
Classification of Robotic Sensor Streams
Using Non-Parametric Statistics

Scott Lenser and Manuela Veloso
Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
Email: slenser,mmv@cs.cmu.edu

Abstract— We extend our previous work on a classification
algorithm for time series. Given time series produced by dif-
ferent underlying generating processes, the algorithm predicts
future time series values based on past time series values
for each generator. Unlike many algorithms, this algorithm
predicts a distribution over future values. This prediction
forms the basis for labelling part of a time series with
the underlying generator that created it given some labelled
examples. The algorithm is robust to a wide variety of possible
types of changes in signals including mean shifts, amplitude
changes, noise changes, period changes, and changes in signal
shape. We improve upon the speed of our previous approach
and show the utility of the algorithm for discriminating
between different states of the robot/environment from robotic
sensor signals.

I. I NTRODUCTION

Segmentation of time series into discrete classes is an
important problem in many fields. We approach the prob-
lem from the field of robotics where time series generated
by sensors are readily available. We are interested in using
these signals to identify sudden changes in the robot’s
environment. By identifying these changes in the sensor
signals, the robot can intelligently respond to changes in
its environment as they occur. For this application, the
signal segmentation must be performed in real time and
on line. Therefore, we are focused on algorithms which
are amenable to on-line use. Also, usually mathematical
models of the processes that generate the sensor signal
are unavailable as are the number of possible generating
processes. Therefore, we are focused on techniques that
require very little a priori knowledge and very few assump-
tions. In particular, we are focused on techniques where the
number of generating processes (or classes of signals) is
unknown in advance and where generator models for each
class are unavailable.

In previous work [1], we developed a technique for seg-
menting a time series into different classes given labelled
example time series. In that work, we broke the time series
into windows and used distance metrics over probability
densities to determine from which class each window was
generated. In subsequent work [2], we introduced a new
algorithm that allows for smaller window sizes, puts the
segmentation on a strong probabilistic foundation, and
takes into account the conditional dependence of time
series points on points in the recent past. In this work, we
improve on the speed of the algorithm. We also show that

the newer algorithm works for a wide variety of signals
generated from robotic sensors.

We have named the new algorithm for classifying time
series the Probable Series Classifier (PSC). It is based on
a time series prediction component which we will refer
to as the Probable Series Predictor (PSP). It generates
predictions based upon an internal non-parametric model
which is trained from an example time series. PSP uses
this model and the most recent values from a time series
to predict likely future time series values. PSP is typically
used to predict the next value in a running time series based
on recent observed values, as a new observation is obtained
the process is repeated. Unlike many other methods, PSP
does not predict a single next value for the time series,
but instead predicts aprobability densityover next values.
PSP is capable of making multi-model predictions which
is important in order to represent realistic time series. PSC
uses several PSP modules to classify a time series into one
of a set number of pre-trained generator classes. PSC uses
one PSP module per generator class. Each PSP module is
pre-trained from an example time series from a generator
classes. To classify an unknown time series, PSC runs each
PSP module on it and chooses the most predictive one as
the predicted class label.

There has been much interest in time series analysis
in the literature due to the broad applicability of time
series techniques. There have also been many approaches
to time series predictions, most of which are focused on
producing a single predicted value, such as the various
ARIMA models (e.g. [3]). All of these techniques produce
a single estimated next value in the time series. In contrast,
we generate a distribution over next values. These ARIMA
models are also not class-based, which makes them better
suited for time series produced by a single underlying
process or underlying processes that vary continuously.
PSC, on the other hand, is tuned for situations where the
time series is produced by a set ofdiscrete underlying
processes. These differences make these other algorithms
suited for a different class of problems than PSC.

There are also a wide variety of algorithms based on
classes, particularly in the domain of fault detection and
identification (FDI). These FDI algorithms (e.g. [4], [5])
are usually specialized for the case of two classes, one
which represents normal operation of the system and
one which represents a failure. Because it is difficult



to gather data on failure cases, these algorithms focus
on confirming/denying the hypothesis that the system is
working correctly. This focus results in algorithms that
have a one-sided test where the decision of working/failure
is based entirely on the properties of the normal case which
results in less knowledge being needed at the cost of some
resolution power. Also, most of the algorithms are further
specialized for detecting particular types of changes in the
signal. Detecting mean shifts in the signal is a particularly
common specialization while other algorithms specialize in
variance changes.

We take a very general approach where we detect a wide
variety of types of changes to the signal which sets PSC
apart from these other techniques. There has also been a
lot of interest in HMMs and switching state-space models,
e.g. [6], [7]. These techniques require an a priori knowledge
of the underlying structure of the system, which is not
available for the robotic signals we are interested in. PSC
does not require as much knowledge about the system
structure, as we only require labelled time series examples.

II. PROBABLE SERIESCLASSIFIER ALGORITHM

A complete description of the PSC algorithm can be
found in our previous work [2]. An abbreviated description
is provided here for easy reference.

Consider a time series of values~x0, ~x1, . . . , ~xt generated
by k distinct Markov generators. At each point in time,
one of the generators is active and generates the next data
value in the time series based upon its hidden state and
the previous time series values. We are interested in using
the time series of values to recover which generator was
active at each point in time using only example time series
created by each generator.

The belief state at timej for generatorci is the proba-
bility of it being active at timej:

B(ci,j) = P (ci,j |~xj , ~xj−1, . . . , ~x0)

=
P (~xj |~xj−1, . . . , ~x0, ci,j) ∗ P (ci,j |~xj−1, . . . , ~x0)

P (~xj |~xj−1, . . . , ~x0)

We take a maximum likelihood approach, and are interested
in finding ci that maximizes this probability.

Note thatP (~xj |~xj−1, . . . , ~x0) is just a normalizing con-
stant and thus doesn’t affect whichci has the maximum
likelihood. Furthermore, we will make the simplifying as-
sumption that the effective information found in time series
values more thanm time steps in the past is negligible,
given more current readings. This assumption simplifies
P (~xj |~xj−1, . . . , ~x0, ci,j) to P (~xj |~xj−1, . . . , ~xj−m, ci,j).

P (ci,j |~xj−1, . . . , ~x0)

=
∑

l

P (ci,j , cl,j−1|~xj−1, . . . , ~x0)

=
∑

l

P (ci,j |cl,j−1, ~xj−1 . . . ~x0)P (cl,j−1|~xj−1 . . . ~x0)

=
∑

l

P (ci,j |cl,j−1) ∗B(cl,j−1)

Here we have assumed thatci,j is independent of observa-
tions before timej given cl,j−1 for all l.

These assumptions simplify the problem to finding the
ci that maximizes the following equations providing a
recursive solution:

B(ci,j) ∝ P (~xj |~xj−1, . . . , ~x0, ci,j) ∗ P (ci,j |~xj−1, . . . , ~x0)
≈ P (~xj |~xj−1, . . . , ~xj−m, ci,j) ∗ P (ci,j |~xj−1, . . . , ~x0)

= P (~xj |~xj−1 . . . ~xj−m, ci,j)
∑

l

P (ci,j |cl,j−1)B(cl,j−1)

This belief update equation is useful for segmentation
and classification. Our Probable Series Classifier algorithm
uses this equation for classification by finding the generator
class that maximizes the probability of an unknown time
series (using PSP for some key calculations). The probabil-
ity of the unknown time series of lengthw for a generator
ci can be calculated using the following equations where
we assume thatP (ci,j |cl,j−1) = 0 for i 6= l and the initial
beliefs over all generator classes are equal.

B(ci,j)

∝ P (~xj |~xj−1 . . . ~xj−m, ci,j)
∑

l

P (ci,j |cl,j−1)B(cl,j−1)

= P (~xj |~xj−1, . . . , ~xj−m, ci,j) ∗B(ci,j−1)

= B(ci,j−w)
i∏

l=j−(w−1)

P (~xl|~xl−1, . . . , ~xl−m, ci,l)

∝
i∏

l=j−(w−1)

P (~xl|~xl−1, . . . , ~xl−m, ci)

III. PROBABLE SERIESPREDICTORALGORITHM

We need a prediction of the likelihood of new time
series values based upon previous values and the current
generatorci, P (~xj |~xj−1, . . . , ~xj−m, ci,j). Note, thatci is
known in this case. Assume we have previous time series
values generated by this generator. Using these examples
and recent time series values, we can estimate the time
series value at timej. We will focus on the case where
m = 1 and~x is a single dimensional value. We have:

• a set of value pairs~xi,~xi−1

• a value at timej − 1: ~xj−1

We need to generate a probability for each possible
~xj . We can use non-parametric techniques with a locally
weighted approach. The problem is visualized in Figure 1.
We need to introduce some terminology to more easily
discuss the problem.

base value(s)The time series value(s) used in gener-
ating a predicted value, i.e. those on which the output
is conditioned. In the case ofm = 1, this is just~xj−1.
The conditioning on the generator is accomplished by
having a separate model for each generator.

output value The value output by prediction.
model points Points in base/output space in the train-
ing data for a generator. These points form the model
for this generator. Each point is a pair of values:
an output value~xj and associated base value(s)
~xj−1, . . . , ~xj−m.



base value

base value

ou
tp

ut
 v

al
ue

ou
tp

ut
 v

al
ue

w
ei

gh
t

probability

Fig. 1. Data prediction. The dots in the main graph show the data
available for use in prediction. The grey bar shows the range of values
used in the prediction. The bottom graph shows the weight assigned to
each model point. The left graph shows the contribution of each point to
the predicted probability of a value at time t as dotted curves. The final
probability assigned to each possible value at time t is shown as a solid
curve.

prediction query A query of the model which pro-
vides~xj−1, . . . , ~xj−m as input and generates a prob-
ability density over~xj as output.

query base value(s)The base value(s) in the predic-
tion query.

We will generate a probability density by generating
a weighted set of output value predictions, one from
each model point. A kernel is used that assigns more
weight to model points with base value(s) near the query
base value(s). The predicted output values must then be
smoothed to form a continuous probability density.

We use a bandwidth limited kernel over base value(s) to
weight model points for speed reasons. The kernel used is
the tri-weight kernel:

Kt(x, h) =
{

(1− (x/h)2)3 if |x/h| <= 1,
0 otherwise

This kernel approximates a Gaussian but is much cheaper
to compute and reaches zero in a finite bandwidth. The
finite bandwidth allows most points to be eliminated from
further processing after this step. The bandwidthh is a
smoothing parameter that must be selected that controls the
amount of generalization performed. From non-parametric
statistics, it is known that in order for the prediction to
converge to the true function, asn → ∞ (the number
of model points), the following two properties must hold:
h → 0 andn ∗ h →∞. These properties ensure that each
estimate uses more data from a narrower window as we
gather more data. We use a ballooning bandwidth for our
bandwidth selection. A ballooning bandwidth chooses the
bandwidth as a function of the distance to thekth nearest
neighbor. Since the average distance between neighbors

Procedure PredictOutput(generatormodel,basevalues)
let OP ← generatormodel.modelpoints
let D ← dist(OP.basevalues,basevalues)
Choosebasedist equal to thed

√
neth smallestd ∈ D.

let hb ← basedist+ noisebase
let pred ← {z.output value | z ∈ OP ∧

dist(z.basevalues, basevalues) < hb}
Perform correlation correction onpred.
let base ← {z.basevalues| z ∈ OP ∧

dist(z.basevalues, basevalues) < hb}
Chooseho that minimizesM(ho) over pred.
Return probability density equal to

pdf(z) =
P

i Kg(predi − z, ho)∗
Kt(basei − basevalues, hb)

TABLE I

PROBABLE SERIESPREDICTOR ALGORITHM.

grows as1/n, we choose a bandwidth equal to the distance
to the

√
n nearest neighbor, ensuring that the bandwidth

grows as1/
√

n satisfying the required statistical properties.
We add a small constantan to this bandwidth to ensure that
a non-zero number of points have non-zero weight. This
constant is chosen equal to the minimum amount of base
value change that is considered meaningful. Each model
point is assigned a weight by the base kernelKt which is
used to scale its prediction in the next stage.

We additionally constrain the approximation to use no
more than

√
n points by only using the

√
n nearest points

to the query base value(s). In the case of points that are
the same distance from the query base value(s), we use
newer model points in preference to older model points.
Constraining the number of points used is very important
for the speed of the algorithm because the bandwidth
selection takes timeO(m2) where m is the number of
points used. By enforcingm =

√
n, the total time for

bandwidth selection becomesO(
√

n
2) = O(n). This new

constraint drastically improves the speed of the algorithm
over our previous work (≈ 25x).

Figure 1 illustrates the PSP algorithm. The dark circles
represent model points. The x/y axes shows the base/output
values, respectively. The dark vertical line shows the query
base value. The grey bar shows the range of values that fall
within the non-zero range of the base kernel. The graph
underneath the main graph shows the weight assigned to
each model point based on its distance from the query base
value. A prediction is made based on each model point
that is simply equal to its output value (we will refine this
estimate later). The dotted lines leading from each model
point used in the prediction shows these predicted output
values. PSP is described in pseudo-code in Table I.

The predicted output values must be smoothed to get a
continuous probability density. We will again turn to non-
parametric techniques and use a Gaussian kernel centered
over each point. A Gaussian kernel is used because it
assigns a non-zero probability to every possible outcome.
If we chose a bandwidth limited kernel, some regions
would have zero probability. These zero probability regions
would make entire sequences have zero probability for



some classes, a form of overfitting. The Gaussian kernel
used is:

Kg(x, h) =
1

h
√

2π
∗ e−(x/h)2/2

We need a method for selecting a bandwidth forKg,
the output kernel. We can’t reuse the ballooning method
because it would result in an invalid probability density
function which changes as you query it. This output
bandwidth can be found by a simple search if we first
choose a metric for determining the quality of a bandwidth.
The error we are interested in is the ratio of predicted to
actual probabilities. We chose to use the pseudo-likelihood
cross validation measure [8], [9]. This method is known to
minimize the Kullback-Leibler distance(for many classes
of probability densities [10]), a close proxy for the desired
error. The pseudo-likelihood cross validation method max-
imizes the likelihood of the data predicting itself over all
possible bandwidths under leave-one-out cross-validation.
The pseudo-likelihood cross validation measure is defined
as:

M(h) =
∏

i

∑
j 6=i

Kg(xi − xj , h)

PSP searches over all possible bandwidths from one cor-
responding roughly to expected measurement noise to one
corresponding to the range of possible values. The pseudo-
likelihood measure seems to be unimodal (at least over our
data). We have used this to speed up the search and have
noticed no degradation in performance over an exhaustive
search. The search is done by starting with a range over
all possible bandwidths. Five bandwidths are selected from
this range (one at each end plus three in the middle) such
that they have a constantratio. The maximum pseudo-
likelihood measure amongst these points is found. A new
range is chosen equal to the range between the sample
point smaller than the maximum and the sample point
larger than the maximum. The process is repeated until
the ratio between the top of the range and the bottom is
less than a constantγ (we usedγ = 1.2). The bandwidth
with the maximum pseudo-likelihood is then chosen as the
bandwidth. This new recursive bandwidth selection scheme
makes the algorithm run in60% of the time taken by our
previous exhaustive search.

As exemplified in Figure 1, there is usually a strong
correlation between the time series values at timet and
t− 1. This correlation causes a natural bias in predictions.
Model points with base values below/above the query base
value tend to predict an output value which is too low/high,
respectively. We can remove this bias by compensating
for the correlation betweenxt and xt−1. We calculate a
standard least squares linear fit betweenxt−1 andxt. Using
the slope of this linear fit, we can remove the bias in the
predicted output values by shifting each prediction in both
base value and output value until the base value matches
the query base value. This process is shown in Figure 2,
where we can see that the predicted output value can shift a
substantial amount, particularly when using points far from
the query base value. This correlation removal was used in
all the tests performed in this paper.

data at time t−1

da
ta

 a
t t

im
e 

t

linear fit

Fig. 2. Correlation removal. A linear fit to the model points (shown as
dots) is shown. The grey vertical bar shows the range of values actually
used in the prediction. The short solid lines show the effect of shifting
the model points to match the base value of the query while taking into
account the correlation. The hollow squares show the predicted output
values.

IV. EVALUATION

We evaluated the Probable Series Classifier (PSC) using
data logged by our robot as it performed various tasks.
The data was hand classified as a baseline for comparison
with the automatic classification. We used a standard Sony
AIBO ERS-210 for gathering all of our data.

A. Methodology

We generated a set of data series from the sensors on
our robot. We used two different sensors, a CMOS camera
and an accelerometer. Since PSC currently only supports
single dimensional data, we reduced each data series down
to a single dimensional data series. Each camera image
was reduced to an average luminance value (a measure
of brightness), resulting in a 25Hz luminance signal. The
accelerometer data is inherently three dimensional with
accelerations along three axes. We chose to use the axis
oriented towards the front of the robot (the other axes gave
similar results). The accelerometer data has a frequency of
125Hz. For each task, PSC was trained on a segment of
data for each possible class. PSC used a window of data to
generate each classification starting at the data item to be
classified and extending backwards in time, i.e. only data
that would be available in an on-line scenario was used for
classification. The PSC generated label was compared to a
hand generated label to ascertain accuracy. In some of the
signals, there were segments of the test signal that did not
correspond to any of the trained classes. These segments
were not used in calculating accuracy. We considered four
different classification tasks, two using each sensor stream.

B. Results

Each figure show the results from one task. The bottom
part of each figure shows the raw data signal used for
testing. Each of the other figures corresponds to one of the
trained classes. The class to which it corresponds is labelled
to the left of each graph. The thick black line running
through parts of each class graph indicates when this class
is the correct class according to the human generated
labelling. The small black dots show the probability that



 0
 0.2
 0.4
 0.6
 0.8

 1

ra
m

p

 0
 0.2
 0.4
 0.6
 0.8

 1

ca
rp

et

 0
 0.2
 0.4
 0.6
 0.8

 1

w
al

l

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  500  1000  1500  2000  2500  3000

ac
ce

le
ra

tio
n 

(g
)

time

Fig. 3. Use of accelerometer data to distinguish between walking down
a ramp, walking across a carpet, and walking into a wall.

PSC assigned to this class at each point in time (based
on a window of data prior to this time point). Ideally,
the probability would be 1.0 when the thick black bar is
present and 0.0 otherwise. In sections where the test data
series does not correspond to any of the trained classes,
the indicator bar is absent and the output of PSC for each
class is irrelevant. Table II summarizes the results achieved
by PSC.

TABLE II

ACCURACY OFPSCIN VARIOUS TEST CLASSIFICATION TASKS.

Task Sensor Accuracy
Walk stability Accelerometer 99.19%

Walk interference Accelerometer 78.49%
Lights playing Camera 64.69%
Lights standing Camera 93.77%

Figure 3 shows the results from the first accelerometer
task distinguishing between walking down a metal ramp,
across a soft carpet, and into a low wooden wall. This task
is labelled as “walk stability” in the results summary table.
PSC was trained on one example sequence and tested on a
completely separate sequence. Each class was trained using
500 examples, except 400 examples were used for training
the “ramp” class. PSC was tested on windows of size 50 (.4
seconds of data). PSC was tested after every 5 data points,
i.e. the window was moved 5 data points at a time. As the
graphs show, PSC does an excellent job of distinguishing
between these different walking conditions achieving and
accuracy of 99.19%.

Figure 4 shows the results from the second accelerometer
task distinguishing between playing soccer, walking into a
wall, walking with one leg hooked on an obstacle, and

 0
 0.2
 0.4
 0.6
 0.8

 1

w
al

l

 0
 0.2
 0.4
 0.6
 0.8

 1

pl
ay

in
g

 0
 0.2
 0.4
 0.6
 0.8

 1

ho
ok

ed

 0
 0.2
 0.4
 0.6
 0.8

 1

st
an

di
ng

-2

-1.5

-1

-0.5

 0

 0  10000  20000  30000  40000  50000  60000

ac
ce

le
ra

tio
n 

(g
)

time

Fig. 4. Use of accelerometer data to distinguish between playing soccer,
walking into a wall, walking with one leg caught on an obstacles, and
standing still.

standing still. The playing class includes a wide variety
of signals including walks in several different directions
and full body kicking motions such as diving on the ball.
This task is labelled as “walk interference” in the results
summary table. PSC was trained on example sequences
from the test sequence. In other tests, we did not observe
a noticeable difference between testing on training data
and testing on separate testing data. Each class was trained
using 5000 examples. PSC was tested on windows of size
125 (1 second of data), and was tested after every 100 data
points. PSC performed well overall, correctly classifying
78.49% of the test windows. PSC performed perfectly on
the standing still data. It had the most problems identifying
hooked on an obstacle (59.84% accurate), often confusing
it with playing (69% of errors for this class).

Figure 5 shows the results from the first camera task
distinguishing between bright, medium, dim, and off lights
while the robot is playing soccer. This task is labelled
as “lights playing” in the results summary table. PSC
was trained on one example sequence and tested on a
completely separate sequence. Each class was trained using
1000 examples. PSC was tested on windows of size 50 (2
seconds of data), and was tested after every 25 data points.
PSC performed fair overall, correctly classifying 64.69% of
the test windows. Most of the errors were due to problems
distinguishing between bright lights and medium lights.
Confusion errors between these two classes accounted for
54% of the errors the algorithm made during this test.



 0
 0.2
 0.4
 0.6
 0.8

 1

br
ig

ht
 li

gh
ts

 0
 0.2
 0.4
 0.6
 0.8

 1

m
ed

iu
m

 li
gh

ts

 0
 0.2
 0.4
 0.6
 0.8

 1

di
m

 li
gh

ts

 0
 0.2
 0.4
 0.6
 0.8

 1

lig
ht

s 
of

f

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

im
ag

e 
lu

m
in

an
ce

 (0
-2

55
)

time

Fig. 5. Use of average luminance from images to distinguish between
bright, medium, dim, and off lights while playing soccer.

 0
 0.2
 0.4
 0.6
 0.8

 1

br
ig

ht
 li

gh
ts

 0
 0.2
 0.4
 0.6
 0.8

 1

m
ed

iu
m

 li
gh

ts

 0
 0.2
 0.4
 0.6
 0.8

 1

di
m

 li
gh

ts

 0
 0.2
 0.4
 0.6
 0.8

 1

lig
ht

s 
of

f

 0

 20

 40

 60

 80

 100

 120

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

im
ag

e 
lu

m
in

an
ce

 (0
-2

55
)

time

Fig. 6. Use of average luminance from images to distinguish between
bright, medium, dim, and off lights while standing still.

Figure 6 shows the results from the second camera task
distinguishing between bright, medium, dim, and off lights
while the robot is standing still. The robot moved its head
to look at different objects. This task is labelled as “lights
standing” in the results summary table. PSC was trained on
one example sequence and tested on a completely separate
sequence. Each class was trained using 150–200 examples.
PSC was tested on windows of size 50 (2 seconds of data),
and was tested after every 10 data points. As the graphs
show, PSC excels at distinguishing between these different
lighting conditions, achieving an accuracy of 93.77%.

V. CONCLUSION

We have presented an algorithm for generating pre-
dictions of future values of time series and shown how
to use that algorithm as the basis for a classification
algorithm for time series. The algorithm is general in
that it is able to detect a wide range of changes to a
signal. The algorithm can be used to replace a collection of
algorithms tuned to detecting particular changes in signals
with one algorithm which can detect any change to the
signal. We proved through testing on robotic sensor data
that the resulting classification algorithm can be used to
differentiate between semantically different signal classes.

ACKNOWLEDGMENT

This research was sponsored by the United States Army
under Grant No. DABT63-99-1-0013. The content of the
information in this publication does not necessarily reflect
the position or the policy of the Defense Advanced Re-
search Projects Agency (DARPA), the US Army or the
US Government, and no official endorsement should be
inferred.

REFERENCES

[1] S. Lenser and M. Veloso, “Automatic detection and response to
environmental change,” inProceedings of ICRA-2003, 2003.

[2] ——, “Time series classification using non-parametric statistics,” in
Under submission.

[3] K. Deng, A. Moore, and M. Nechyba, “Learning to recognize time
series: Combining arma models with memory-based learning,” in
IEEE Int. Symp. on Computational Intelligence in Robotics and
Automation, vol. 1, 1997, pp. 246–250.

[4] M. Basseville and I. Nikiforov,Detection of Abrupt Change -
Theory and Application. Englewood Cliffs, N.J.: Prentice–Hall,
1993. [Online]. Available: http://www.irisa.fr/sigma2/kniga/

[5] M. Hashimoto, H. Kawashima, T. Nakagami, and F. Oba, “Sensor
fault detection and identification in dead-Reckoning system of
mobile robot: Interacting multiple model approach,” inProceedings
of the International Conference on Intelligent Robots and Systems
(IROS 2001), 2001, pp. 1321–1326.

[6] W. Penny and S. Roberts, “Dynamic models for nonstationary signal
segmentation,”Computers and Biomedical Research, vol. 32, no. 6,
pp. 483–502, 1999.

[7] Z. Ghahramani and G. E. Hinton, “Switching state-
space models,” 6 King’s College Road, Toronto M5S
3H5, Canada, Tech. Rep., 1998. [Online]. Available:
citeseer.nj.nec.com/ghahramani96switching.html

[8] J. D. F. Habbema, J. Hermans, and K. van den Broek, “A step-
wise discrimination analysis program using density estimation,” in
Proceedings of Computational Statistics (COMPSTAT 74), 1974.

[9] R. P. W. Duin, “On the choice of smoothing parameters of Parzen
estimators of probability density functions,” inProceedings of IEEE
Transactions on Computers, vol. 25, 1976, pp. 1175–1179.

[10] P. Hall, “On Kullback-Leibler loss and density estimation,” inThe
Annals of Statistics, vol. 15, 1987, pp. 1491–1519.


