Proceedings of 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 28 - October 2, 2004, Sendai, Japan

Dynamic Visibility Graph for Path Planning

Han-Pang Huang* and Shu-Yun Chung+
Robotics Laboratory, Department of Mechanical Engineering
National Taiwan University, Taipei, 10660, TATWAN
Email: hanpang@ntu.edu.tw
*Professor and correspondence addressee, + Graduate student

Abstract — In this paper, we propose a fast Dynamic Visibility
Graph (DVG) for constructing a reduced roadmap among
convex polygonal obstacles. DVG is extracted from the global
environment with the simple geometric method and rules
Moreover, the data preprocessing is based on the concept of
V-circle. Through V-circle, the process is speeded up greatiy.
Finally, DVG is extended to deal with multi-target problems
that traditionally require a lot of time for reconstructing
configuration space (C-space).

L

A study of finding the shortest path of a point among
polygenal obstacles has been discussed for a long time.
Visibility graph (V-graph) proposed by Lozano-Pérez and
‘Wesley [1] is the classical method to deal with that problem.
V-graph is a compact, undirected graph that registers visibility
among vertices of obstacles. The V-graph algorithm is complete
and easy to implement. However, it is difficult to realize an
efficient path planning for the environment with complicated
obstacles. It usually takes ((N7) computation time [1], where

N, is the total number of obstacle vertices.

Introduction

In this paper, we propose a new method 1o improve the
efficiency of V-graph with cnly considering the local region. it
will be shown that the path found from the local region is
identical to that computed from the entire visibility graph. In
other words, the computational efficiency is improved
enormously. In particular, it is very suitable for multi-targets
path planning due to the superior efficiency.

This paper is organized as follows: the preprocessing will
be described in section 2. In this section, we will explain the
steps of preprocessing briefly and the relationship between
preprocessing and dynamic visibility graph (DVG). The
principle of dynamic visibility graph will be introduced
explicitly in section 3. Finally, the results of single-path
planning and multiple-path planning will be shown in section 4
and section 5, respectively.

1I.

Reducing computation time s the major purpose of
preprocessing for visibility graph. Several algorithms
[2][4][5][6][8] were proposed for improving the efficiency of
V-graph and implemented in FPGA [7] recently. The most
famous example is the reduced visibility graph defined in {2].
Its major difference from visibility graph is the way to choose
vertices of polygonal obstacles. It only keeps the convex
vertices so that given 2 pair of convex polygonal objects A and
B, the reduced visibility graph consists of at most four distinct
segments. However, this method still needs to re-compute its
configuration space when the radins of a circular robot is
changed. To avoid the re-computation of configuration space,
Liu proposed ETG (Extended Tangent Graph) in 1991 [9]. The
size O(M xN) is developed by giving a threshold interval
[7,4] to the edge such that it is collision-free if, and only if,
l<r<h . Here M and N denote numbers of convex
components and convex vertices of obstacles. Although this

Preprocessing

0-7803-8463-6/04/$20.00 ©2004 IEEE

2813

method solves recomputed problem successfully and bas
excellent efficiency, it is hard to be realized due to its
complexity. However, it brings up an important idea, the
concept of V-circle (Vertex circle).

In this paper, we extend the concept of Vocircle and
develop a fast dynamic visibility graph (DVG) for constructing
a reduced roadmap among convex polygonal obstacles. Since
only the tangent point between convex polygonal obstacles is
considered in a V-circle, the radius of a Vcircle depends upon
the minimum safe distance. We can construct C-space
(configuration space) easily through V-circle and find the
shortest path, as shown in Fig. 1. If the size of the circular robot
is changed, the only part for re-computation is the tangent line
between two Vcircles. Sometimes the paths with different safe
distance are diverse even if their own start points and goal
points are identical, as shown in Fig. 2 and Fig. 3.

V-circle

Shortest path

Fig. 1 C-space constructed by V-circle and the shortest path.

Fig. 3 New path

The original path shown in Fig. 2 is not adaptive when the
1obot size is changed. However, it will find another way to
keep the path shortest in this configuration space, as shown in
Fig. 3.

In order to realize V-circle, we need to find the convex
vertices of the obstacle. The preprocessing for finding the

convex vertices is shown in Fig. 4. The first step is connected
component. Through this step, we can recognize the obstacles
and label them. Then we can extract the boundary of obstacles
and record those vertices in counterclockwise direction. The
convex vertices can be obtained by quickhull algorithm [10].
After the process we described, the C-space can be casily
constructed.

chnnecled' ted component -]
i
| Boundary extracted 1
i
[cuiokhu]
Fig. 4 The preprocessing for finding convex vertices.

III. Dynamie Visibility Graph

So far, we have seen that the shortest path is the line
connected from the start point to the goal peint (called S-G line)
if it does not cross any obstacles, If the line crosses obstacles,
the shortest path will be the path along the tangent line between
obstacles, as shown in Fig. 5.

Shortest path

—

Fig. 5 The shortest path, where S and G denote start and goal.

In other words, ideally only the obstacles crossed by the
S-G line need to be considered. However, this view is quite
unsatisfactory. Once any obstacles which are not lied on the
3-G line get into the tangent, the idea does not work. The
sitnation is shown in Fig. 6. To resolve this difficulty, the
shortest path will consist of the tangent lines connected the
vertices of these obstacles, as shown in Fig. 7,

Fig. 7 The shortest path will be changed if any obstacles get
into the original path.

The idea fails in that we cannot predict the location of the
remaining obstacles by only considering local environment.
However, it reveals an interesting phenomeneon that the vertices
on the shortest path have common characteristics: most of them
are located imside the region (called active region). The

boundary of this region is limited 1o the vertices which belong
to the obstacles crossed by the 5-G line and have maximum
distance from the $5-G line. For simplicity, we denote the
vertices which have maximum distance from the 5-G line as
M_P. The active regions are shown in Fig. 8, Fig. 9, and Fig.
10.

active region

Fig. 8 Example for active region

Fig. 10 Local roadmap

However, there are still some exceptions with the
foregoing concept. If the obstacle is close to the 5-G line and
slightly oversteps the boundary of an active region, the shortest
path will be out of the active region. The situation is shown in
Fig. 11.

Considering the situation, we propose the following
decision rule to modify the range of the active region.

Decision Rule:
The shorfest outer path is longer than the longest
inner path

2814

QOuter Path
/Shostest Path)

Reference point

R szemnce point
e

Fig. 11 The situation that shortest path is out of the active
region.

The outer path means the path which is out of the active
region. On the contrary, the inner path means the path is
located inside the region, as shown in Fig. 11, If it is confirmed
that all the outer paths are longer than the inner paths, the
shortest path must be inside the active region. The range of the
active region will be determined after all obstacles obey the
rule. On the other hand, the active region must be expanded if
any outer path is shorter than the inner one.

H costs lots of time for finding the outer path and the inner
path of obstacles because the reference peints are different each
time. The reference point means the separated point between
the outer path and the inner path, as shown in Fig. 11. In fact, it
would be very complicated to search for every reference point,
especially we cannot predict its location. To simplify and speed
up the process, we only consider some necessary conditions. I
the outer path is shorter, then the shartest outer path will be
considered. On the contrary, if the inner path is longer, then the
longest inner path will be presented. It can ensure that the
shortest path is inside the active region if the shortest outer path
is still longer than the longest inner one. The procedure to
determine the shortest outer path is shown below.

1. Find the farthest outer vertex of the obstacle from the
active region boundary, denoted as F_P in Fig. 12. It must
be considered because all the outer paths have to pass
through it.

In order to roughly predict the shorter outer path, the
reference points are moved vertically to the boundary of
the active region. By this way, the outer path would be
shorter than before. On the contrary, the inner path will be
longer. In addition, the reference points are moved
horizomzlly te the original active region vertexes. It is not
only easy to define the reference point location but alse to
present a more reasonable outer path because the father
reference points from the F_P are easier to cross it.

3. The path connected from the active region vertex to the

F_P will be the shortest outer path.

On the other hand, we determine the longer inner path by the
following steps.

1. Selecting the rectangle vertexes of the obstacle which is
determined by preprocessing instead of F P. It is the
longest inner path to cross the obstacles because any
boundaries of obstacles cannot overstep the rectangle.
Connecting the active region vertexes and rectangle
vertexes.

Finally, we compare the length of the shortest outer path
and the longest inner path. If the outer path is shorter than the
inner path, the active region is expanded to the F_P. The final
range of the active region will not be determined until all
obstacles obey the decision rule. The entire DVG algorithm
flow is shown in Fig. 14.

2815

I a
/Longer inner

... path
S e
T ..
T 7
. . },-’
s
., /
e i
o
Mom reasanable path

N/

Fig. 12 The reference points motion

Expanding active region

i o .
T, Y Shone;t outer path
e st A g
. e
e I O\
1gest inner path Sy N

. - \
rectangle

Fig. 13 Expanding active region

!Find the obstacles which are on the S-G line

ind tha
S o e polive regioh- -
)

faell

farthest veriicas-and detne the. ﬁrs_t]

Check for any obstacte violales the rule —l

Yes
No

f . L ,w]
Fig. 14 DVG algorithm flow chart

As mentioned above, it is very useful to find the shortest
path without censidering all the convex vertices. The vertices
need to be concerned are those which lie inside the active
region, These vertices are used to construct the local roadmap,
as shown in Fig. 10. In other words, the efficiency is
enormously increased, specifically in the environment which
has a lot of obstacles and vertices. Although only the sitnation
of a robot-disk is considered in this paper, the concept of
V-circles can be applied tc amy shape of robots in 2 2D
environment. The proposed method chooses the half maximum
size of a robot as the radius of the V-circle. Moreover, DVG
still works, but with less efficiency, even though the concept of
V-circle is not utilized.

Since different initial conditions result in different
visibility graphs and the active region mange changes
dynamically, we cail the method Dynamic Visibility Graph
(DVG). In the following section, the difference between a
visibility graph (V-graph) and a dynamic visibility graph (DVG)
will be discussed in detail.

IV. Performance Analysis

To compare the difference in efficiency, we choose a 2D
environment with lots of obstacles and vertices. Besides,
Dijkstra algorithm is utilized 1o find the shortest path after
constructing a roadmap. In the following experiments, we will
analyze the efficiency between V-graph and DVG Betause the
preprocessing are the same, we only compare the processing
time from constructing the roadmap to finding the path. The
computation time of this part is denoted as A and the total
processing time is denoted as B in Fig. 15. The entire process is
shown in Fig. 15.

\

Connected component

Preprocessing
Boundary extracted

Quickhulla!gorithm

L V-graphor DVG]

£ ﬁijﬁstia‘oimﬁx?i
)
E]

~ Path-
Fig. 15 Entire process for a single path planning

At first, we assign the identical start and goal points to
keep the same initial condition. For easy recognition, the
readmap and V-circle considered in the environment will be
drawn. Finally, the path will be shown for both DVG and
V-graph. If the paths are identical, the algorithm with less
computationa] time is more efficient than the other one. The
experimental results are shown in Fig. 16 to Fig. 19 and Table [
and Table 1I. Note that V_num denotes the number of vertices
that are considered. T_roadmap is the period from constructing
the roadmap to generating the path, and is denoted as A in Fig.
15. T_total represents the total processing time, and is denoted
as B i Fig. 15.

From these figures and tables, the dynamic visibility
graph (DVG) clearly surpasses the V-graph. Comparing the
roadmap construction, DVG costs less time to define the range
of the active region. In most cases, the active region is
determined first without expanding. The efficiency of a
dynamic visibility graph only depends on the complexity of the
environment between the start point and the goal point, On the
contrary, a visibility graph still needs to caleulate all
environment roadmaps even though the path is simple,

2816

The first L
active region o (S

’ aclive region
Fig. 17 Dynamic visibility graph (DVG).

Fig. 18 Visibility graph (V-graph)

V. Multi-Target Path Planning

A dynamic visibility graph is very adaptive and can deal
with multi-target path planning problem by its superior
cfficiency. Because all the convex vertices are found during the
preprocessing, it only needs to reconstruct the dynamic
visibility graph when the size of a Tobot is changed or another
path is planned. The process is shown in Fig. 20.

~ -
-

"

W s
~
e

Fig. 19 Dynamic visibility graph (DVG).

Table I Comparison between Fig. 16 and Fig. 17

Fig. 16 Fig 17
V_pum 129 70
T_roadmap(s) 0.762 0.2¢
T total(s) 0.8 0.27
Table I1 Comparison between Fig. 18 and Fig. 19
Fig. 18 Fig. 19
V_num 95 34
T_roadmap(s) 0.531 0.050
T total{s} 1.631 1.131

Connected component
Boundary extracted

quickhult

Preprocessing

| “Dynamic visibility .

Ancther path # “ graph’ g
planning er e 2 i
robot size ’
changed Fat

Fig, 20 The complete process for multi-target path planning.

We assign two robots (robotl, robot2) with different sizes
in the environment and try to find their paths after giving their
own start points and goal points. First, it will find the path of
robotl, and the path is denoted as pathl. Then in order to find
the path of robot2, we need to reconstruct the DVG or V-graph,
and reuse the Dijkstra algorithm. The process is shown in Fig.
20. The experimental results and data are shown in Fig. 21,
Table Iil and Table IV.

2817

Fig. 21 Two-path planning.

The total nymber of obstacles and convex vertices are 18
and 96. The resclution of the picture is 860 x 860 pixels. The
experimental results of the V-graph and DVG are listed in
Table I and Table IV. Clearly, DVG is superior to V-graph.

Table I Two-path planning with V-graph

Path | Path 2
V_num 96 96
Robot size 20 30
T_roadmap(s) 0.530 0.531
T_total(s) 2,131
-Table IV Two-path planning with DVG
Path 1 Path 2
V_num 24 15
Robot size 20 30
T _roadmap(s) 0.012 0.010
T total(s) 1.102

Similar to the two-path planning, we also conduct
experiments for three-path planning and four-path planning, as
shown in Fig.22 and Fig.23. In the three-path planning, the
total number of obstacles and convex vertices are 20 and 108,
The resclution of the picture is 960 x 870 pixels. The
experimental results of the V-graph and DVG are listed in
Table V and Table VI In the four-path planning, the total
number of obstacles and convex vertices are 20 and 108. The
resolution of the picture is 960 x 870 pixels. The experimental
results of the V-graph and DVG are listed in Table VII and
Table VIIT,

Consider the experiments mentioned above. It should be
noted that the processing time does not depend upon the
number of paths. On the contrary, it depends upen the total
number of the vertices that are used. There is a good evidence
to prove this viewpoint from Table VI and

Table VIII. We can see that the processing time of the
four-path planning is shorter than that of the three-path
planning. From another viewpoint, a visibility graph needs to
reconstruct whole roadmap whenever the robot size is changed.
For example, it takes about 0.75 scconds to complete the
roadmap and Dijkstra search each time in Table V. In other
words, we need to take 0.75s to complete another path while
the robot size is changed. In contrast with the visibility graph,
the dynamic visibility graph is more adaptive for dealing with
multi-target path planning.

Fig. 22 Three-path planning.

Table V Three-path planning with V-graph

Path 1 Path 2 Path 3
V_num 108 108 108
Robot size 20 30 40
T roadmap(s) | 0.751 0.753 0.750
T total(s) 3.482

Table VI Three-path planning with DVG,

Path 1 Path 2 Path 3
V_pum 22 21 43
Robot size 20 30 40
T roadmap(s) | 0.020 | 0.010 0.060
T_total(s) 1.332

Fig. 23 Four-path planning.

Table VII _Four-path

lanning with V-graph,

Pathl | Path2 | Path3 | Path 4
V num 108 108 108 108
Robot size 20 30 40 50
T roadmap{s} 0749 | 0751 | 0.750 | 0.751

T tota¥(s) 4.213

2818

Table VI Four-path planning with DVG
Path1 | Path2 | Path 3 | Path 4
V _num 19 21 19 21
Robot size 20 30 40 50

T roadmap(s) 0.010 | 0010 | 0010 [0.010
T_total(s) 1.282

V1. Conclusions

The visibility graph has been used for path planning of
mobile robots among polygonal obstacles for a long time.
Furthermore, lots of algorithms wese proposed to improve the
efficiency. But few of them can solve re-computed C-space
problem when the robot size is changed. In this paper, we
proposed a simple method named dynamic visibility graph to
enormously decrease the computation time of re-constructing
the roadmap. Based on its superior efficiency, we also applied
DVG te dealing with multi-target problem and got excellent
performance.

References

[1] T. Lozano- Pérez and M. A. Wesley, “An algorithm
for planning collision-free paths among polyhedral
obstacles,” Contmum. ACM, vol. 22, pp. 560-570,
1979.

[2] H. Rohnert. “Shortest paths in the plane with
convex polygonal obstacles,” Information
Processing Letters, 23, pp.71-76, 1986.

[3] Yun-Hui Liu, “Finding the shortest path of a disc
among polygonal obstacles using a
radins-independent graph,” JEEE Tran. On Robotics
and Automation, vol. 11, no. 5, pp.682-691 October
1995.

[4] Ta, Asano, Te Asano, L. J. Guibas, J. Hershberger,
and H. Imai, Visibility of disjoint pelygons,”
Algorithmica, vol. |, no. 1, pp. 49-63, 1986,

[5] E. Welzl, “Constructing the visibility graph for
n-line segments in G(N*)time,” Inform. Process.

Lett., vol. 20, pp. 167-171, 1985,

[6] J. Mitchell, “Shortest path among obstacles in the
plane,” Proc. ACM Symp. Computational Geometry,
Pp. 308-317, 1993,

[7] TK. Priya and K. Sridharan, ” An efficient
algorithm to construct reduced visibility graph and
its FPGA implementation,” Proceedings. 17th
International Conference on VLSI Design,
pp.1057-1062, Jan. 2004

[8] Jason A. Janét, Ren C. Luo and Michael G. Kay,
“The essential visibility graph: an approach to
global motion planning for autonomous mobile
robots,” JEEE JCRA, pp. 1958-1963, 1995.

[9] Yun-Hui Liu and Suguru Arimoto, “Preposal of
tangent graph and extended tangent graph for path
planning of mobile robots,” Proc. 1991 IEEE ICRA,
vol. 1, pp. 312-317, 1991

[10] C. Bradford Barber, David P. Dobkin, Hannn
Huhdanpaa, “The quickhull algorithm for convex
hulls,” ACM Transactions on Mathematical
Software (TOMS), Vol.22, Issue 4, pp. 469-483,
1996

