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Abstract – The main contribution of this paper is an algorithm 
for autonomous search that minimizes the expected time for 
detecting multiple targets present in a known built environment. 
The proposed technique makes use of the probability distribution 
of the target(s) in the environment, thereby making it feasible to 
incorporate any additional information, known a-priori or 
acquired while the search is taking place, into the search 
strategy.  The environment is divided into a set of distinct regions 
and an adjacency matrix is used to describe the connections 
between them. The costs of searching any of the regions as well as 
the cost of travel between them can be arbitrarily specified. The 
search strategy is derived using a dynamic programming 
algorithm. The effectiveness of the algorithm is illustrated using 
an example based on the search of an office environment. An 
analysis of the computational complexity is also presented.  
 
 Index Terms – Multiple targets, target search, dynamic 
programming, topological map, probability distribution 
 

I.  INTRODUCTION 

 In many rescue and security scenarios, it is necessary to 
efficiently direct mobile responders to find and reach 
phenomena of interest. In an Urban Search and Rescue 
(USAR) setting, the objective is to locate and render aid to the 
victim as quickly as possible in a race against diminishing 
survival windows. In security applications, the targets or 
events are to be found and investigated by capable mobile 
agents, minimizing the opportunity for harm. In both of the 
above contexts, the key is to have the searcher physically 
reach the target(s) as quickly as possible. 
 If the targets locations are completely unknown, the 
search problem becomes that of area coverage. In many cases, 
however, there may be partial information available about the 
target locations, for example, a distress signal, witness reports 
“He’s in the back of the office”, informed guesses based on 
past patterns, or information gathered through a network of 
sensors such as motion detectors distributed in the 
environment [1]. The key issue is then to find an efficient 
algorithm that can guide the selective search process by 
making use of all the available information [2]. 

One of the natural ways to capture the available 
information is to represent it as the likelihood of the target 
presence in the search space. In the case of finding targets in 
free space, such as boats lost at sea, Bourgault et al. [3] 
employed a Bayesian approach where the target probability 
density function (PDF) is used as prior information. As rescue 

air vehicles cover the ocean, the target PDF is updated using 
the model of the sensor and expected target motion. Optimal 
trajectories for the search are those that maximize the 
cumulative probability of detection over a limited time 
horizon. The key assumptions used in [3] are that the PDF of 
the target locations is smooth and the search space is free from 
obstacles constraining searcher motion. The global optimum 
can only be found if the time horizon is infinite, however, this 
is not computationally tractable. In practice, a short planning 
horizon is used to achieve reasonable but globally suboptimal 
trajectories. 

In the case of a built environment consisting of, for 
example, floors in a building, or rooms on a number of floors, 
the likelihood of target presence can be described by discrete 
probabilities associated with specific regions. Early search 
problems such as [4] sought to minimize the expected cost to 
find a target among a series of discrete cells given a target 
distribution, detection probability and search costs. This 
formulation however assumes that the time required to reach 
and examine each cell is independent of previous action. 
Clearly, this assumption is violated in a typical indoor 
environment where travel time to any given region is a 
function of the current location of the agent. Furthermore, 
motion of the searcher is constrained and depends on the 
topology of the environment. The more realistic constrained 
search or optimal searcher path problem [5][6] embodies these 
movement restrictions, but most existing work assumes 
uniform regions that take identical search times and identical 
travel times from each region to its immediate neighbors.  

This paper addresses the multiple target search problem in 
a known environment which can be described by a set of 
connected regions. The available information about the targets 
is expressed by the expected proportion of targets present in 
each region. A search strategy that minimizes the expected 
average time for detection of each target is presented. In 
contrast to much of the existing literature, the proposed 
algorithm deals with an environment where multiple targets 
may be present and allows travel and search costs of 
individual regions to be arbitrarily specified. In a related 
research, Lössner and Wegener [7] also examined a scenario 
with non-uniform search costs, but this work only focused on 
the conditions necessary for the existence of optimal solutions 
to a single target problem.  

The optimal strategy proposed in this paper is based on 
dynamic programming. While dynamic programming is 



known to be computationally expensive, it will be shown that 
the special structure of the search problem can be exploited to 
obtain an efficient solution. For example, the search strategy 
for an environment containing 14 distinct regions with non-
zero target probability can be computed at a cost of less than 
20 seconds in a high end PC.  

The paper is arranged as follows. The search problem is 
formally described in section II. Section III develops the 
dynamic programming algorithm for obtaining the optimal 
search schedule. Section IV describes the computational 
aspects of the algorithm and discusses the issue of 
computational complexity. The effectiveness of the proposed 
algorithm is presented using simulated search scenarios in an 
office environment in section V. Section VI provides the 
conclusions and discusses some possible extensions to the 
proposed approach. 

II.  PROBLEM DESCRIPTION 

Searching looks for objects of interests – targets. A general 
single-robot search problem for a known environment can be 
described as follows.  
Given knowledge of: 

• The environment structure and searcher capability 
• A priori information of the targets 

Find a search strategy such that the search efficiency is 
maximized. 

The following defines the specific search problem 
addressed in this paper.  

A. Environment Structure and Searcher Capability 
Typical indoor environments are composed of connected 

regions (floors, rooms, halls or corridors). In this paper, we 
assume that the environment can be decomposed into a set of 
connected regions (Fig. 1). The distances between each pair of 
connected regions are assumed to be known, along with the 
size (and structure) of each region.  It is assumed a map of the 
environment is available and the searcher can self-localize and 
move between regions as required. Since the size of each 
region and the distance between two connected regions are 
known, the time necessary to search a region and the 
minimum time needed to move from a region to each of its 
immediate neighbours can be easily computed. 

Once a searcher is on an edge leading to another region, it 
is committed to keep moving until reaching the destination. 
On arrival in a region, it can take the following two actions: 

1. Search the region it is in 
2. Move to an adjoining region without searching 
The search of a region is expected to detect all the targets 

present there, although an extension to the case where there is 
a finite probability of missed detection can be accommodated.  
 A topological map can be used to describe the 
environment. The complete search area is partitioned into a 
weighted undirected graph G = (N, E), where each node 
denotes a region i, that requires a search time .Ti  n = |N| is the 
total number of regions. An edge exists if one can travel from 
one region directly to another. The weight ijA denotes the time 

necessary to move from region i to j (Fig. 1). The set of all the 
adjoining nodes to region i is denoted by .)i(E  Typical indoor 
environments are not fully connected. Therefore, )i(E would 
only be a small subset of N. The location of a robot at time t is 
x(t). The motion of the searcher is described by: 

1. When searching region i: 
i)Tt(xi)t(x i =+→=     (1) 

2. When moving from region i to j: 
)(,)()( iEjjAtxitx ij ∈=+→=     (2) 

B. Information of the Targets 
 The most convenient form of describing the information 
available about the targets is to use the expected proportion of 
targets in each region. If there is no prior knowledge, the 
expected proportion of targets in a given region may be set 
proportional to its size. 
 At time t, the expected proportion of the remaining targets 
in region i is given by:  

n...i),t(pi 1  =       (3) 
Note that: 
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except at the termination of the search when all targets have 
been found. In this case: 

n...i,)t(pi 1  0 ==      (5) 

 
Fig. 1 Pictorial view of an environment decomposed into a set of regions, 
with different expected proportion of targets (shading), search time 
(cloud size) and travel costs (line thickness) 

C. Target Information Update  
    Consider the actions described by (1) and (2). If the 
searcher at time t chooses to move from region }n...{)t(x 1 ∈ to 
a neighboring region j, then the information about the targets 
stays unchanged until time . j)t(xAt +  If the searcher chooses 
to search the region x(t), then the expected target proportions 
are updated for the following cases: 
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2. With probability )()( tp tx : 
     0)( )()( =+ txtx Ttp ; 0)( )( =+ txi Ttp , )(txi ≠   (7) 

 Equation (7) reflects the final scenario where all the 
targets have been found. When there are targets remaining to 
be found, the probability mass is distributed amongst the 
unsearched regions as described by (6).   



D. Search Efficiency 
When looking for a single target, two typical measures 

used for search efficiency are (i) time to detect, and (ii) 
probability of detection within a given time window. In the 
case where multiple targets are present, there is a variety of 
objectives to choose from. For example, minimizing the time 
to find all the targets or to find the very first target, or 
maximising the number of targets found in a fixed time 
period, are all reasonable objectives. 

In search and rescue scenarios, on the one hand, we aim 
to find all the targets, on the other, we want to find most (if 
not all) of the targets as quickly as possible. This motivates us 
to choose “minimization of the average time to find a target” 
as the objective measuring the search efficiency, provided all 
targets are found. For example, when there are 10 targets, one 
search plan finds the first 2 targets in 5 minutes and the 
remaining 8 targets in 30 minutes. The average time to find a 
target is (2*5+8*30)/10=25 minutes. This is not as desirable 
as finding 8 targets at 7 minutes and the last 2 targets at 35 
minutes, where the average time is (8*7+2*35)/10=12.6 
minutes.  

In practice, since the exact locations of the targets are not 
known, we can only minimize “the expected average time to 
find a target” (instead of the true average time) provided all 
the targets are found. In the special case when there is only a 
single target in the environment, this objective is equivalent to 
minimizing the expected time of detection. 

E. Discrete Time Description of the Problem  
 A searcher needs to choose an action at discrete instants 
of time. Let { }))k(x(E,s)k(u ∈  be the action after k time steps 
while x(k) and pi(k), , 1 n...i = denote the searcher location and 
expected target proportions, respectively, after k control 
actions. The action stored in )k(u denotes a transition to a 
neighboring region or if equaling ‘s’, an action to investigate 
the region where the robot already is. Note that the actual time 
interval between two time steps may be different in general. 
 For an initial robot location )(x 0  and any given control 
sequence ),...,(u),(u),(u 210  we can determine  ,1  n...i),i(T = the 
time needed to finish the search of region i, starting from the 
initial robot location .0 )(x  The expected average target 
detection time can then be computed by: 

)(p)n(T...)(p)(T)(p)(T),...)(u),(u(T n 0020110 21 ⋅+⋅+⋅=    (8) 
 The optimum search problem can now be written as: 
Given a map of the environment (such as Fig. 1), the initial 
robot location )(x 0  and an initial expected proportion of 
targets ),(p),...,(p n 001  decide a sequence of )(ku  actions to 
minimize the expected average time to find a target given by 
(8).  
 Because there can be an infinite number of control 
sequences, it is in general not possible to compute a minimal 
value of (8) (together with the optimal sequence) directly.   

III.  APPROACH 

 In this section, a method for obtaining the optimum 
sequence of actions using dynamic programming is presented. 

Although dynamic programming tends to be computationally 
expensive in general, it will be shown that the structure of the 
specific problem lends itself to an efficient implementation of 
this algorithm. 

A. Value Function 
 It can be seen that the expected target proportion np,...,p1  
contains sufficient information to derive the optimal search 
strategy for the robot.  In fact, following a similar argument as 
in section 2 of [7], it can be shown that at each time step k, the 
optimal control action )k(u∗ only depends on the robot 
location )k(x  and expected target proportion )k(p),...,k(p n1 . 
So we define the value function as follows.  
         For any robot location { }n,...,,x  2 1∈ and any feasible 
expected target proportion np,...,p1 the value function 

),...,,( 1 nppxV  is the minimum expected average time, starting 
from the current time, to find a target given the specified robot 
location and expected target proportions. 

B. Dynamic Programming Equation 
 By the principle of optimality, the following Dynamic 
Programming Equation (DPE) is obtained: for any 

),,()p,...,p( n 001 K≠ , 

{ } ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−−−−

⋅−+
=

∈

+−

),...,,(min

),
1

,...,
1

,0,
1

,...,
1

,()1(
min),...,,(

1)(

111

1

nxjxEj

x

n

x

x

x

x

x
xx

n
ppjVA

p
p

p
p

p
p

p
pxVPT

ppxV

 (9) 
 In other words, the minimal expected average time is 
equal to the lesser of (i) the minimal expected time if the robot 
chooses to search the area it is in, equaling the search time xT  
plus the minimal expected time calculated from when the 
search is finished, and (ii) the minimal time for the robot to 
move to any region )x(Ej ∈  plus the minimal expected 
average time calculated from when the robot is in that new 
region j.  
 The boundary condition that represents the case when the 
search is concluded and thus no more time is needed is: 

{ }n,...,,x,),...,,x(V  2 1000 ∈=      (10)  

IV. COMPUTATION ISSUE 

A. Computation of the Optimal Control Actions 
 The following is an algorithm that can be used to compute 
the value function and the optimal control action. 

Algorithm: 
Step 1. Initialize the value function V0, for example choose 

0),,,( 10 =nppxV L  for all  .1 np,,p,x L Arbitrary values can be 
selected provided the boundary condition (10) is met.  
Step 2. Compute function Vi+1 using the dynamic 
programming (DP) recursion for ),....,()p,,p( n 001 ≠L  
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Step 3. Stop when ),p,...,p,x(V)p,...,p,x(V nini 111 =+ for all 
.1 np,,p,x L  

 Then the final function ),,,( 1 ni ppxV L satisfies the DPE 
and is the value function that we seek. The optimal control 
law ),,,( 1

*
nppxu L  can be obtained simultaneously in the last 

step of iteration. In fact, if in the final iteration searching gives 
the minimal time in (11), then the action ‘s’ should be taken. 
Otherwise the searcher should move to the region j that 
achieves the lowest value. It is possible for more than one 
control action to yield the same minimum value. 

B. Computation Complexity 
 Because there is an infinite number of feasible expected 
target proportions np,...,p1 (for example 1p can be any real 
number between 0 and 1), the DP algorithm presented above 
cannot be applied directly. A naïve way is to discretize the 
continuous state space first and only compute the value 
function at the discretized states. However, this may cause 
some numerical problems due to the discretization and a fine 
discretization will lead to unacceptable computation cost. 
     Actually, by a close look at the specific search problem 
considered in this paper, it can be seen that once the initial 
expected target proportion )(p),...,(p n 00 1 is given, the total 
number of all the possible target proportion generated from 
some feasible control actions is finite -- ,2 0n  where 0n  is the 
number of regions with non-zero probability. Accordingly, 
only the value function and the optimal control actions for 
these target proportions (together with different robot 
locations) need to be computed. As there are n regions for the 
robot to be in, the total number of states )p,,p,x( nL1 in the 
DP algorithm is .2 0nn  This makes it possible to compute the 
exact value function and optimal control law using the 
proposed DP algorithm at dramatically reduced computation 
cost. 
 A research implementation of the algorithm in MATLAB 
executes in under 20 seconds on a Pentium M 1.4-Ghz 
computer, for the environment shown in Fig. 2 where 

 140 =n and .n 17= When all seventeen regions have non-zero 
target probability ( 170 =n ), paths are generated within four 
minutes. Despite the NP-hard nature of the problem [8], the 
proposed algorithm is viable in this scenario. 
        It should be noted that in doing so, the optimal strategy 

)p,,p,x(u n
* L1  is only available for the states that can be 

generated from the initial expected target proportion 
).(p),...,(p n 001  If additional information becomes available 

(e.g. through an embedded sensor network) contradicting the 
original assumptions for the target proportions, then the value 
function and optimal control action need to be recomputed 
based on the updated targets information. Since the 
computation time for the planning is reasonably short, this is 
acceptable in practice. 

V.  SIMULATIONS 

A. Scenario and Simulations 
 This section illustrates the proposed algorithm using a 
simulated search of an office floor in the University of 

Technology, Sydney.  The floor is divided into 17 regions as 
shown in Fig. 2a. The cost of travel (shown in parenthesis) 
between regions was computed by planning the shortest 
distance path between the nodes for a robot with a speed of 
0.5 m/s. The estimated costs are obtained by computing 
minimum distance paths between the regions, giving due 
consideration to the presence of walls, doors etc.  In Figure 2, 
however, regions are linked by straight lines for clarity.  The 
search cost per region is set proportional to its area. Further 
details of the simulation and a number of animations are 
available in http://www.eng.uts.edu.au/~hlau/indoor_search. 

B. Example Track 

 Fig. 2(a-b) shows a part of the optimal search plan 
produced when the searcher starts from region 9. The prior 
expected target proportion is represented using the degree of 
shading in Fig. 2a (for example room 17 has the highest 
proportion of targets). The sequence of rooms searched 
following the plan is start-17-16-15-14-13-12-11-2-3-1-10.  

 

 
Fig. 2a-b Snapshots at two distinct times of the guided search sequence. A red 
triangle depicts the current searcher position, while a red star indicates that a 
region is currently being swept. Blue stars mark the regions already searched 
and blue triangles show the regions the robot bypassed without searching. 2(a) 
shows the status of the environment after 9 time steps while 2(b) shows the 
simulation after 24 time steps 

 The strategy is clearly not greedy with respect to either 
distance or probability. For example, the robot bypasses 
regions 10-16 and proceeds to search region 17, despite 
starting at region 9. On the other hand, after completing the 
search of region 17, it spends time searching the regions 16-



11, although region 2 now has the highest proportion of 
targets. The proposed algorithm generates schedules which 
strike an optimal balance between anticipated costs and 
potential rewards.  

C. Comparison with Shortest Paths 
 The following example demonstrates how the algorithm 
leverages available information about the likely distribution of 
targets to improve search effectiveness. If we know nothing of 
where the targets could be and each region requires 
insignificant effort to investigate (e.g., the searcher only needs 
to go there and see), then the optimal plan is equivalent to a 
shortest coverage path through the set of nodes. For example, 
given equal target probability in regions 1, 2, 3, 6, 7, 10, 11, 
12, the proposed algorithm generates a shortest possible route 
which requires at most 78.34s to search if it succeeds on the 
very last region. However, if we are privy to information 
suggesting region 7 is more likely to contain targets (Fig. 3), 
the sequence generated has the worst case time of 80s. While 
appearing counterintuitive, the new route (start-10-11-12-6-7-
3-2-1) is designed to result in a lower expected time than that 
achievable if the geometrically shortest path was followed.  

 
Fig. 3 Search sequence guided by additional knowledge. A shortest path 
would search leftwards first. Investigating the right side earlier however 
results in the minimal expected time. 
 This was in fact confirmed by using randomly generated 
target locations in 10,000 trials. As expected, the strategy of 
using the shortest path also results in the shortest expected 
time for detection when targets are indeed evenly distributed. 
However, when the expected target proportion is not uniform, 
it can be seen that the proposed strategy results in smaller 
expected time to detect than that achieved by the shortest 
geometric route, requiring an average time of 42.2s versus 
47.7s, a difference of 12.9 percent. 
 This example illustrates that when there is additional data 
about likely target presence, the algorithm is able to make the 
most of the information. On the other hand, in the absence of 
such guidance, the plan generated is nevertheless the best that 
can be expected given the complete lack of knowledge. 

D. Comparison with Heuristics 
 Optimal action sequences to detect a single target are 
compared against three common heuristics to show the 
relative performance of this approach and the respective 
influences of search and travel costs. The heuristics are 

characterized by the criteria used to select the next possibly 
occupied region to search at each time step, defined as 
follows: 

1) Maximize the highest probability of detection 
2) Minimize the cost of travel and search 
3) Maximize the ratio of detection probability and cost 

 In the latter two, the cost is the time required to travel 
directly to the target region and then immediately search it. 
Despite being locally optimal, the techniques generate 
reasonable trajectories for comparison, particularly on small 
graphs. The third is known to be also optimal for a restricted 
version of this problem [4] and is the one-step version of the 
utility greedy heuristic used in [9].   
 The results after 10,000 runs of the four methods with 
randomly generated target locations in the same environment 
are collated in Table II. To examine the relative effect of 
varying search and travel costs, two additional scenarios 
where the search cost is zero and large compared to the travel 
cost (as outlined in Table I) are considered to examine the 
relative effect of the costs.  

TABLE I 
SCENARIO PROPERTIES 

Scenario Target 
Distribution Search and Travel Costs 

1 
11 regions with 
non-zero target 

probability 
Search costs and travel costs are similar 

2 Same as 1 Search cost is significantly larger than 
the travel cost 

3 Same as 1 Search cost is zero 
TABLE II 

SCENARIO RESULTS 
Mean Time to Detection (s)  Scenarios

DP 
algorithm 

Maximize 
detection 

probability 

Minimize 
travel and 

search costs 

Maximize 
detection 

probability / 
cost 

1 169 237.6(40.6%) 185.1(9.5%) 184.7(9.3%) 
2 559.8 762.4(36.2%) 644.9(15.2%) 569.9(1.8%) 
3 54.7 105.3(92.5%) 57(4.2%) 74.6(36.4%) 

 The three heuristics are compared with the optimal 
strategy generated by DP. As can be seen, maximizing the 
ratio of detection probability versus cost performed well for 
the heavily contrived scenario 2, since a searcher’s current 
position has almost no bearing on the time required to cover 
any other cell when search costs dominate the travel time. 
This then satisfies the condition identified in [4] for a locally 
optimal solution to be also globally optimal in minimizing 
expected cost. In the absence of this greedy choice property 
(i.e. in larger indoor areas), the advantage of the proposed 
algorithm becomes more pronounced as the cost to reach the 
next destination increasingly depends on the current region. 
When there are no search costs (scenario 3), only the travel 
time remains to be minimized, rendering a shortest path 
heuristic competitive in the absence of target information. 



VI.  DISCUSSION AND CONCLUSIONS 

 The core challenge in this search problem, be it for rescue 
or surveillance applications, is to determine where to go, 
given what we know. The key benefit of the approach 
presented lies in its ability to take advantage of additional 
available target information to create a more effective plan of 
action (Fig. 4). The high-level strategy can then sensibly 
coordinate the searching of individual areas. Instead of just 
covering all the regions as quickly as possible, when 
formulating an optimal plan, the search and travel costs of the 
regions are traded off against how likely they are to contain 
targets in the first place. The use of expected target 
proportions across the area as a basis renders this approach 
flexible in the sources of information that can be incorporated. 
For instance, low costs sensors distributed throughout 
buildings could provide a coarse estimation based on sound, 
motion or heat. Similarly the last known contact position 
could form an estimate to accelerate the search.  

 
Fig. 4 Approach in context 

 Although this paper concentrates on a static environment 
with targets remaining stationary, the computational cost of 
the algorithm is such that re-planning to incorporate the effect 
of any new information gathered (reflected in a new 
probability distribution for the target location) is feasible. 
 The computational cost of the approach is related to the 
number of regions with non-zero target probability. While the 
technique is tractable for an environment with around 14 
regions (in under 20s), a sub-optimal hierarchical 
decomposition is necessary for tackling larger environments 
or when faced with stricter timing constraints. Decomposing a 
large area into constituent parts has been used as a natural way 
of managing complexity in search related problems. [10] 
divides a structure into regions to coordinate the tracking of 
targets between cells, [11] extracts the topology in 
architectural plans for navigation, while [12] solves a Pursuit-
Evasion problem by first partitioning visibility regions. Of 
most direct interest, [2] describes the USAR scenario where a 
disaster site is segmented into regions with different survivor 
probability, thereby facilitating more rational decision-making 
over where to focus resources. Hierarchical decomposition 
could be achieved for this technique along structural lines 
(e.g. from urban block to buildings to floors), or by grouping 

the target probabilities of regions remote from the searcher. 
The latter in particular allows for planning in graduated 
granularity. 

When the flexibility of supporting a more general 
detection function is not necessary, only an order of searching 
the non-empty regions is required. The search problem in this 
paper may then be posed as that of a Maximum Collection 
Problem with Time-Dependent Rewards [13]. We are 
currently investigating optimal techniques for solving the 
problem on small map sizes.  

Work is underway on search in dynamic environments 
and multi-robot search, to extend the ideas presented in this 
paper. 
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