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Abstracr - In 'hispaper, wepropose a fast Dpamic Viiibiliy 
Graph (DVC) for conmueting II reduced roadmap among 
converpolygonal obstacles. DVG b Pihaetedfrom the global 
environment with the simple geomefrie melhod and rules 
Moreover, the dofa preprocessing is based on the concept of 
V-circle. Through V-cide, theprocess is speeded np greatly. 
Final&, DVG b &ended lo deal with mwhi-largerprobkm 
lhal traditional& require a lo1 of rime for recomtructing 
configuration space (C-space). 

I. Introduction 
A study of finding the shortest path of a point among 

polygonal obstacles has teen discussed far a long time. 
Visibility graph (V-graph) proposed by Lozano-Perez and 
Wesley [I] is the classical method to deal with that problem. 
V-graph is a compact, undirected graph that registers visibility 
among vertices of obstacles. The V-graph algorithm is complete 
and easy to implement. However, it is difficult to realize an 
efficient path p!anning for the environment with complicated 
obstacles. It usually takes O(N:) computation time [I], where 

N, is the total number of obstacle vertices. 
In this paper, we propose a new method to improve the 

efficiency of V-graph with only considering the local region. It 
will be shown that the path found 6om the local relion is 
identical to that computed from the entire visibility graph. In 
other words, the computational efficiency is improved 
enormously. In particular, it is vely suitable for multi-targets 
path planning due to the supcrior efficiency. 

This paper is organized as follows: the preprocessing will 
be described in section 2. In this section, we will explain the 
steps of preprocessing briefly and the relationship between 
preprocessing and dynamic visibility graph (DVG). The 
principle of ayOamic visibility graph will be inlroduced 
explicitly in senion 3. Finally, the results of single-path 
planning and multiple-path planning will be show in section 4 
and section 5, respectively. 

11. Preprocessing 
Reducing computation time is the major purpose of 

prepmessing for visibility graph. Several algorithms 
[2][41[51[6][8] were proposed for improving the efficiency of 
V-graph and implemented in FPGA [7] recently. The mosl 
famous example is the reduced visibility graph defmed in 121. 
Its major difference h m  visibility graph is the way to choose 
vmices of polygonal obstacles. It only keeps the convex 
vertices so that given a pair of convex polygonal objects A and 
B, the reduced visibility graph consists of at most four distinct 
segments. However, this method stil1,needs to re-compute its 
configuration space when the radius of a circular robot is 
changed To avoid the re-computation of configuration space, 
Liu proposed ETG (Extended Tangent Graph) in 1991 191. The 
size O ( M x N )  is developed by giving a threshold interval 
[I,h] to the edge such that it is collision-free if, and only if, 
I < r < h  . Here M and N denote numbers of convex 
components and convex vertices of obstacles. Although this 
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method solves resompuled problem successfully and has 
excellent efficiency, it is hard to be realized due to its 
wmplexity. However, it brings up an important idea, the 
wncept of V-circle (Vmex circle). 

In this paper, we extend the cancept of V-circle and 
develop a fast dynamic visibility graph (DVG) for constructing 
a reduced roadmap among convex polygonal obstacles. Since 
only the tangent p in t  between convex polygonal obstacles is 
considered in a V-circle, the radius of a V-circle depends upon 
the minimum safe distance. We can construct C-space 
(comiyratian space) easily through V-circle and fmd the 
shortest path, as shown in Fig. 1. Ethe size of the circular mbot 
is changed, the only part for reamputation is the tangent line 
between two V-circles. Sometimes the paths with different safe 
distance are diverse even if their own start points and goal 
points xe identical, as shown in Fig. 2 and Fig. 3. 

Fig. 1 C-space conrtructed by V-circle and the shortesl path. 

Fig. 2 The original shortest path 

Fig. 3 New path 

The original path shown in Fig. 2 is not adaptive when the 
robot size is changed. However, it will find another way to 
keep the path shortest in this eonii&tion space, as shown in 
Fig. 3. 

In order to realize V-circle, we need to find the convex 
vertices of the obstacle. The preprocessing far fmding the 

2813 0-7803-84638/041$20.00 82004 IEEE 



convex vertices is shown in Fig. 4. Tbe first step is connected 
component. Through this step, we can recognize the obstacles 
and label them. Then we can extract the boundary of obstacles 
and record those vertices in counterclockwise direction. The 
convex vertices can be obtained by quickhuU algorithm [IO]. 
Afler the process we described, the C-space can be easily 

1_-17 qUickhUll 

Fig. 4 Thc preprocessing for fmding convex vertices. 

111. Dynamic Visibility Graph 
So far, we have seen that the shmesl path is the line 

connected from the start point to the goal point (called S-G line) 
if it does not cross any obstacles. If the line crosses obstacles, 
the shortest path will be the path along the tangent line between 
obstacles, as shown in Fig. 5 

Fig. 5 The shortest path, where S and G denote start and gad. 

In other words, ideally only the obstacles crossed by the 
S-G line need to be considered However, this view is quite 
unsatisfactory. Once any obstacles which are not lied on the 
S-G line get into tbe tangent, the idea does not work. "he 
situation is shown in Fie. 6. To resolve this diffidtv. the 

Fig. 6 Some obstacles need to be considered 

Fig. 7 The short& path will be changed if any obstacles get 
into the original path. 

The idea fails m that we m o t  predict the location of the 
remaining obstacles by only considering local environment. 
However, it reveals an interesting phenomenon that the verlices 
on the shortest path have common characteristics: most of them 
are located inside the region (called active region). The 

baundary of this region is limited to the vertices which belong 
to the obstacles crossed by the S-G lime and have maximum 
distance from the S-G line. For simplicity, we denote the 
vertices which have maximum distance from the S-G line as 
M-P. The active regions are shown in Fig. 8, Fig. 9, and Fig. 
i n  ._.. 

ShEIten p 

active maim 

Fig. 8 Example for active region 

- - , , M-P i ,vere.slon - 
Fig. 9 Example for active region 

%".-- 

Fig. IO Local madmap 

However, there are still same exceptions with the 
foregoing concept. If the obstacle is close to the S-G line and 
slightly oversteps the boundary of an active region, the shortest 
path will be out of the active region. The simtion is s h a m  in 

Considering the situation, we propose thc following 
Fig. 11. 

decision rule to modify the range of the active region. 
Decision Rule: 

inner path 
7%e shortest ouler path is longer than rhe longest 
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Fig. 11 The sihration that shortest path is out of the active 
region 

The outer p l h  means the path which is out of the active 
regjon. On the contrary, the inner path means the path is 
located inside the region, as shown in Fig. 11. If it is confmed 
that all the outer paths are longer than the inner paths, the 
shortest path must be inside the active region. Thc range of the 
active region will be determined after all obstacles obey the 
rule. On the other hand, the active region must be expanded if 
any outer path is shorter than the inner one. 

It costs lots oftime for fmdhg the outer path and the inner 
path ofabstacles became the reference points are different each 
time. The reference point means the separated point between 
the outer path and the inner path, as shown in Fig. 11. In fact, it 
would be very complicated to search for every reference point, 
especially we c m o t  prcdict its location. To simplify and speed 
up the process, we only consider some neceswy conditions. If 
the outer path is shorter, then the shortest outer path will be 
considered. On the contrary, if the inner path is longer, then the 
longest inner path will be presented. It can enswe that the 
shortest path is inside the active region ifthe shonest outer path 
is still longer than the longest inner one. The procedure to 
determine the shortest outer path is shown below. 
1. Find the farthest outer vertex of the obstacle from the 

active region boundary, denoted as F-P in Fig. 12. It must 
be considered because all the outer paths have to pass 

In order to roughly predict the shorter outer path, the 
reference paints are moved verlically to the boundary of 
the active region. By this way, the outer path would be 
shorter than before. On the conhary, the inner patb will be 
longer. In addition, the reference points are moved 
horizontally to the original active region vertexes. It is not 
only easy to defme the reference point location but also to 
present a more reasonable outer path because the father 
reference points from the F-P are easier to cross it. 

3. The path connected from the active region vertex to thc 
F-P will be the shortest outer path. 

On the other hand, we determine the longer inner path by the 

1. Selecting the rectangle vertexes of the obstacle which is 
determined by preprocessing instead of F-P. It is the 
longest inner path to cross the obstacles because any 
boundaries of obstacles cannot overstep the rectangle. 

2. Connecting the active region vertexes and rectangle 
vertexes. 

Finally, we compare the length of the shortest outer path 
and the longest inner path. If the outer path is shorter than the 
inner path, the active region is expanded to the F-P. The f m l  
range of the active region will not be determined until all 
obstacles obey the decision rule. The entire DVG algorithm 
flow is shown in Fig. 14. 

through it. 
2. 

following steps. 

Fig. 12 The reference points motion 

Fig. 13 Expanding active region 

Find Us obstacles which are M the S-G line 

Fig. 14 DVG algorithm flow chad 

As mentioned above, it is very useful to fmd the shortest 
path without considering all the convex veriices. The vertices 
need to be concerned are those which lie inside the active 
region. These vertices are used to construct the local roadmap, 
as shown in Fig. IO. In other words, the efticiency is 
enormously increased, specifically in the environment which 
has a lot of obstacles and verdces. Although only the sihration 
of a robot-disk is considered in this paper, the concept of 
V-circles can be applied to any shape of robots in a 2D 
environment. The proposed method chooses the half maximum 
size of a robot as the radius of the V-circlc. Moreover, DVG 
still works, but with less efficiency, even though the concept of 
V-circle is not utilized. 
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Since different initial conditions result in different 
visibility graphs and the active region mge changes 
dynamically, we call the method Dynamic Visibility Graph 
(DVG). In the fallowing section, the difference between a 
visibility graph (V-graph) and a dynamic visibility graph (DVG) 
will be discussed in detail. 

1%'. Performance Analysis 
To compare the difference in efficiency, we choose a 2D 

environment with lots of obstacles and vertices. Besides, 
Dijksba algorithm is utilized 10 find the shortest path after 
consmcting a madmap. In the following experiments, we will 
analyze the efficiency between Pgraph and DVG Because the 
preprocessing are the same, we a l y  compare the processimg 
time from constructing the roadmap to fuding the path. The 
computation time of this part is denoted as A and the total 
processing time is denoted as B in Fig. 15. The entire process is 
shown in Fig. 15. 

Connecfed component 

Boundary extracted 

Quickhull algorithm 

Preprccesslng 

A 

B 

Fig. 15 Entire process for a single path planning 

At first, we assign the identical SM and goal pints to 
keep the same initial condition. For easy recognition, the 
roadmap and V-circle considered in the environment will be 
drawn. Finally, the path will be show for both DVG and 
V-graph. If the patbs are identical, the algorithm with less 
computational time is more efficient than the other one. Tbe 
experimental results are shown in Fig. 16 to Fig. 19 and Table I 
and Table U. Note that V-num denotes the number of vertices 
that are considered. T-roadmap is the period from constructing 
the' roadmap to generating the path, and is denoted as A in Fig. 
15. T-total represents the total processing time, and is denoted 
asBinFig. 15. 

From those figures and tables, the dynamic visibility 
graph (DVG) elearly surpasses the V-graph. Comparing the 
roadmap conshuction, DVG costs less time to defme the range 
of the active region. In most cases, the active region is 
determined frst without expanding. The efficiency of a 
dynamic visibility graph only depends on the complexity of the 
environment between the SM point and the goal point. On the 
contrary, a visibility graph stiU needs to calculate all 
environment roadmaps even though the path is simple. 

Fig. 16 Viibility graph (v-grapb). 

The 
active 

active region 

Fig. 17 Dynamic visibility graph (DVG) 

Fig. 18 Visibility graph (V-graph) 

V. Multi-Target Path Planning 
A dynamic visibility graph is very adaptive and can deal 

with multi-targel path planning problem by its supaior 
eEciency. Because all the convex vertices are found during the 
preprocessing, it only needs to reconsmct the dynamic 
visibility graph when the sue of a robot is changed or another 
path is planned. The process is shown in Fig. 20. 
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Fig. 19 Dynamic visibility graph (DVG). 

Table I Comparison between Fig. 16 and Fig. 17 

V_nUm 
T-roadmapW 
T-total(s) 

Fi . I 6  Fi .17 

T total(s) 

Fig. 18 Fig. 19 
96 34 

0.53 1 0.050 
1.63 1 1.131 

Connected component 

Fig. 20 Thc complete process for multi-target path planning. 

We assign two robots (robotl, robot2) with different sizes 
in the environment and to fmd their paths &er giving their 
own EM paints and goal points. First, it will rind the path of 
robotl, and the path is denoted as pathl. Then in order to find 
the path of robot2, we need to reconsmct the DVG or V-graph, 
and reuse the Dijlistra algorithm. %e process is shown in Fig. 
20. The experimental results and data are shom in Fig. 21, 
Table 111 and Table N. 

L 

Fig. 21 Two-path planning 

The total number of obstacles and convex vertices are 18 
and 96. The resolution of the pic- is 860 x 860 pixels. The 
experimental results of the V-graph and DVG are listed in 
Table ID and Table W. Clearly, DVG is superior to V-pph. 

Table IU Two-path planning with V-graph 

Path 2 

Robot sue 
0.530 0.531 

2.131 

Table lV Two-path planning with DVG 
Path 2 vi 

Robot size 
T roadma s 0.012 0.010 
T total s 1.102 

Similar to the two-path planning, we also conduct 
experiments far three-path planning and four-path planning, as 
shown in Fig.22 and Fig.23. In the three-path p l d g ,  the 
total number of obstacles and convex v d c e s  are 20 and 108. 
The resolution of the picture is 960 x 870 pixels. The 
experimental results of the V-graph and DVG are listed in 
Table V and Table VI. In the four-path planning, the total 
number of obstacles and convex vertices are 20 and 108. The 
resolution of the pichlre is 960 x 870 pixels. The experimental 
results of the V-graph and DVG are listed m Table W and 
Table V1lI 

Consider the experiments mentioned above. It should be 
noted that the processing time does not depend upon the 
number of paths. On the contrary, it depends upon the total 
number of the vertices that are wed. There is a good evidence 
to prove this viewpoint from Table VI and 

Table Vm. We can see that the processing time of the 
fou-path planning is sboner than that of the three-path 
planning. From another viewpoint, a visibility graph needs to 
reconsmct whole roadmap whenever the robot size is changed 
For example, it lakes about 0.75 seconds to complete the 
roadmap and Dijlistra search each time in Table V. In other 
words, we need to take 0.75s to complete another path while 
the robot size is changed. In conhart with the visibility graph, 
the dynamic visibility graph is more adaptive for dealing with 
multi-target path planning. 
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Fig 22 Three-path planrung 

Table V Thee-path plannmg with V-graph 

Robot sue 

T lata@ 3 482 

Table VI Thee-path planning with DVG 

Robot size 

1.332 

Path 2 

Fig. 23 Four-path planning. 

VI. Conclusions 
?he visibility graph has been used for path planning of 

mobile robots among polygonal obstacles for a long time. 
Funhemore, lots of algorithms were proposed to improve the 
efficiency. But few of them can solve re-computed C-space 
problem when the robot sue is changed. In this paper, we 
proposed a simple method named dynamic visibility graph to 
enormously decrease the computation time of re-consmcting 
the roadmap. Based on its superior efficiency, we also applied 
DVG to dealing with multi-target problem and got excellent 
performance. 
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