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Abstract −  Even today, robot mapping is one of the biggest 
challenges in mobile robotics. Geometric or topological maps 
can be used by a robot to navigate in the environment. 
Automatic creation of such maps is still problematic if the 
robot tries to map large environments. This paper presents a 
new method for incremental mapping using fingerprints of 
places. This type of representation permits a reliable, 
compact, and distinctive environment-modeling and makes 
navigation and localization easier for the robot.  
Experimental results for incremental mapping using a mobile 
robot equipped with a multi-sensor system composed of two 
180° laser range finders and an omni-directional camera are 
also reported. 
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I. INTRODUCTION 

Mobile robots typically use metric [1, 3, 4] or 
topological maps [12, 14, 18] of their physical environment 
to navigate reliably. Approaches using metric maps are 
suited when it is necessary for the robot to know its 
location accurately, in terms of metric coordinates. 
However, the state of the robot can also be represented in a 
more qualitative manner, similar to the way humans store 
spatial information, through the use of cognitive maps [20]. 
These permit an encoding of the spatial relations between 
relevant locations in the environment through a topological 
representation. The topological map can be viewed as a 
graph of places, where at each node the information 
concerning the visible landmarks and the way to reach 
other places, connected to it, is stored. The topological 
representation is compact and allows high-level symbolic 
reasoning for map building and navigation. 

Space representation, perception, localization and 
mapping are all needed in order to obtain a robust and 
reliable framework for navigation (i.e., in order to move 
within an environment, manipulate objects in it, avoid 
undesirable collisions, etc.). In this context, we introduced 
in [9], the fingerprint approach (a fingerprint is a circular 
list of features around the robot) and further showed in 
[15] that a distinctive space representation combined with 
the uncertainty of the features can result in good 
performance in localization.  

In this paper, we present a new technique for 
incremental and automatic topological mapping using 
fingerprints of places. One of the main difficulties in 
topological mapping is the automatic detection of new 
nodes that should be added to the map. Our approach relies 
on a heuristic that detects whether the current location of 
the robot is similar to a mapped one or not. The proposed 

method permits a reliable and distinctive environment 
model that can be globally handled in an efficient way. 

The reminder of the paper is organized as follows. In 
Section II, the fingerprint concept, the way it is encoded, 
generated and combined with the uncertainty of features is 
described. Section III is dedicated to the new topological 
mapping approach with fingerprints of places. 
Experimental results are presented in Section IV. The 
system uses both, a laser and an omnidirectional camera for 
feature extraction. Section V exposes a short review of 
related research on metric, topological and hybrid mapping 
techniques.  Finally, Section VI draws conclusions and 
discusses further work. 

II. THE FINGERPRINT CONCEPT IN A TOPOLOGICAL 
FRAMEWORK 

In this work, fingerprints of places characterize the 
environment. The complete process is described below. 
This methodology is especially interesting when used 
within a topological framework and in a multi-modality 
context. 

A. Fingerprint encoding 

A fingerprint is a circular list of features, where the 
ordering of the set matches the relative ordering of the 
features around the robot. We denote the fingerprint 
sequence using a list of characters, where each character 
represents an instance of a specific feature type. In our 
case we choose to extract color patches and vertical edges 
from visual information and corners from laser scanner. 
The letter ’v’ is used to characterize an edge, the letters 
′A′,′B′,′C′,...,′P′ to represent hue bins and the letter ′c′ to 
characterize a corner feature. Details about the extraction 
of visual features can be found in [10] and that of features 
extracted using laser scanner, in [1]. 

B. Fingerprint generation 

Fingerprint generation is performed in three steps, as 
shown in Figure 1. The extraction of the different features 
(e.g., vertical edges, corners, color patches) from the 
sensors is the first step of the fingerprint generation 
process. The extracted features are ordered in a sequence 
depending on their angular position (0…360°). In the 
second step, a new type of feature, the virtual feature ′f′ is 
introduced. This reflects the correspondence between a 
corner (detected with the laser scanner) and an edge 
(detected in the unwrapped omnidirectional image). In 
order to represent large (> 20 degrees, in our case) angular 
distances between successive fingerprint elements, the 



notion of an ′empty space′ feature is added. This is 
denoted in the fingerprint sequence by the character ′n′. In 
this way, the ordering of the features in a fingerprint 
sequence becomes highly informative, thereby increasing 
distinctiveness of fingerprints. This insertion is the last step 
of the fingerprint generation process. More details can be 
found in [10]. 

C. Uncertainty Modeling in the Fingerprint 

Sensors are imperfect devices and thus, all obtained 
measurements are erred. These errors can be accounted 
for, by associating an uncertainty value to each recorded 
measurement. This uncertainty value represents the belief 
in the existence of the measured value/ feature when the 
robot (its sensor) actually perceives it. In our fingerprint 
approach, this idea is incorporated by associating every 
observed feature (for each of the different types of features 
mentioned above) with an uncertainty measure. More 
details, with regards to this, may be found in [15]. This 
uncertainty measure is however, only as accurate as the 
model that describes it.  

III. TOPOLOGICAL MAP BUILDING 

While navigating in the environment, the robot first 
creates and then updates the global topological map. One 
of the main problems in topological map building is to 
detect when a new node should be added in the map. Most 
of the existing approaches to topological mapping place 
nodes periodically in either space (displacement, ∆d) or 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time (∆t) or alternatively attempt to detect important 
changes in environment structure. Any of these methods 
cannot result in an optimal topology. In contrast, our 
approach is based directly on the differences in the 
perceived features. 

In the following sub-sections, the fingerprint-based 
approach for incremental and automatic topological 
mapping is described. In addition, they clearly illustrate 
how a reliable and distinctive representation of the 
environment is obtained.  
 
A. New Node Detection 

Our method introduces a new node into the map 
whenever an important change in the environment occurs. 
This is an improvement over the existing approaches, 
using some fixed rules based on distance measurements or 
topology structures, which are limited to specific cases of 
indoor or outdoor environments. This is possible using the 
fingerprints of places. A heuristic is applied to compare 
whether a new location is similar to the last one that has 
been mapped. 

 

The process of introducing a new node in the 
topological map is divided into the following sequence of 
steps: 

1) Start with an initial node (i.e. fingerprint f0) 
2) Move and at each ∆t (time) or ∆d (distance), take 

a new scan with the laser scanner and a new 
image with the omnidirectional camera and 
generate the new fingerprint fi 
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Figure 1:  Fingerprint generation. (a) panoramic image with the vertical edges and color patches detection ′v′ and 
color; (b) laser scan with extracted corners ′c′; (c) the first three images depict the position (0 to 360°) of the  colors 
(I-light blue, B- orange and E-light green), vertical edges and corners,  respectively. The forth image describes the 
correspondence between the vertical edges features and the corner features. By regrouping all this results together 
and by adding the empty space features, the final fingerprint is:  cIfvnvcvfnvvncvnncvBnvBccE 
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3) Calculate the probability of matching, 
prob_matching, between the fingerprints fi-1 and fi 
respectively. Compute the dissimilarity factor, 
dissimilarity. 
        prob_matching = P (fi ⎟ fi-1) 

 
       dissimilarity(fi , fi-1) = 1- prob_matching 

4) If  dissimilarity(fi , fi-1) <θ then 
a. Add fingerprint fi to the current node nk 
b. Calculate the new mean fingerprint of 

the node nk 
Else 

a.  A new node nk+1 is inserted (added) in 
the map 

b. Add fingerprint fi to the node nk+1 
5) Repeat from step 2) 

In step 4), we defined a threshold θ as the maximum 
allowable dissimilarity (i.e., 1-prob_matching) between 
the fingerprints. The value of prob_matching is calculated 
with the "global alignment with uncertainty" algorithm. 
This method is an adaptation of the global alignment 
algorithm usually used for comparing D.N.A. sequences, 
introduced by Needleman and Wunsch [13].  The value of 
the threshold is determined experimentally. The 
incremental nature of the approach permits incremental 
additions to the map and yields the most up-to-date map at 
any time.  

As mentioned previously, a step in the construction of 
the map is the generation of a mean fingerprint for each 
node. The following sub-section explains this process. It 
uses the "global alignment with uncertainty" algorithm [15] 
for fingerprint matching. 

B. Mean Fingerprint Generation 

As stated earlier, a fingerprint is extracted periodically 
in space (every ∆d) or time (every ∆t). A node is composed 
of several similar fingerprints that will be subsequently 
regrouped into a mean fingerprint. By choosing a suitable 
threshold θ, the mean fingerprint enables clustering of 
places into nodes. 

As soon as a new fingerprint is added to the current 
node nk, the mean fingerprint is updated by constructing the 
new mean fingerprint between the previous mean 
fingerprint and the newly introduced fingerprint (see Figure 
2). The generation of the mean fingerprint between two 
fingerprints is performed in several steps, described briefly 
below. The first step in the mean fingerprint generation 
process consists of matching the two fingerprints involved. 
As the orientation of the robot is not known a priori or 
fixed beforehand, the robot estimates it by considering all 
the possible permutations of one fingerprint sequence with 
respect to another.  The fingerprint matching algorithm, 
illustrated in [15], yields their best match. It can be seen in 
Figure 2 (Step 1), that once the two fingerprint sequences 
are aligned, they have the same length.  In the second step, 
the mean fingerprint between two consecutively obtained 
fingerprints of places is computed. The mean fingerprint 

contains the features that matched during the fingerprint 
matching process and those with a high probability of 
existence. For calculating the mean fingerprint for a 
specific node nk, these two steps are repeated until all the 
fingerprints of that node are included in it. Figure 2 
describes this process through a simple example. Further 
enhancements to this method will be incorporated in the 
near future. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Illustration of the Mean Fingerprint Generation process. Fi, Fj 
and Fk are three consecutively obtained fingerprints. 

The mean-fingerprint associates each node with a unique 
identifier (i.e., the mean-fingerprint). This enables the 
construction of a very distinctive and compact 
representation of the environment.   

 
C. Map Update 

By using a POMDP (Partially Observable Markov 
Decision Process), a discrete approximation of a 
probability distribution over all possible poses in the 
environment is computed.  

The entropy of a probability distribution p is:  
 

 
 
 
where S is the finite set of environment states of the 
POMDP, and pslog ps = 0 when ps = 0. The lower the 
entropy value, the more certain the distribution. When the 
robot is "confused", the entropy is high.  
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Therefore, the strategy for the update of the map will be 
the following:  

• When the entropy of the belief state is low enough, 
the map will be updated and so the fingerprint and 
the uncertainty of the features will also be updated. 

• If the entropy is above a threshold α, then the 
updating will not be allowed, and we will try to 
reduce the entropy by continuing the navigation 
with localization. 

If the robot feels confident of its state, it can decide if an 
extracted feature is new by comparing the observed 
fingerprint to the fingerprint from the map, corresponding 
to the most likely state (MLS), computed with the help of 
the POMDP. This can happen either in an unexplored 
portion of the environment, or in a known portion, where 
new features appear due to the environmental dynamics. 
As the features from the fingerprint come with their 
uncertainty, when a feature is re-observed, the uncertainty 
of the feature from the map fingerprint is weight averaged 
with the uncertainty of the extracted one. If the robot does 
not see an expected feature, the uncertainty is decreased. 
When the uncertainty of a feature from a map fingerprint 
is below a minimum threshold, then the feature is deleted, 
thereby allowing the incorporation of the dynamics in the 
map thus formed. 

IV. EXPERIMENTAL RESULTS 

The approach has been evaluated in a portion of our 
institute building shown in Figure 4. For the experiments, 
the BIBA robot (see Figure 3), a fully autonomous mobile 
robot, has been used. Its controller consists of a VME 
standard backplane with a PowerPC 750 clocked at 400 
MHz running XO/2, a hard real-time operating system and 
a Pentium III running at 700 MHz, with 128 MB RAM, 
using the Windows 2000 operating system for all 
interaction tasks. Both computers can communicate with 
each other over a 3 Mbps local Ethernet and with a central 
computer over wireless interfaces to allow for monitoring 
of the state of the robot for supervision. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

Among its peripheral devices, the most important are the 
wheel encoders, two 180° laser range finders, five infrared 

sensors, four ultrasound sensors and an omni-directional 
camera. The omni-directional camera system uses a 
mirror-camera system to image 360° in azimuth and up to 
110° in elevation. 

 

 
 
 
 
 
  
 

Figure 4: Floor plan of the first environment where the experiments have 
been conducted. The line shows the path followed by the robot in the 
environment. The robot starts at the point S and ends at the point E. The 
trajectory length is 75 m. During this step, the robot collected 500 data 
sets (i.e. images and scans) from the environment. 

The test setup was the following: the robot started at the 
point S and ended at the point E as illustrated in the  
Figure 4, the distance traveled being of 75m. While the 
robot explored the environment, it recorded, at every ∆d 
(distance) (e.g., in our case d =15cm), data readings from 
sensors (i.e., an image from the omni-directional camera 
and a scan from the laser scanner) in order to extract the 
fingerprints. The robot has a ′mid-line following′ behavior 
in the hallways and ′center of the free space′ behavior in 
the open spaces. We assume that the position in the room 
with the maximum free space around it, is the one with the 
highest probability of extracting numerous and 
characteristic features. This ensures high distinctiveness of 
the observation. The map building process was performed 
off-line. 
 
 Figure 5 shows the topological map obtained by the 
system in our laboratory, superimposed on a coarse map of 
the environment. 
 The fingerprints used for this representation contain just 
the vertical edges and the corners as features. The color 
patches were not included because they were very 
sensitive to changes in illumination present in our case. 
The resulting map is composed of 20 nodes as shown in 
the Figure 5. Each node is represented by a mean 
fingerprint which is an aggregation of all the fingerprints 
composing the respective node. Typically, the nodes are 
positioned in the rooms and in the hallway. Four cases 
merit some additional discussion. The first special node is 
the one in-between Room 2 and Room 3. This node is 
justified because a door that connects the two hallways is 
present. A new node is introduced in the hallway between 
Room 4 and Room 5. The robot detected important 
changes in the environment due to the vertical pillar 
present in the corridor. Another node that deserves 
attention is the hallway node between the Room 7 and 
Room 8. The door of Room 8 is opened (hallway 
opening), obstructing the view of the robot and making the 
environment very different in front and behind  

Figure 3: The fully 
autonomous robot BIBA.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the door. A new node is therefore automatically introduced 
by the mapping system. The distance in the corridor 
between Room 8 and the end point E is quite significant. 
Since the robot detects distinguishing features due to the 
changes in this portion of the environment, a new node 
specifying this is required.  
 The doors of some rooms remained closed at the time of 
experimentation; this explains why no node is present in 
front of the respective rooms (see Figure 4). 
 The representation thus obtained (see Figure 5) 
reproduces correctly the structure of the physical space, in 
a manner that is compatible with the topology of the 
environment. It also verifies the consistency of the map 
and permits a distinctive modeling of it. It is important to 
mention that the map is obtained by using local features 
only and not by using the topological structure of the 
environment. 

V. RELATED WORK 
Various methods have been proposed to represent 

environments in the framework of autonomous navigation, 
from precise geometric maps based on raw data or lines to 
purely topological maps using symbolic descriptions. Each 
of these methods is optimal with respect to some 
characteristics but can be very disappointing with respect 
to other requirements.  

Research in map-building can be classified into two 
major approaches: metric and topological. 

Metric maps are spatial representations that have been 
extensively studied in the robotics community. The 
stochastic map technique to SLAM [3, 4, 11] and the 
occupancy grids [18] are typical examples belonging to 
this kind of space representation. Because these methods 
are used with high precision sensors, mapping yields a 
precise representation of the environment and 
consequently localization is accurate. However, metric 
SLAM (Simultaneous Localization and Mapping) can 
 

 
  
  

 

 

 

 

 

 

 

 

 

 

 

 

become computationally very expensive for large 
environments. Thrun in [19] proposes probabilistic 
methods that make the metric mapping process faster and 
more robust.  However, metric approaches also suffer from 
other shortcomings. One of the main drawbacks of the 
metric approaches is the cumulative error in the position 
estimate which renders it unreliable and inaccurate in large 
environments. Another negative aspect of metric maps is 
that they are not easily extensible so as to be useable for 
higher level, symbolic reasoning.  

Topological approaches attempt to overcome the 
drawbacks of geometric methods by modeling space using 
graphs. Significant progress has been made since the 
seminal paper by Kuipers [8], where, an approach based 
on concepts derived from a theory on human cognitive 
mapping is described as the body of knowledge 
representing large scale space. Kortenkamp and 
Weymouth in [7] have also used cognitive maps for 
topological navigation. They defined the concept of 
gateways which have been used to mark the transition 
between two adjacent places in the environment. They 
have used the data from sonars combined with vision 
information in order to achieve a rich sensory place-
characterization. Their work has been an amelioration of 
Mataric’s approach [12], contributing towards the 
reduction of the perceptual aliasing problem. The 
improvement is obtained by introducing more sensory 
information for place representation. A model by Franz, 
Schölkopf and Mallot [5] was designed to explore open 
environments within a maze-like structure and to build 
graph-like representations. Their method has been tested 
on a real robot equipped with an omni-directional camera. 
In [6] and [14], the authors have used a model based on a 
self-organizing map which creates a topological 
representation of the environment while the robot explores 
it. Most recently, Beeson et al have used Extended 
Voronoi Graphs to demonstrate place detection in the 
context of topological maps [2]. 
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Figure 5:  The map of the test environment with the graph representing the topological map. The topological 
representation is superimposed on a coarse map of the environment. 
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 Topological maps are less complex and permit more 
efficient planning than metric maps. Moreover, they are 
easier to generate. Maintaining global consistency is also 
easier in topological maps compared to metric maps. 
However, the main problems to deal with, when working 
with topological maps are the perceptual aliasing (i.e., 
observations at multiple locations are similar) and the 
automatic establishment of a minimal topology (nodes). 

Recently, researchers have integrated both the metric 
and topological paradigms, thereby obtaining a hybrid 
system. Thrun, in [19], uses occupancy-grid based maps in 
order to build the metric map. The topological map is 
extracted from the grid-based map. Learning a topological 
representation depends on learning a geometric map, 
which relies on the odometric capability of the robot.  
However, in large environments, it is difficult to maintain 
the consistency of the metric map, due to the drift in the 
odometry.  In [21], Tomatis et al. have conceived a hybrid 
representation, comprising of a global topological map 
with local metric maps associated to each node for precise 
navigation. The authors of [17] have illustrated another 
hybrid representation, similar to the previously mentioned 
work. The space is represented as a set of local geometric 
maps interconnected via a global topological map. The 
nodes define the visible region of an artificial landmark 
(i.e., bar-codes placed at a fixed height).  

Our method uses fingerprints of places to create a 
topological model of the environment. The fingerprint 
approach, by combining the information from all sensors 
available to the robot, eliminates perceptual aliasing and 
improves the distinctiveness of places. The topological 
mapping system, described in this work, relies on 
fingerprints of places to yield a consistent and distinctive 
representation of the environment. This fingerprint-based 
approach is extensible in that it permits spatial cognition 
beyond just pure navigation. 

VI. CONCLUSIONS AND FUTURE WORKS 
This paper has presented a new technique for automatic 
and incremental topological mapping with fingerprints of 
places. The fingerprint provides a compact and distinctive 
methodology for space representation and place 
recognition – it permits encoding of a huge amount of 
place-related information in a single circular sequence of 
features. This representation is suitable for both indoor and 
outdoor environments. The experiments verify the efficacy 
and reliability of our approach. Some future works will 
focus on the combination of this map building approach 
with the topology learning [16], and on the extension of 
the whole approach towards topological SLAM 
(Simultaneous Localization and Mapping) including 
POMDP. In addition, efforts will also be directed towards 
testing the sensitivity of the currently chosen heuristic, 
with respect to indoor and outdoor conditions. 
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