
Proceedings of 2004 IEEElRSl International Conference on
Intelligent Robots and Systems
September 28. October 2,2004, Ssndai, Japan

Dynamic Visibility Graph for Path Planning
Han-Pang Huang* and Shu-Yun Chungt

Robotics Laboratory, Department of Mechanical Engineering
National Taiwan University, Tipei, 10660, TAIWAN

Email: hanpang@ntu.edu.tw
*Professor and corresoondence addressee. +Graduate student

1~ ~~
~~

Abstracr - In 'hispaper, wepropose a fast Dpamic Viiibiliy
Graph (DVC) for conmueting II reduced roadmap among
converpolygonal obstacles. DVG b Pihaetedfrom the global
environment with the simple geomefrie melhod and rules
Moreover, the dofa preprocessing is based on the concept of
V-circle. Through V-cide, theprocess is speeded np greatly.
Final&, DVG b &ended lo deal with mwhi-largerprobkm
lhal traditional& require a lo1 of rime for recomtructing
configuration space (C-space).

I. Introduction
A study of finding the shortest path of a point among

polygonal obstacles has teen discussed far a long time.
Visibility graph (V-graph) proposed by Lozano-Perez and
Wesley [I] is the classical method to deal with that problem.
V-graph is a compact, undirected graph that registers visibility
among vertices of obstacles. The V-graph algorithm is complete
and easy to implement. However, it is difficult to realize an
efficient path p!anning for the environment with complicated
obstacles. It usually takes O(N:) computation time [I], where

N, is the total number of obstacle vertices.
In this paper, we propose a new method to improve the

efficiency of V-graph with only considering the local region. It
will be shown that the path found 6om the local relion is
identical to that computed from the entire visibility graph. In
other words, the computational efficiency is improved
enormously. In particular, it is vely suitable for multi-targets
path planning due to the supcrior efficiency.

This paper is organized as follows: the preprocessing will
be described in section 2. In this section, we will explain the
steps of preprocessing briefly and the relationship between
preprocessing and dynamic visibility graph (DVG). The
principle of ayOamic visibility graph will be inlroduced
explicitly in senion 3. Finally, the results of single-path
planning and multiple-path planning will be show in section 4
and section 5, respectively.

11. Preprocessing
Reducing computation time is the major purpose of

prepmessing for visibility graph. Several algorithms
[2][41[51[6][8] were proposed for improving the efficiency of
V-graph and implemented in FPGA [7] recently. The mosl
famous example is the reduced visibility graph defmed in 121.
Its major difference h m visibility graph is the way to choose
vmices of polygonal obstacles. It only keeps the convex
vertices so that given a pair of convex polygonal objects A and
B, the reduced visibility graph consists of at most four distinct
segments. However, this method stil1,needs to re-compute its
configuration space when the radius of a circular robot is
changed To avoid the re-computation of configuration space,
Liu proposed ETG (Extended Tangent Graph) in 1991 191. The
size O (M x N) is developed by giving a threshold interval
[I,h] to the edge such that it is collision-free if, and only if,
I < r < h . Here M and N denote numbers of convex
components and convex vertices of obstacles. Although this

, ~~~~ ~~~
~ ~~~~

method solves resompuled problem successfully and has
excellent efficiency, it is hard to be realized due to its
wmplexity. However, it brings up an important idea, the
wncept of V-circle (Vmex circle).

In this paper, we extend the cancept of V-circle and
develop a fast dynamic visibility graph (DVG) for constructing
a reduced roadmap among convex polygonal obstacles. Since
only the tangent p in t between convex polygonal obstacles is
considered in a V-circle, the radius of a V-circle depends upon
the minimum safe distance. We can construct C-space
(comiyratian space) easily through V-circle and fmd the
shortest path, as shown in Fig. 1. Ethe size of the circular mbot
is changed, the only part for reamputation is the tangent line
between two V-circles. Sometimes the paths with different safe
distance are diverse even if their own start points and goal
points xe identical, as shown in Fig. 2 and Fig. 3.

Fig. 1 C-space conrtructed by V-circle and the shortesl path.

Fig. 2 The original shortest path

Fig. 3 New path

The original path shown in Fig. 2 is not adaptive when the
robot size is changed. However, it will find another way to
keep the path shortest in this eonii&tion space, as shown in
Fig. 3.

In order to realize V-circle, we need to find the convex
vertices of the obstacle. The preprocessing far fmding the

2813 0-7803-84638/041$20.00 82004 IEEE

convex vertices is shown in Fig. 4. Tbe first step is connected
component. Through this step, we can recognize the obstacles
and label them. Then we can extract the boundary of obstacles
and record those vertices in counterclockwise direction. The
convex vertices can be obtained by quickhuU algorithm [IO].
Afler the process we described, the C-space can be easily

1_-17 qUickhUll

Fig. 4 Thc preprocessing for fmding convex vertices.

111. Dynamic Visibility Graph
So far, we have seen that the shmesl path is the line

connected from the start point to the goal point (called S-G line)
if it does not cross any obstacles. If the line crosses obstacles,
the shortest path will be the path along the tangent line between
obstacles, as shown in Fig. 5

Fig. 5 The shortest path, where S and G denote start and gad.

In other words, ideally only the obstacles crossed by the
S-G line need to be considered However, this view is quite
unsatisfactory. Once any obstacles which are not lied on the
S-G line get into tbe tangent, the idea does not work. "he
situation is shown in Fie. 6. To resolve this diffidtv. the

Fig. 6 Some obstacles need to be considered

Fig. 7 The short& path will be changed if any obstacles get
into the original path.

The idea fails m that we m o t predict the location of the
remaining obstacles by only considering local environment.
However, it reveals an interesting phenomenon that the verlices
on the shortest path have common characteristics: most of them
are located inside the region (called active region). The

baundary of this region is limited to the vertices which belong
to the obstacles crossed by the S-G lime and have maximum
distance from the S-G line. For simplicity, we denote the
vertices which have maximum distance from the S-G line as
M-P. The active regions are shown in Fig. 8, Fig. 9, and Fig.
i n ._..

ShEIten p

active maim

Fig. 8 Example for active region

- - , , M-P i ,vere.slon -
Fig. 9 Example for active region

%".--

Fig. IO Local madmap

However, there are still same exceptions with the
foregoing concept. If the obstacle is close to the S-G line and
slightly oversteps the boundary of an active region, the shortest
path will be out of the active region. The simtion is s h a m in

Considering the situation, we propose thc following
Fig. 11.

decision rule to modify the range of the active region.
Decision Rule:

inner path
7%e shortest ouler path is longer than rhe longest

2814

Referen : I. " i

Fig. 11 The sihration that shortest path is out of the active
region

The outer p l h means the path which is out of the active
regjon. On the contrary, the inner path means the path is
located inside the region, as shown in Fig. 11. If it is confmed
that all the outer paths are longer than the inner paths, the
shortest path must be inside the active region. Thc range of the
active region will be determined after all obstacles obey the
rule. On the other hand, the active region must be expanded if
any outer path is shorter than the inner one.

It costs lots oftime for fmdhg the outer path and the inner
path ofabstacles became the reference points are different each
time. The reference point means the separated point between
the outer path and the inner path, as shown in Fig. 11. In fact, it
would be very complicated to search for every reference point,
especially we c m o t prcdict its location. To simplify and speed
up the process, we only consider some neceswy conditions. If
the outer path is shorter, then the shortest outer path will be
considered. On the contrary, if the inner path is longer, then the
longest inner path will be presented. It can enswe that the
shortest path is inside the active region ifthe shonest outer path
is still longer than the longest inner one. The procedure to
determine the shortest outer path is shown below.
1. Find the farthest outer vertex of the obstacle from the

active region boundary, denoted as F-P in Fig. 12. It must
be considered because all the outer paths have to pass

In order to roughly predict the shorter outer path, the
reference paints are moved verlically to the boundary of
the active region. By this way, the outer path would be
shorter than before. On the conhary, the inner patb will be
longer. In addition, the reference points are moved
horizontally to the original active region vertexes. It is not
only easy to defme the reference point location but also to
present a more reasonable outer path because the father
reference points from the F-P are easier to cross it.

3. The path connected from the active region vertex to thc
F-P will be the shortest outer path.

On the other hand, we determine the longer inner path by the

1. Selecting the rectangle vertexes of the obstacle which is
determined by preprocessing instead of F-P. It is the
longest inner path to cross the obstacles because any
boundaries of obstacles cannot overstep the rectangle.

2. Connecting the active region vertexes and rectangle
vertexes.

Finally, we compare the length of the shortest outer path
and the longest inner path. If the outer path is shorter than the
inner path, the active region is expanded to the F-P. The f m l
range of the active region will not be determined until all
obstacles obey the decision rule. The entire DVG algorithm
flow is shown in Fig. 14.

through it.
2.

following steps.

Fig. 12 The reference points motion

Fig. 13 Expanding active region

Find Us obstacles which are M the S-G line

Fig. 14 DVG algorithm flow chad

As mentioned above, it is very useful to fmd the shortest
path without considering all the convex veriices. The vertices
need to be concerned are those which lie inside the active
region. These vertices are used to construct the local roadmap,
as shown in Fig. IO. In other words, the efticiency is
enormously increased, specifically in the environment which
has a lot of obstacles and verdces. Although only the sihration
of a robot-disk is considered in this paper, the concept of
V-circles can be applied to any shape of robots in a 2D
environment. The proposed method chooses the half maximum
size of a robot as the radius of the V-circlc. Moreover, DVG
still works, but with less efficiency, even though the concept of
V-circle is not utilized.

2815

Since different initial conditions result in different
visibility graphs and the active region mge changes
dynamically, we call the method Dynamic Visibility Graph
(DVG). In the fallowing section, the difference between a
visibility graph (V-graph) and a dynamic visibility graph (DVG)
will be discussed in detail.

1%'. Performance Analysis
To compare the difference in efficiency, we choose a 2D

environment with lots of obstacles and vertices. Besides,
Dijksba algorithm is utilized 10 find the shortest path after
consmcting a madmap. In the following experiments, we will
analyze the efficiency between Pgraph and DVG Because the
preprocessing are the same, we a l y compare the processimg
time from constructing the roadmap to fuding the path. The
computation time of this part is denoted as A and the total
processing time is denoted as B in Fig. 15. The entire process is
shown in Fig. 15.

Connecfed component

Boundary extracted

Quickhull algorithm

Preprccesslng

A

B

Fig. 15 Entire process for a single path planning

At first, we assign the identical SM and goal pints to
keep the same initial condition. For easy recognition, the
roadmap and V-circle considered in the environment will be
drawn. Finally, the path will be show for both DVG and
V-graph. If the patbs are identical, the algorithm with less
computational time is more efficient than the other one. Tbe
experimental results are shown in Fig. 16 to Fig. 19 and Table I
and Table U. Note that V-num denotes the number of vertices
that are considered. T-roadmap is the period from constructing
the' roadmap to generating the path, and is denoted as A in Fig.
15. T-total represents the total processing time, and is denoted
asBinFig. 15.

From those figures and tables, the dynamic visibility
graph (DVG) elearly surpasses the V-graph. Comparing the
roadmap conshuction, DVG costs less time to defme the range
of the active region. In most cases, the active region is
determined frst without expanding. The efficiency of a
dynamic visibility graph only depends on the complexity of the
environment between the SM point and the goal point. On the
contrary, a visibility graph stiU needs to calculate all
environment roadmaps even though the path is simple.

Fig. 16 Viibility graph (v-grapb).

The
active

active region

Fig. 17 Dynamic visibility graph (DVG)

Fig. 18 Visibility graph (V-graph)

V. Multi-Target Path Planning
A dynamic visibility graph is very adaptive and can deal

with multi-targel path planning problem by its supaior
eEciency. Because all the convex vertices are found during the
preprocessing, it only needs to reconsmct the dynamic
visibility graph when the sue of a robot is changed or another
path is planned. The process is shown in Fig. 20.

2816

Fig. 19 Dynamic visibility graph (DVG).

Table I Comparison between Fig. 16 and Fig. 17

V_nUm
T-roadmapW
T-total(s)

Fi . I 6 Fi .17

T total(s)

Fig. 18 Fig. 19
96 34

0.53 1 0.050
1.63 1 1.131

Connected component

Fig. 20 Thc complete process for multi-target path planning.

We assign two robots (robotl, robot2) with different sizes
in the environment and to fmd their paths &er giving their
own EM paints and goal points. First, it will rind the path of
robotl, and the path is denoted as pathl. Then in order to find
the path of robot2, we need to reconsmct the DVG or V-graph,
and reuse the Dijlistra algorithm. %e process is shown in Fig.
20. The experimental results and data are shom in Fig. 21,
Table 111 and Table N.

L

Fig. 21 Two-path planning

The total number of obstacles and convex vertices are 18
and 96. The resolution of the pic- is 860 x 860 pixels. The
experimental results of the V-graph and DVG are listed in
Table ID and Table W. Clearly, DVG is superior to V-pph.

Table IU Two-path planning with V-graph

Path 2

Robot sue
0.530 0.531

2.131

Table lV Two-path planning with DVG
Path 2 vi

Robot size
T roadma s 0.012 0.010
T total s 1.102

Similar to the two-path planning, we also conduct
experiments far three-path planning and four-path planning, as
shown in Fig.22 and Fig.23. In the three-path p l d g , the
total number of obstacles and convex v d c e s are 20 and 108.
The resolution of the picture is 960 x 870 pixels. The
experimental results of the V-graph and DVG are listed in
Table V and Table VI. In the four-path planning, the total
number of obstacles and convex vertices are 20 and 108. The
resolution of the pichlre is 960 x 870 pixels. The experimental
results of the V-graph and DVG are listed m Table W and
Table V1lI

Consider the experiments mentioned above. It should be
noted that the processing time does not depend upon the
number of paths. On the contrary, it depends upon the total
number of the vertices that are wed. There is a good evidence
to prove this viewpoint from Table VI and

Table Vm. We can see that the processing time of the
fou-path planning is sboner than that of the three-path
planning. From another viewpoint, a visibility graph needs to
reconsmct whole roadmap whenever the robot size is changed
For example, it lakes about 0.75 seconds to complete the
roadmap and Dijlistra search each time in Table V. In other
words, we need to take 0.75s to complete another path while
the robot size is changed. In conhart with the visibility graph,
the dynamic visibility graph is more adaptive for dealing with
multi-target path planning.

2817

Fig 22 Three-path planrung

Table V Thee-path plannmg with V-graph

Robot sue

T lata@ 3 482

Table VI Thee-path planning with DVG

Robot size

1.332

Path 2

Fig. 23 Four-path planning.

VI. Conclusions
?he visibility graph has been used for path planning of

mobile robots among polygonal obstacles for a long time.
Funhemore, lots of algorithms were proposed to improve the
efficiency. But few of them can solve re-computed C-space
problem when the robot sue is changed. In this paper, we
proposed a simple method named dynamic visibility graph to
enormously decrease the computation time of re-consmcting
the roadmap. Based on its superior efficiency, we also applied
DVG to dealing with multi-target problem and got excellent
performance.

References

[I] T. Lozano- P&ez and M. A. Wesley, “An algorithm
for planning collision-free paths among polyhedral
obstacles,” Contmum. ACM, vol. 22, pp. 560-570,
1979.

[2] H. Rohnert. “Shortest paths in the plane with
wnvex polygonal obstades,” Information
Processing Leners, 23, pp.71-76, 1986.

[3] Yun-Hui L i y “Finding the shortest path of a disc
among polygonal obstacles using a
radius-independent graph,” IEEE Tran. On Robotics
and Automation, vol. 11, no. 5, pp.682-691 October
1995.

[4] Ta, Asano, Te Asano, L. J. Guibas, J. Hershberger,
and H. 1mai;’Wsibility of disjoint polygons,”
Algovithmico, vol. I , no. 1,pp. 49-63, 1986.

[SI E. Welzl, “Constructing the visibility &aph for
n-line segments in O(N’) time,” Inform. Process.
Left.,vol. 20,pp. 167-171, 1985.

[6] J. Mitchell, “Shortest path among obstacles in the
plane,” Proc. ACM SFIP. Computational Geometry, . .
pp. 308-317, 1993.

171 T.K. Priva and K. Sridharan. ” An efficient _.
algorithm to consfmct reduced visibility graph and
its FPGA implementation,” Pmceedings. I7th
International Conference on VLSI Design,
pp.1057-1062, Jan. 2004

[8] Jason A. Jantt, Ren C. Luo and Michael G Kay,
“The essential visibility graph an approach to
global motion planning for autonomous mobile
rohots,”IEEE ICRA, pp. 1958-1963, 1995.

[9] Yun-Hui Liu and Suguru Arimoto, “Proposal of
tangent graph and extended tangent graph for path
planning of mobile robots,” Proc. 1991 IEEE ICRA,
vol. 1,pp. 312-317, 1991

[IO] C. Bradford Barber, David P. Dobkin, Hannu
Huhdanpaa, “The quickhull algorithm for convex
hulls,” ACM Transactions on Mathematical
Sofhvare (7’OM.Y). V01.22, Issue 4, pp. 469-483,
1996

2818

