
“© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.”

Optimal Search for Multiple Targets
in a Built Environment

Haye Lau, Shoudong Huang and Gamini Dissanayake
ARC Centre of Excellence for Autonomous Systems (CAS)

University of Technology, Sydney
NSW, Australia

{hlau, sdhuang, gdissa}@eng.uts.edu.au

Abstract – The main contribution of this paper is an algorithm
for autonomous search that minimizes the expected time for
detecting multiple targets present in a known built environment.
The proposed technique makes use of the probability distribution
of the target(s) in the environment, thereby making it feasible to
incorporate any additional information, known a-priori or
acquired while the search is taking place, into the search
strategy. The environment is divided into a set of distinct regions
and an adjacency matrix is used to describe the connections
between them. The costs of searching any of the regions as well as
the cost of travel between them can be arbitrarily specified. The
search strategy is derived using a dynamic programming
algorithm. The effectiveness of the algorithm is illustrated using
an example based on the search of an office environment. An
analysis of the computational complexity is also presented.

 Index Terms – Multiple targets, target search, dynamic
programming, topological map, probability distribution

I. INTRODUCTION

 In many rescue and security scenarios, it is necessary to
efficiently direct mobile responders to find and reach
phenomena of interest. In an Urban Search and Rescue
(USAR) setting, the objective is to locate and render aid to the
victim as quickly as possible in a race against diminishing
survival windows. In security applications, the targets or
events are to be found and investigated by capable mobile
agents, minimizing the opportunity for harm. In both of the
above contexts, the key is to have the searcher physically
reach the target(s) as quickly as possible.
 If the targets locations are completely unknown, the
search problem becomes that of area coverage. In many cases,
however, there may be partial information available about the
target locations, for example, a distress signal, witness reports
“He’s in the back of the office”, informed guesses based on
past patterns, or information gathered through a network of
sensors such as motion detectors distributed in the
environment [1]. The key issue is then to find an efficient
algorithm that can guide the selective search process by
making use of all the available information [2].

One of the natural ways to capture the available
information is to represent it as the likelihood of the target
presence in the search space. In the case of finding targets in
free space, such as boats lost at sea, Bourgault et al. [3]
employed a Bayesian approach where the target probability
density function (PDF) is used as prior information. As rescue

air vehicles cover the ocean, the target PDF is updated using
the model of the sensor and expected target motion. Optimal
trajectories for the search are those that maximize the
cumulative probability of detection over a limited time
horizon. The key assumptions used in [3] are that the PDF of
the target locations is smooth and the search space is free from
obstacles constraining searcher motion. The global optimum
can only be found if the time horizon is infinite, however, this
is not computationally tractable. In practice, a short planning
horizon is used to achieve reasonable but globally suboptimal
trajectories.

In the case of a built environment consisting of, for
example, floors in a building, or rooms on a number of floors,
the likelihood of target presence can be described by discrete
probabilities associated with specific regions. Early search
problems such as [4] sought to minimize the expected cost to
find a target among a series of discrete cells given a target
distribution, detection probability and search costs. This
formulation however assumes that the time required to reach
and examine each cell is independent of previous action.
Clearly, this assumption is violated in a typical indoor
environment where travel time to any given region is a
function of the current location of the agent. Furthermore,
motion of the searcher is constrained and depends on the
topology of the environment. The more realistic constrained
search or optimal searcher path problem [5][6] embodies these
movement restrictions, but most existing work assumes
uniform regions that take identical search times and identical
travel times from each region to its immediate neighbors.

This paper addresses the multiple target search problem in
a known environment which can be described by a set of
connected regions. The available information about the targets
is expressed by the expected proportion of targets present in
each region. A search strategy that minimizes the expected
average time for detection of each target is presented. In
contrast to much of the existing literature, the proposed
algorithm deals with an environment where multiple targets
may be present and allows travel and search costs of
individual regions to be arbitrarily specified. In a related
research, Lössner and Wegener [7] also examined a scenario
with non-uniform search costs, but this work only focused on
the conditions necessary for the existence of optimal solutions
to a single target problem.

The optimal strategy proposed in this paper is based on
dynamic programming. While dynamic programming is

known to be computationally expensive, it will be shown that
the special structure of the search problem can be exploited to
obtain an efficient solution. For example, the search strategy
for an environment containing 14 distinct regions with non-
zero target probability can be computed at a cost of less than
20 seconds in a high end PC.

The paper is arranged as follows. The search problem is
formally described in section II. Section III develops the
dynamic programming algorithm for obtaining the optimal
search schedule. Section IV describes the computational
aspects of the algorithm and discusses the issue of
computational complexity. The effectiveness of the proposed
algorithm is presented using simulated search scenarios in an
office environment in section V. Section VI provides the
conclusions and discusses some possible extensions to the
proposed approach.

II. PROBLEM DESCRIPTION

Searching looks for objects of interests – targets. A general
single-robot search problem for a known environment can be
described as follows.
Given knowledge of:

• The environment structure and searcher capability
• A priori information of the targets

Find a search strategy such that the search efficiency is
maximized.

The following defines the specific search problem
addressed in this paper.

A. Environment Structure and Searcher Capability
Typical indoor environments are composed of connected

regions (floors, rooms, halls or corridors). In this paper, we
assume that the environment can be decomposed into a set of
connected regions (Fig. 1). The distances between each pair of
connected regions are assumed to be known, along with the
size (and structure) of each region. It is assumed a map of the
environment is available and the searcher can self-localize and
move between regions as required. Since the size of each
region and the distance between two connected regions are
known, the time necessary to search a region and the
minimum time needed to move from a region to each of its
immediate neighbours can be easily computed.

Once a searcher is on an edge leading to another region, it
is committed to keep moving until reaching the destination.
On arrival in a region, it can take the following two actions:

1. Search the region it is in
2. Move to an adjoining region without searching
The search of a region is expected to detect all the targets

present there, although an extension to the case where there is
a finite probability of missed detection can be accommodated.
 A topological map can be used to describe the
environment. The complete search area is partitioned into a
weighted undirected graph G = (N, E), where each node
denotes a region i, that requires a search time .Ti n = |N| is the
total number of regions. An edge exists if one can travel from
one region directly to another. The weight ijA denotes the time

necessary to move from region i to j (Fig. 1). The set of all the
adjoining nodes to region i is denoted by .)i(E Typical indoor
environments are not fully connected. Therefore,)i(E would
only be a small subset of N. The location of a robot at time t is
x(t). The motion of the searcher is described by:

1. When searching region i:
i)Tt(xi)t(x i =+→= (1)

2. When moving from region i to j:
)(,)()(iEjjAtxitx ij ∈=+→= (2)

B. Information of the Targets
 The most convenient form of describing the information
available about the targets is to use the expected proportion of
targets in each region. If there is no prior knowledge, the
expected proportion of targets in a given region may be set
proportional to its size.
 At time t, the expected proportion of the remaining targets
in region i is given by:

n...i),t(pi 1 = (3)
Note that:

1
1

=∑
=

n

i
i)t(p (4)

except at the termination of the search when all targets have
been found. In this case:

n...i,)t(pi 1 0 == (5)

Fig. 1 Pictorial view of an environment decomposed into a set of regions,
with different expected proportion of targets (shading), search time
(cloud size) and travel costs (line thickness)

C. Target Information Update
 Consider the actions described by (1) and (2). If the
searcher at time t chooses to move from region }n...{)t(x 1 ∈ to
a neighboring region j, then the information about the targets
stays unchanged until time . j)t(xAt + If the searcher chooses
to search the region x(t), then the expected target proportions
are updated for the following cases:

1. With probability)(1)(tp tx− :

)(,
)(1

)(
)(;0)(

)(
)()()(txi

tp
tp

TtpTtp
tx

i
txitxtx ≠

−
=+=+ (6)

2. With probability)()(tp tx :
 0)()()(=+ txtx Ttp ; 0)()(=+ txi Ttp ,)(txi ≠ (7)

 Equation (7) reflects the final scenario where all the
targets have been found. When there are targets remaining to
be found, the probability mass is distributed amongst the
unsearched regions as described by (6).

D. Search Efficiency
When looking for a single target, two typical measures

used for search efficiency are (i) time to detect, and (ii)
probability of detection within a given time window. In the
case where multiple targets are present, there is a variety of
objectives to choose from. For example, minimizing the time
to find all the targets or to find the very first target, or
maximising the number of targets found in a fixed time
period, are all reasonable objectives.

In search and rescue scenarios, on the one hand, we aim
to find all the targets, on the other, we want to find most (if
not all) of the targets as quickly as possible. This motivates us
to choose “minimization of the average time to find a target”
as the objective measuring the search efficiency, provided all
targets are found. For example, when there are 10 targets, one
search plan finds the first 2 targets in 5 minutes and the
remaining 8 targets in 30 minutes. The average time to find a
target is (2*5+8*30)/10=25 minutes. This is not as desirable
as finding 8 targets at 7 minutes and the last 2 targets at 35
minutes, where the average time is (8*7+2*35)/10=12.6
minutes.

In practice, since the exact locations of the targets are not
known, we can only minimize “the expected average time to
find a target” (instead of the true average time) provided all
the targets are found. In the special case when there is only a
single target in the environment, this objective is equivalent to
minimizing the expected time of detection.

E. Discrete Time Description of the Problem
 A searcher needs to choose an action at discrete instants
of time. Let { }))k(x(E,s)k(u ∈ be the action after k time steps
while x(k) and pi(k), , 1 n...i = denote the searcher location and
expected target proportions, respectively, after k control
actions. The action stored in)k(u denotes a transition to a
neighboring region or if equaling ‘s’, an action to investigate
the region where the robot already is. Note that the actual time
interval between two time steps may be different in general.
 For an initial robot location)(x 0 and any given control
sequence),...,(u),(u),(u 210 we can determine ,1 n...i),i(T = the
time needed to finish the search of region i, starting from the
initial robot location .0)(x The expected average target
detection time can then be computed by:

)(p)n(T...)(p)(T)(p)(T),...)(u),(u(T n 0020110 21 ⋅+⋅+⋅= (8)
 The optimum search problem can now be written as:
Given a map of the environment (such as Fig. 1), the initial
robot location)(x 0 and an initial expected proportion of
targets),(p),...,(p n 001 decide a sequence of)(ku actions to
minimize the expected average time to find a target given by
(8).
 Because there can be an infinite number of control
sequences, it is in general not possible to compute a minimal
value of (8) (together with the optimal sequence) directly.

III. APPROACH

 In this section, a method for obtaining the optimum
sequence of actions using dynamic programming is presented.

Although dynamic programming tends to be computationally
expensive in general, it will be shown that the structure of the
specific problem lends itself to an efficient implementation of
this algorithm.

A. Value Function
 It can be seen that the expected target proportion np,...,p1
contains sufficient information to derive the optimal search
strategy for the robot. In fact, following a similar argument as
in section 2 of [7], it can be shown that at each time step k, the
optimal control action)k(u∗ only depends on the robot
location)k(x and expected target proportion)k(p),...,k(p n1 .
So we define the value function as follows.
 For any robot location { }n,...,,x 2 1∈ and any feasible
expected target proportion np,...,p1 the value function

),...,,(1 nppxV is the minimum expected average time, starting
from the current time, to find a target given the specified robot
location and expected target proportions.

B. Dynamic Programming Equation
 By the principle of optimality, the following Dynamic
Programming Equation (DPE) is obtained: for any

),,()p,...,p(n 001 K≠ ,

{ } ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−−−−

⋅−+
=

∈

+−

),...,,(min

),
1

,...,
1

,0,
1

,...,
1

,()1(
min),...,,(

1)(

111

1

nxjxEj

x

n

x

x

x

x

x
xx

n
ppjVA

p
p

p
p

p
p

p
pxVPT

ppxV

 (9)
 In other words, the minimal expected average time is
equal to the lesser of (i) the minimal expected time if the robot
chooses to search the area it is in, equaling the search time xT
plus the minimal expected time calculated from when the
search is finished, and (ii) the minimal time for the robot to
move to any region)x(Ej ∈ plus the minimal expected
average time calculated from when the robot is in that new
region j.
 The boundary condition that represents the case when the
search is concluded and thus no more time is needed is:

{ }n,...,,x,),...,,x(V 2 1000 ∈= (10)

IV. COMPUTATION ISSUE

A. Computation of the Optimal Control Actions
 The following is an algorithm that can be used to compute
the value function and the optimal control action.

Algorithm:
Step 1. Initialize the value function V0, for example choose

0),,,(10 =nppxV L for all .1 np,,p,x L Arbitrary values can be
selected provided the boundary condition (10) is met.
Step 2. Compute function Vi+1 using the dynamic
programming (DP) recursion for),....,()p,,p(n 001 ≠L

{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−−−−

⋅−+
=

∈

+−

+

),...,,(min

),
1

,...,
1

,0,
1

,...,
1

,()1(
min

),...,,(

1
)(

111

11

nixj
xEj

x

n

x

x

x

x

x
ixx

ni

ppjVA
p

p
p

p
p

p
p

pxVPT

ppxV

 (11)

Step 3. Stop when),p,...,p,x(V)p,...,p,x(V nini 111 =+ for all
.1 np,,p,x L

 Then the final function),,,(1 ni ppxV L satisfies the DPE
and is the value function that we seek. The optimal control
law),,,(1

*
nppxu L can be obtained simultaneously in the last

step of iteration. In fact, if in the final iteration searching gives
the minimal time in (11), then the action ‘s’ should be taken.
Otherwise the searcher should move to the region j that
achieves the lowest value. It is possible for more than one
control action to yield the same minimum value.

B. Computation Complexity
 Because there is an infinite number of feasible expected
target proportions np,...,p1 (for example 1p can be any real
number between 0 and 1), the DP algorithm presented above
cannot be applied directly. A naïve way is to discretize the
continuous state space first and only compute the value
function at the discretized states. However, this may cause
some numerical problems due to the discretization and a fine
discretization will lead to unacceptable computation cost.
 Actually, by a close look at the specific search problem
considered in this paper, it can be seen that once the initial
expected target proportion)(p),...,(p n 00 1 is given, the total
number of all the possible target proportion generated from
some feasible control actions is finite -- ,2 0n where 0n is the
number of regions with non-zero probability. Accordingly,
only the value function and the optimal control actions for
these target proportions (together with different robot
locations) need to be computed. As there are n regions for the
robot to be in, the total number of states)p,,p,x(nL1 in the
DP algorithm is .2 0nn This makes it possible to compute the
exact value function and optimal control law using the
proposed DP algorithm at dramatically reduced computation
cost.
 A research implementation of the algorithm in MATLAB
executes in under 20 seconds on a Pentium M 1.4-Ghz
computer, for the environment shown in Fig. 2 where

 140 =n and .n 17= When all seventeen regions have non-zero
target probability (170 =n), paths are generated within four
minutes. Despite the NP-hard nature of the problem [8], the
proposed algorithm is viable in this scenario.
 It should be noted that in doing so, the optimal strategy

)p,,p,x(u n
* L1 is only available for the states that can be

generated from the initial expected target proportion
).(p),...,(p n 001 If additional information becomes available

(e.g. through an embedded sensor network) contradicting the
original assumptions for the target proportions, then the value
function and optimal control action need to be recomputed
based on the updated targets information. Since the
computation time for the planning is reasonably short, this is
acceptable in practice.

V. SIMULATIONS

A. Scenario and Simulations
 This section illustrates the proposed algorithm using a
simulated search of an office floor in the University of

Technology, Sydney. The floor is divided into 17 regions as
shown in Fig. 2a. The cost of travel (shown in parenthesis)
between regions was computed by planning the shortest
distance path between the nodes for a robot with a speed of
0.5 m/s. The estimated costs are obtained by computing
minimum distance paths between the regions, giving due
consideration to the presence of walls, doors etc. In Figure 2,
however, regions are linked by straight lines for clarity. The
search cost per region is set proportional to its area. Further
details of the simulation and a number of animations are
available in http://www.eng.uts.edu.au/~hlau/indoor_search.

B. Example Track

 Fig. 2(a-b) shows a part of the optimal search plan
produced when the searcher starts from region 9. The prior
expected target proportion is represented using the degree of
shading in Fig. 2a (for example room 17 has the highest
proportion of targets). The sequence of rooms searched
following the plan is start-17-16-15-14-13-12-11-2-3-1-10.

Fig. 2a-b Snapshots at two distinct times of the guided search sequence. A red
triangle depicts the current searcher position, while a red star indicates that a
region is currently being swept. Blue stars mark the regions already searched
and blue triangles show the regions the robot bypassed without searching. 2(a)
shows the status of the environment after 9 time steps while 2(b) shows the
simulation after 24 time steps

 The strategy is clearly not greedy with respect to either
distance or probability. For example, the robot bypasses
regions 10-16 and proceeds to search region 17, despite
starting at region 9. On the other hand, after completing the
search of region 17, it spends time searching the regions 16-

11, although region 2 now has the highest proportion of
targets. The proposed algorithm generates schedules which
strike an optimal balance between anticipated costs and
potential rewards.

C. Comparison with Shortest Paths
 The following example demonstrates how the algorithm
leverages available information about the likely distribution of
targets to improve search effectiveness. If we know nothing of
where the targets could be and each region requires
insignificant effort to investigate (e.g., the searcher only needs
to go there and see), then the optimal plan is equivalent to a
shortest coverage path through the set of nodes. For example,
given equal target probability in regions 1, 2, 3, 6, 7, 10, 11,
12, the proposed algorithm generates a shortest possible route
which requires at most 78.34s to search if it succeeds on the
very last region. However, if we are privy to information
suggesting region 7 is more likely to contain targets (Fig. 3),
the sequence generated has the worst case time of 80s. While
appearing counterintuitive, the new route (start-10-11-12-6-7-
3-2-1) is designed to result in a lower expected time than that
achievable if the geometrically shortest path was followed.

Fig. 3 Search sequence guided by additional knowledge. A shortest path
would search leftwards first. Investigating the right side earlier however
results in the minimal expected time.
 This was in fact confirmed by using randomly generated
target locations in 10,000 trials. As expected, the strategy of
using the shortest path also results in the shortest expected
time for detection when targets are indeed evenly distributed.
However, when the expected target proportion is not uniform,
it can be seen that the proposed strategy results in smaller
expected time to detect than that achieved by the shortest
geometric route, requiring an average time of 42.2s versus
47.7s, a difference of 12.9 percent.
 This example illustrates that when there is additional data
about likely target presence, the algorithm is able to make the
most of the information. On the other hand, in the absence of
such guidance, the plan generated is nevertheless the best that
can be expected given the complete lack of knowledge.

D. Comparison with Heuristics
 Optimal action sequences to detect a single target are
compared against three common heuristics to show the
relative performance of this approach and the respective
influences of search and travel costs. The heuristics are

characterized by the criteria used to select the next possibly
occupied region to search at each time step, defined as
follows:

1) Maximize the highest probability of detection
2) Minimize the cost of travel and search
3) Maximize the ratio of detection probability and cost

 In the latter two, the cost is the time required to travel
directly to the target region and then immediately search it.
Despite being locally optimal, the techniques generate
reasonable trajectories for comparison, particularly on small
graphs. The third is known to be also optimal for a restricted
version of this problem [4] and is the one-step version of the
utility greedy heuristic used in [9].
 The results after 10,000 runs of the four methods with
randomly generated target locations in the same environment
are collated in Table II. To examine the relative effect of
varying search and travel costs, two additional scenarios
where the search cost is zero and large compared to the travel
cost (as outlined in Table I) are considered to examine the
relative effect of the costs.

TABLE I
SCENARIO PROPERTIES

Scenario Target
Distribution Search and Travel Costs

1
11 regions with
non-zero target

probability
Search costs and travel costs are similar

2 Same as 1 Search cost is significantly larger than
the travel cost

3 Same as 1 Search cost is zero
TABLE II

SCENARIO RESULTS
Mean Time to Detection (s) Scenarios

DP
algorithm

Maximize
detection

probability

Minimize
travel and

search costs

Maximize
detection

probability /
cost

1 169 237.6(40.6%) 185.1(9.5%) 184.7(9.3%)
2 559.8 762.4(36.2%) 644.9(15.2%) 569.9(1.8%)
3 54.7 105.3(92.5%) 57(4.2%) 74.6(36.4%)

 The three heuristics are compared with the optimal
strategy generated by DP. As can be seen, maximizing the
ratio of detection probability versus cost performed well for
the heavily contrived scenario 2, since a searcher’s current
position has almost no bearing on the time required to cover
any other cell when search costs dominate the travel time.
This then satisfies the condition identified in [4] for a locally
optimal solution to be also globally optimal in minimizing
expected cost. In the absence of this greedy choice property
(i.e. in larger indoor areas), the advantage of the proposed
algorithm becomes more pronounced as the cost to reach the
next destination increasingly depends on the current region.
When there are no search costs (scenario 3), only the travel
time remains to be minimized, rendering a shortest path
heuristic competitive in the absence of target information.

VI. DISCUSSION AND CONCLUSIONS

 The core challenge in this search problem, be it for rescue
or surveillance applications, is to determine where to go,
given what we know. The key benefit of the approach
presented lies in its ability to take advantage of additional
available target information to create a more effective plan of
action (Fig. 4). The high-level strategy can then sensibly
coordinate the searching of individual areas. Instead of just
covering all the regions as quickly as possible, when
formulating an optimal plan, the search and travel costs of the
regions are traded off against how likely they are to contain
targets in the first place. The use of expected target
proportions across the area as a basis renders this approach
flexible in the sources of information that can be incorporated.
For instance, low costs sensors distributed throughout
buildings could provide a coarse estimation based on sound,
motion or heat. Similarly the last known contact position
could form an estimate to accelerate the search.

Fig. 4 Approach in context

 Although this paper concentrates on a static environment
with targets remaining stationary, the computational cost of
the algorithm is such that re-planning to incorporate the effect
of any new information gathered (reflected in a new
probability distribution for the target location) is feasible.
 The computational cost of the approach is related to the
number of regions with non-zero target probability. While the
technique is tractable for an environment with around 14
regions (in under 20s), a sub-optimal hierarchical
decomposition is necessary for tackling larger environments
or when faced with stricter timing constraints. Decomposing a
large area into constituent parts has been used as a natural way
of managing complexity in search related problems. [10]
divides a structure into regions to coordinate the tracking of
targets between cells, [11] extracts the topology in
architectural plans for navigation, while [12] solves a Pursuit-
Evasion problem by first partitioning visibility regions. Of
most direct interest, [2] describes the USAR scenario where a
disaster site is segmented into regions with different survivor
probability, thereby facilitating more rational decision-making
over where to focus resources. Hierarchical decomposition
could be achieved for this technique along structural lines
(e.g. from urban block to buildings to floors), or by grouping

the target probabilities of regions remote from the searcher.
The latter in particular allows for planning in graduated
granularity.

When the flexibility of supporting a more general
detection function is not necessary, only an order of searching
the non-empty regions is required. The search problem in this
paper may then be posed as that of a Maximum Collection
Problem with Time-Dependent Rewards [13]. We are
currently investigating optimal techniques for solving the
problem on small map sizes.

Work is underway on search in dynamic environments
and multi-robot search, to extend the ideas presented in this
paper.

ACKNOWLEDGMENT

 This work is supported by the ARC Centre of Excellence
Programme, funded by the Australian Research Council
(ARC) and the New South Wales State Government.

REFERENCES
[1] B. Krishnamachari and S. Iyengar, “Distributed Bayesian Algorithms for

Fault-Tolerant Event Region Detection in Wireless Sensor Networks,”
IEEE Transactions on Computers, vol. 53, no. 3, pp. 241-250, 2004.

[2] R. R. Murphy, “Biomimetic search for urban search and rescue,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 3, pp. 2073-2078, 2000.

[3] F. Bourgault, T. Furukawa and H. F. Durrant-Whyte, “Coordinated
Decentralized Search for a Lost Target in a Bayesian World,”
Proceedings of the 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems, October, 2003, Las Vegas, Nevada.

[4] L. D. Stone, Theory of Optimal Search: Academic Press, 1975.
[5] J. N. Eagle and J. R. Yee., “An Optimal Branch-and-Bound Procedure for

the Constrained Path, Moving Target Search Problem,” Operations
Research, vol. 38, no. 1, pp. 110-114, January-February 1990.

[6] B. DasGupta, J. Hespanha and E. Sontag, “Aggregation-based
Approaches to Honey-pot Searching with Local Sensory Information,”
Proceedings of the American Control Conf., pp. 1202-1207, Boston, June
2004.

[7] U. Lössner and I. Wegener, “Discrete Sequential Search with Positive
Switch Cost,” Mathematics of Operations Research, vol. 7, no. 3, August
1982

[8] K. E. Trummel and J. R. Weisinger, “The Complexity of the Optimal
Searcher Path Problem,” Operations Research, vol. 34, no. 2, pp. 324-
327, March-April 1986.

[9] A. Sarmiento, R. Murrieta and S. Hutchinson, “An Efficient Strategy for
Rapidly Finding an Object in a Polygonal World,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 2, pp.
1153-1158, 2003

[10] B. Jung and G. S. Sukhatme, “A Generalized Region-based Approach for
Multi-target Tracking in Outdoor Environments,” IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2189-2195, 2004.

[11] A. Murarka and B. Kuipers, “Using CAD drawings for robot navigation,”
2001 IEEE International Conference on Systems, Man, and Cybernetics,
vol. 3494, pp. 678-683, 2001.

[12] B. P. Gerkey, S. Thrun and G. Gordon, “Visibility-based pursuit-evasion
with limited field of view,” Proceedings of the National Conference on
Artificial Intelligence, pp. 20-27, 2004.

[13] E. Erkut and J. Zhang, “The Maximum Collection Problem with Time-
Dependent Rewards,” Naval Research Logistics, vol. 43, pp. 749-763,
1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

