +

T

m
(2)

with an unknown scaling factor m [10].
We calculate the values for the scaled distances {λ∗

i , λi}
from (2) to

(
λ∗

i

λi

)
=
(
n
∗
i

− R̃ni

)−1

·
T

m
(3)

Eq. (3) has a similar form to the regular disparity
equation for co-planar stereo systems with the important
difference that it directly describes the depth relations on a
complete surface of the projection sphere. Since the camera
positions here are different for both images, the system
estimates both depths directly instead of the disparity value
that implies a constant depth from both images. The result
is expressed in spherical instead of Cartesian coordinates,
which allows simpler expressions for the depths. It cor-
responds better to the principal way how camera imaging
works. A typical camera is measuring the angles of incident
of the light rays losing the information about the radial
distance to the imaged point.

We tested the other alternative - manual initialization - as
well. In this case, we used points with known geometrical
relations (large red dots in Fig. 5). The position of the
points was verified with the Northern Digital OPTOTRAK

system and used to initialize the system. This arrangement
allows to estimate directly the scale of the reconstruc-
tion m = 1, but it has the disadvantage of the manual
selection at the beginning to find the corresponding points.
We simplified the procedure on the phantom skull by using
dots with a different color. In real endoscope images, the
surgeon has to define the initial correspondences.

In this case, we calculate the projections of n ≥ 3 non-
collinear points {Gi} onto a virtual camera plane parallel
to the plane E defined by them and by moving the focal
point of the projection by a given distance h away from the
point cloud. We estimate the rotation matrix R̃e between
the world coordinate frame of the points {Gi} and the local
camera frame as follows

Ḡ = 1
n

∑n

i=1 Gi, v1 = G1 − G2, v2 = G3 − G2,

normal vector to E : ne = v1×v2

||v1×v2|| =




nex

ney

nez




n⊥ =
(0 nez −ney)T

||(0 nez −ney)T || ⇒ R̃e = ((n⊥ × ne) n⊥ ne)
(4)



The rotation matrix R̃e in (4) is used to rotate the
points {Gi} to {G∗

i } in the coordinate frame of the camera
parallel to the plane E . The subtraction of the mean value Ḡ
lets the optical axis in the virtual view intersect the mean
point Ḡ.

G∗
i = R̃

T
e · (Gi − Ḡ) = (xi, yi, zi)

T (5)

Assuming that the projective geometry of the camera is
modeled by perspective projection [5], a point G∗

i , which
coordinates are expressed with respect to the camera with
a focal length f = 1, will project onto the image plane at
coordinates p = (ui, νi)

T .
We calculate the vector ni and the initial length λi in (2)

to

ni =
(ui νi 1)T

||(ui νi 1)T ||
, λi =

√
x2

i + y2
i + z2

i . (6)

These values represent the distances and projections
for the assumed coplanar camera view. We use them in
the algorithm described in the section II-A.2 to estimate
the initial values for the true orientation and distances to
camera in the initial frame. This orientation is generally
not identical with the coplanar assumption made in (4),
but the true values are easily calculated using the presented
iterative algorithm.

Note, that even though the estimates for the initial step
may be erroneous, small deviations can be tolerated and
the correct values for the distances {Di} can be estimated
after the final alignment of the data with the 3D surface.

4) Addition of New Features: As already presented
in [2], Eq. (1) updates the distance values for all tracked
points P ′

i for the new frame. New points can easily be
added to the system utilizing the rigid body assumption
for the imaged points by solving (7)

(
R̃nx − n

∗

x

)( λx

λ∗

x

)
= R̃λ1n1 − λ∗

1
n
∗

1
(7)

or in a more robust way from 3 frames to (8)
(

R̃1nx −n∗

x
0

R̃2R̃1nx 0 n∗∗

x

)( λx

λ∗

x

λ∗∗

x

)
=

=

(
R̃1λ1n1 − λ∗

1n
∗
1

R̃2R̃1λ1n1 − λ∗∗
1 n

∗∗
1

)
. (8)

The pose change from image 1 → 2 is annotated here
as (R̃1,T1) and the pose change between images 2 →
3 is annotated as (R̃2,T2). This equation estimates the
distance λx to a new point Px in the scale of an already
known point P1 from the currently tracked set of points.
This way the newly added points are still measured with
the same scaling factor m and the resulting 3D model has
a uniform scale.

B. Scale Recovery for 3D Reconstruction

The scaling factor m in Section II-A depends on the
scale of the λi-values for the initial set of points Gi (6).
In case of an unsupervised bootstrap using the eight point
algorithm (Sec. II-A.3) the resulting reconstruction has an

arbitrary scale that depends on the scale of the translation
vector T

′, which is usually assumed to be a unit vector.
The system has a usually a rough estimate of the current

camera position. We use this estimate to carve out part of
the CT surface data that falls into the expected visibility
cone of the camera. This cone is slightly enlarged in all
directions to compensate for the unknown camera motion.
The size of the extracted patch depends on the uncertainty
about the camera position.
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Fig. 6. Scaled reconstruction of surface points: (left) CT scan visual-
ization of the area, (right) matched surface points with ICP {left point
cloud}, scaled reconstructed points {right point cloud}.

The visible regions are usually surfaces with two domi-
nant directions of the cavity walls with a third dimension
representing the surface structure or combinations of such
walls. We assume for now that the CT data patch consists
of a single surface with some surface structure on it. We
will discuss below, how to split more complex structures
into simpler planar patches.

We use the property of two dominant surface direc-
tions for our scale recovery by calculating the covariance
matrix C̃k of the point cloud in the selected CT scan
region and in the current camera reconstruction. The eigen-
values and eigenvectors of C̃k define a new coordinate
system with the two eigenvectors calculated from the larger
eigenvalues defining the supporting plane in the cloud and
the third eigenvector describing the depth variation in the
measurement.

In both cases, the smallest eigenvalue (Ect, E3d) rep-
resents a metrics for the depth variations in the surface
of the CT scan and in the reconstructed point cloud.
The normalized eigen-vectors {Vctx} and {V3dx} and the
eigenvalues allow us to calculate the scale m and the
rotation R̃tot between the two data sets to (9). The rotation
matrix R̃tot aligns both dominant surfaces along their
normal vectors, which are represented by the eigenvector
calculated from the smallest eigenvalue (last column in
each of the rotation matrices in (9)). The rotation around
the normal vector cannot be restored in this way.

m =
√

Ect√
E3d

, Vp∈{CT,3D} = (Vpx Vpy Vpz)
T ,

Vn−p =
(0 Vpz −Vpy)T

||(0 Vpz −Vpy)T ||

R̃ct =
(

(Vn−ct × Vct) Vn−ct Vct

)
,

R̃3d =
(

(Vn−3d × V3d) Vn−3d V3d

)
,

R̃tot = R̃3d · R̃T
ct

(9)

We apply the scaling m and rotation R̃tot to the zero
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Fig. 7. After the alignment along the normal vector to the supporting
plane the scale is roughly recovered, but rotation around the normal vector
is possible.

mean point clouds that were used to calculate the covari-
ance matrices above. This way, we obtain two point clouds
with the same alignment, but the CT-scan represents a
much larger area because of the expected unpredictable
camera movement. Both clouds have a similar scale and
alignment of the supporting plane. Fig. 7 depicts an align-
ment result of the scaled point cloud in the top right corner
to the 3D surface from the CT scan. The transformed
points may have a significant rotational error around the
normal vector visible in the above figure as crosses (’+’).
We correct this error in the next step.

We consider now both rotated clouds as sparse ”images”,
where each ”pixel” is represented by its distance to the
plane calculated from the covariance matrix. We use the
reconstructed 3D structure from the current view as a
template that is matched to the ”image” constructed from
the CT scan data using standard coarse-to-fine pattern
matching techniques. Significant points {Si}ct, {Sj}3D

with large deviation above a threshold εd from the support-
ing planes Ect, E3D are identified in both ”images” first.
Three points from the set {Sj}3D are randomly picked.
The most significant of them is matched to a similar
value in {Si}ct and the other two are searched based on
distance from the first point and their value. This match is
verified and refined based on the remaining points from the
reconstruction. If a specific selection fails a new set of three
points is generated from the {Sj}3D set. The process is
similar to an SSD match with the only difference here that
both ”images” have different non-equidistant samplings.

The physical position of the sampling points, especially
in the 3D reconstruction, does not necessarily correspond
to the extreme values of the surface hull. Therefore, the
above match trial can fail for a specific set of three points.
The 3D reconstruction may not have reconstructed the peak
value but some random value along the slope instead.

The resulting match is used to align the two data sets.
The residual error is due to imperfect sampling and the
coarse structure of the point sets, especially in the case of
the reconstructed data from the phantom skull.

The 3D scaling step needs to be performed just in the
initial bootstrap phase and in cases when the system was
not able to maintain the minimum number of three features
and needs to re-initialize the distance measurements.

In case, when the CT or the reconstructed data set
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Fig. 8. The two surfaces need to be separated first, before our PCA-based
scale recovery can be applied.

contains two or more surfaces in a corner arrangement
(Fig. 8), the structure needs to be split into single surfaces
before we apply the above scaling. We use a modified
version of a split-and-merge algorithm here. We establish
for the entire data-set the plane equation of the supporting
plane A based on C̃k and (9). For each point Pi of the
data-set, we calculate the distance di from the plane

di = (Pi − P̄ ) · Vn (10)

with Vn being the normal vector of the estimated plane A.
Point with the largest deviation from the original plane A

and border points on both sides of the data set are used
to split the original surface consecutively into sub-surfaces
defined by these points. Each three points define one sub-
surface. We split the points of the original surface into
sub-surfaces depending on the distances to the resulting
sub-planes. The above evaluation is repeated on the sub-
surfaces until the maximum deviation max{di} is smaller
than the expected depth structure in the surfaces.

C. Iterative Closest Point (ICP) Alignment

At this point, we have reconstructed and localized the 3D
dataset with endoscopic images, which has right scale and
similar orientation and translation in the coordinate frame
of the CT scan.

Rigid registration between CT images and physical data
reconstructed by endoscopic images is achieved using the
Iterative Closest Point (ICP) algorithm. For some applica-
tions in the endoscopic surgery, a deformable registration
method can be further applied based on the results of the
ICP.

We use a covariance tree data structure to search for the
closest point for ICP. A covariance tree is a variant of a
k-dimensional binary tree (k-D tree). The traditional k-D
tree structure partitions space recursively along principal
coordinate axes. In our covariance tree each sub-space
is defined in the orthogonal coordinate system of the
eigenvectors centered at the center of mass of the point set,
and is recursively partitioned along this local coordinate
frame. An important advantage of covariance trees is that
the bounding boxes tend to be much tighter than those
found in conventional k-D trees and tend to align with
surfaces, thus producing a more efficient search [11].
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Fig. 9. 3D reconstruction results in camera coordinate frame from
2 reconstructions: (left) small rotation in addition to the translation, (right)
significant rotation that still allows to detect the corresponding points in
both images.

III. EXPERIMENTAL RESULTS

Fig. 9 shows the results of the 3D reconstruction from
our phantom skull marked with ’+’ compared to a recon-
struction based on the OPTOTRACK information that we
used as ground-truth for our experiments. In this case,
the scale was m = 1 for better comparison between the
3D points.

The above results show that the system is capable
of estimating the motion between two images without
external information. The errors in the motion estimates
for the above examples are: the rotational error expressed
as Rodigues vector r=(0.0017, 0.0032, 0.0004), (-0.0123,
-0.0117, -0.0052) and the translational error ∆T =
(0.05,−0.398, 0.2172)T , (−0.29, 0.423− 0.4027)T [mm].

We tested our registration with different reconstruction
results (patches) that were registered to CT skull images.
Because the reconstructed 3D surface data may not cover
the whole surface patch, we were interested in the sensitiv-
ity to drop-outs. We deliberately removed parts of the data
from the reconstructed patch. Our experiments with the
phantom show that the ICP can compensate noise levels in
the data up to 0.6mm, combined with translational offsets
up to 10mm, and rotational offset within 10 degrees. The
vision-based reconstruction gives us errors an order of
magnitude below these limits.

Fig. 10. The relative displacements of the sparse samples (+), their initial
position recovered by VGPS(*) and their final position after alignment by
ICP (o). Left is the global view of the sample data for a patch. Right is
the close look.

After ICP alignment, the average distance error for the
sample points is around 0.65mm. This compares favorably
to the fiducial-based registration, whose residual error is
around 0.40mm for four fiducials that are attached to the
surface of the skull. However, our method directly tells the
registration error of the target region for the surgery. The
target residual error (TRE) calculated from fiducial residual
error (FRE) is around 1.25mm.

The system is capable of running with a frame rate of
10Hz on a Pentium 4 2GHz processor running LinuxOS
for the tracking and a SLAM part of the system.

IV. CONCLUSIONS AND FUTURE WORK

The presented system allows an accurate reconstruction
of 3D surface points and their registration to 3D surface
data from CT scans or laser-range finder reconstructions.
The points are successfully aligned with the surface mod-
els. In case our example application in endonasal surgery,
the reconstructed points were successfully aligned with the
CT scans of our phantom skull in the sinus area without the
use of implanted fiducials. Our vision-based localization
was an order of magnitude better than the fiducial-based
method due to error accumulations in the steps involved in
the other process.

Our major goal is to test more extensively our system
in different parts of the skull and on other range images
to better evaluate the performance of the system. We are
currently investigating the feature type that can be used for
a robust estimation and tracking of our point features in real
endonasal images obtained in a preliminary experiment on
a human subject.
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