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Abstract—This paper addresses the closing loop problem as from this computation, we suggest an approximation able to
the challenge of using all the information from the observation provide almost the same corrections but with a computational

gathered when cIosjng the loop in order to pptimally adjust the complexity independent of the number of map elemefits {
whole map (assuming a correct data association). The proposed. tead of O( N2 | fi " te th

approach is an approximation, which allows the calculation Ins ea. of O( ))-_ .n sec |Qn .We. compue e same
of the gain without keeping track of all the correlations (i.e. corrections by aVOIdIng the linearization which characterizes

with a complexity independent of the number of the map ele- the Extended Kalman FiltetEZ{K F') and therefore thé’ K F-

(rjnents).fu:_thermhore,_ thetlr)lart)infesentf ?n explicit métlﬂlle'glatit%al based SLAM. The results obtained through simulations are
emonstration showing that the correlations compute e ; i

EK F-based SLAM areg overestimated. More preciszleoly, itis S>}/'IOWH presented in s_ecthn V. .They compare Eﬁﬁ’F—baseq SLAM

that these correlations decrease exponentially with respect to the to the approximation W!tm(l) complexity. Wef believe that

heading error of the robot. a complete real experiment would be required to evaluate
The approach is then empirically demonstrated by means the overall performance of these approaches. However, in

of meaningful simulations. The results are then discussed and this case, the simulation permits to more precisely compare

conclusions are pointed out in the last section. the results when closing the loop. Finally, conclusions are
Key Words: SLAM, Closing Loop Problem, Kalman presented in section V.

filter, Sensor Fusion, Relative Observation
Il. THE MAP CORRECTION AT THECLOSING LooP

| INTRODUCTION The innovation (defined as the difference between the ob-

Simultaneous Localization and Mapping (SLAM) requireservation and its prediction) related to the observation when
a mobile robot to autonomously explore the environment withe robot closes a loop, contains the information accumulated
its on-board sensors, gain knowledge about it, interpret thg the robot along the whole loop. This innovation can then
scene, build an appropriate map and localize itself relative ve used to correct the configurations of all the landmarks in
this map. the loop. In this section we carry out the computation of the

A very successful method is the stochastic map approaghevious corrections. The section consists of two parts. In
After the first precise mathematical definition of the stochastihe former, we carry out the computation by adopting the
map [11] early experiments ([5], [7]), have shown the qualitytandard solution to SLAM based on theK F [6], from
of fully metric simultaneous localization and map buildingnow on AMF (Absolute Map Filter). TheAM F requires
One of the most discussed inconvenient of this approashcomputational complexity which increases squarely with
is the computational requirement, which scales very badlye number of landmarks in the loop. For this reason, in
(squarely) with the number of the map elements due to theigction II-B we suggest a possible solution able to correct
correlations. To overcome this problem, several solutions hate configuration of all the landmarks in the loop, whose
been proposed (e.g. [9], [12]). complexity does not depend on the number of landmarks. It

Obviously, neglecting the correlations among the landmarlsspossible to implement this solution when the exteroceptive
very far, could be a good approximation in the absence of largensor provides a relative observation between the robot and
loops. Indeed, when the robot closes the loop, the correlatiarse landmark at a time.
contain information about the whole loop which are needed For the sake of simplicity, we will refer in the following to
in order to propagate the correction through the loop. the case of point landmark.

In this paper we introduce a method computing the neces-
sary correlations between the landmarks and the robot in order
to properly use all the information when closing the loop. We In the AMF' the robot configuration and the location of
show that the linearization in the standard approach causesh landmark are registered in one common global reference
an overestimation of this information when the loop is largisame. An EKF is used to estimate the state containing the
compared with the parameters characterizing the robot sensprgvious global coordinates and its covariance matrix.

In section Il we first compute the corrections on the map at the
end of a loop as obtained from the standard approach. Starting X =xIx] .. xH* (1)

Standard Solution
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where X, = [z,y,6]7 is the robot configurationX; is T T
Y, : : PynoHE + Py;HE,
the absolute location of thé” landmark, P,; is the cross- Nolly, + ity
covariance between thg&" and j** landmark location and
P,; is the cross-covariance between tHé& landmark and S;=Hx,PywHY, + Hx,PyHY + (11)
the vehicle configuration. The "state transition equation” for
the stateX restricted to the map partX() is the identity. + Hx, P HY, + Hx,PyHY, + R

Regarding the vehicle part, this equation is determined by

the drive system of the robot. ThEKF is used to fuse where, for the sake of simplicity, we omitted the time
the information coming from this transition equation witfand in particular we indicated witf? the predicted covariance
the information coming from an observational equation. Thi(k | k£ — 1).

equation models the observation coming from an exteroceptivelhe previous equations allow to compute the Kalman gain
sensor and provides a vector depending on the state giverpinall the landmarks in the map and on the robot when a

the equation (1). relative observation between thi€ landmark and the robot
occurs.
Z = h(X,w) () Let us consider now the closing loop problem and let us

. ~ suppose that the*” landmark was the first one observed in
wherew is a vector of temporally uncorrelated observatiothe loop. This means that all the landmarks in the loop were

errors with zero mean and covariance matfix introduced into the map after the!” landmark. We assume
When a relative observation between the robot and tkat the error on the:*” landmark is zero (i.e the matrik,,..,
landmarki?" occurs, the function in (3) will be is the null matrix). This corresponds to put a new reference
frame on this first landmark. Our assumption implies that also
Z =h(X,w) = h(X,, X;,w;) (4) each block elemeng,,; is null.

When the loop is closed, namely the'" landmark is
observed again, the Kalman gain can be computed for each

map element starting from the equations (10) and (11). We
H; = [Hx,,0,...,0,Hx,,0,...,0] (5) obtain:

whose Jacobian with respect to the state in (1) will be

When theE K F' is adopted to update the state in (1) and its -

P,,HL
covariance in (2) by using this relative observation, the result P H)T(v
. i lvdl x
is [6]: v
T Pj,HY
X(k|k)=Xk|E—1)+W;(k)vi(k) (6) PH,, = o (12)
0
Pk | F) = @) | pil
= P(k| k—1) = Wi(k)Si(k)W/ (k)
Sy = Hx,PyH% + Ry, (13)
where v
where the line with0 in (12) corresponds, clearly, to the
Wi(k) = P(k | k— 1)HF (k- 1)S; ' (k) (8) Kalman gain on then!® landmark perfectly known at the
beginning.

From the two previous equations it is possible to conclude
Si(k) = Hy(k —1)P(k | k — )HT (k — 1) + Ri(k)  (9) that, in order to use the information coming from the observa-
tion at the closing loop, it is sufficient to maintain at each time
and X(k | k —1) and P(k | kK — 1) are respectively the step the blocks in the covariance matrix containing the robot
predicted state and its covariance (see equations (10) and (2), and P, ;). In the AM F' it is not possible to separate these
in [6]) and v;(k) is the innovation (equation (13) always inblocks from the rest of the covariance matrix in (2). Indeed,
[60). from (7) it is possible to see that the update f&y, and P,;
By a direct computation it is easy to obtain from equationgquires the update of the other blocks. In 1I-B we suggest an
(5), (8) and (9) approximated method to update oy, and P,;.



B. Approximated Solution _ /tv(T)cosK(T t.)dr
The motion of the robot can be described through the uni- te
cycle model, i.e. through the following differential equations:

t T
Ty = veost, (14) B(t,t.) = / o(T)sin (/ W(T/)d7'1> dr = (27)
L. ty
. . t
Yo = vsinb, (15) = / v(T)sinK (1, t.)dr
ta
9',” —w (16) The AM F' estimates at each time step the robot configura-

) _ ~ tion. From two subsequent robot configurations it is possible
~ where the knowledge of the robot configuration at a giveg optain the robot translation and the robot rotation occurred
time and of the function(r) andw(r) are required to know gyring the considered step. Since these displacements are shift
the robot configuration at a subsequent time. Let US SUPPQ§RY rotation invariant, in some cases it can be reasonable to
that at the timet.. the robot configuration igz.., y.,6.]". BY ~ assume that they are independent of a landmark previously
integrating the equations (14-16) we obtain for the tinfe>  gpserved by the robot. This assumption is obviously an ap-
t): proximation. However, when this landmark is very far from

the robot this assumption is satisfied. Therefore, a distédhce
oo + A(t,t)cosb, — B(t,t.)sind, 17) is introduc_ed: when the distance petwgen.the .robot and the
landmark is larger tha® the approximation is valid. Clearly,
the parametePD depends on the parameters characterizing the
robot sensors, both exteroceptive and proprioceptive.
If we use the previous approximation, in order to maintain
the block elementP,,, it is not necessary to implement the
0,(t) = 0. + K(t,t.) (19) fully correlated AMF (i.e. update all theN? correlations
among the landmarks). Indeed, the same result can be achieved
where if, at each step, only the landmarks whose distance from the
robot is smaller thanD are included in theE K F'. We call
K(t,t) = Q@) — Q(ts) (20) this EKF the Local SLAM (LSLAM). Due to its locality,
the complexity of LSLAM does not depend on the number
of landmarks.
Altt) = cosfl(t) [C1) = Ot + (21) In section 1I-A we showed that to use the information
+ sinQ(t.) [S(t) — S(ts)] coming from the observation at the closing loop, it is necessary
to know bothP,, and P,;. In the following, we provide the
expression for the latter (sindeS LAM provide automatically

Ty (t)

Yp(t) = yu + A(t,ty)sind, + B(t,ti)cosd.  (18)

B(t,t.) = cosQ(ty)[S(t) — S(ts)] — (22)  ihe former).
— sinQ(t,) [C(t) — C(t,)] Let us indicate with; the time when the distance between
the robot and thej** landmark is equal taD. This means
and that, starting fromt;, the robot translation and the robot
‘ rotation estimated throughSLAM are independent of the
Q(t) = / w(r)dr (23) jt* landmark. The robot configuration at the timés given
to by the equations (17-19) whete = ¢;. Since the quantities
¢ A(t,t;), B(t,t;) and K (t,t;) contain only the displacements
S(t) = / v(T)sinQ(7)dT (24) estimated through.SLAM aftert; (see the equations (26),
to (27) and (20)), they are independent of ti¢ landmark.
t Therefore,P,; can be easily obtained by linearizing (17-19)
o) = / v(T)cosQU(T)dT (25) N [24,9s,0.)" = [2(t;), y(t;),0(t;)]". We obtain:
to
wherety can be any time beforg.. P,; = F(t,t;) Py(t)) (28)

From the equations (20-25) it is possible to expréss ¢..)
andB(t, t.) as functions of the robot translationg {)dr) and where P,;(t;) is the covariance at time; estimated by
rotations {(7)dr) occurred aftett.. We have: LSLAM and the matrix F(t,¢;) is the Jacobian of the
function in (17-19) in[z(t;), y(t;), 0(t;)]"

A1) = /t * o(r)eos ( /t TW(T')dT') ir = (26) Fltt) = (29)

* *



10 —A(t,t5)sinf(t;) — B(t,t;)cos0(t;) function. Regarding the integral appearing in (34) we obtain
=10 1 A(tty)cos0(t;) — B(t,1;)sind(t;) through a direct computation [10]:
0 0 1
204
By using these last equations it is possible to comptite N = <§(tj) XJ.> exp {%ﬁﬂ)} (35)
The computation requires to update the function in (23-25). 2

Therefore, the complexity is independent of the number of wheres?(t,) is the error in the robot orientation at the time
landmarks. t;.
By comparing equations (28-29) with the equations (30-35)
we note that the linearization approximates the exponential

term in (35) with1. This results in an overestimation on the

LSLAM instead of theAM F'. The latter is the linearization. actyally a not negligible amount of the information is lost.
This second approximation is present also in tH8/F.  \hen the exponential term is included, the corrections will
Indeed, theAM F is based on theZKF' which requires t0 pe smaller.

linearize the equations characterizing the dynamics and the

IIl. COMPUTATION OF THECORRELATIONS WITHOUT
LINEARIZATION

observation of the system [2]. The problems arising from this IV. RESULTS AND DISCUSSION
linearization are not negligible fo§LAM (see for example  |n this section we compare the results obtained by using
[3]). the AMF with the approximated solution introduced in II-

In the following we compute the block,; by avoiding the B. Since the aim is to point out the differences among the
linearization. We will show that the result depends dramaﬁn’evious approaches for the estimation at the moment when
cally on the error on the robot orientation. On the other hanghe loop is closed, the simulations are more appropriate than a
the error in the orientation is the eleme(dt 3) in the block complete experiment. However, in order to validate the overall
P,,. This last covariance is estimated throuSL AM . performance a complete experiment would be necessary.

We have

A. Simulated Environment
P = <[§;(t)’g(t)7é(t)i|TXj> (30) In our simulated experiment the data coming from the
encoder sensors were delivered at the frequendyof z, in
where we indicate with the error on the correspondingdgreement with the experiments carried out on real platforms
quantity (that is the difference between the true (unknowif) our laboratory (e.g. [1]). The simulated robots are equipped
value and its estimated mean value). with a differential drive system. We adopted the same odome-

To proceed we have to use the equations (17-19) with  try error model introduced in [4] where the actual translation

t; and[z,, ys, 0.]" = [2(t;), y(t;),0(t;)]". We obtain for the Of the right and left wheel at a given time step is assumed to be

three lines ofP,; respectively: a gaussian random variable satisfying the following relation:
(#0%;) = (#)%;) - (31) T (36)
—A(t,t;) sinf(t;) X — B(t,t;) cos(t;) N %R/L _ 5peR/L5R/L (37)
<Z7(t)Xj> = <Z7(tj))~(j> + (32) VR N0, K307/ ]) (38)
+A(t,t;) cosf(t;) X — B(t,t;) sinf(t;) N

In other words, bothsp® and §p’ are assumed to be
gaussian random variables, whose mean values are given by
<§(t)Xj> — <§(tj))~(j> (33) the encoder readings (respectivély“® and 6p°L) corrected
for the systematic errors (which are assumed to increase
where the quantities <i~(tj))~(j>, <g(tj)Xj> and linearly with the distance travelled by each wheel), and whose
N - variances also increase linearly with the travelled distance.
<9(fj)Xj are the three lines of the matrix’,;(t;) Furthermore, it is assumed thgi’ anddp” are uncorrelated.
(estimated byLSLAM) and X indicate the following mean In our simulation we adoptedr = é; = 1 (i.e. encoders

value: perfectly calibrated) and(zr = K; = 5 10~°m (that is the
R ~ value experimentally estimated for our robot in our laboratory,
N = <sin9(tj) Xj> (34) [8)).

. . . ) The exteroceptive sensor provides the bearing angles and
The previous result is obtained by observing thahe gistances of the landmarks closest to the robot. The
<0089(tj) Xj> = [0,0] since the functioncos is an even frequency for this simulated sensor ig7z. The errors on
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Fig. 1. The simulated experiment. The lines represent the robot trajectories;
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the bearing and the distance are independent and respectivelyo.4
with the variancess? = (1°)% ando? = (0.02m)?2. The robot v
speed i90.2m/s. 035 T

In the simulated experiment, the robot moves along a o0.3- :
circumference. The number of landmarks3is The motion v Pl
of the robot is interrupted when the first landmark is observed 0.25- R e
again after the loop. The trajectory and the landmarks are g2 -

displayed in figures 1. The length of the path followed by

T
K3
N

the robot is50m. 0157 ot
Instead of introducing the distande introduced in 1I-B to 01k “
define the locality ofL.SLAM, we characterize this locality by et

fixing the maximum number of elements for the state estimated®%°| -
through LSLAM. In particular, this state contains the closest 4"
10 landmarks to the robot. 0
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B. Results Fig. 3. The mean error on the landmarks in the simulated experiment,
obtained by adopting the solution introduced in II-B.indicates the error
In the figures 2 and 3 we plot the mean error on thaiter the loop.
estimated landmark positions vs the distance travelled by the
robot. We do not observe any relevant difference among the
two approaches before and after closing the loop. In particular,
the final error is slightly smaller in the case of thg\/F. landmarks needed to propagate the correction along the loop.
However, the difference is smaller thaft. All the solutions The computational requirement of this method is independent
are able to reduce enormously the error in the estimation. of the number of landmarks.

V. CONCLUSIONS Finally, we compute for the same approximated solution the

) ) correlations by avoiding the linearization (which characterizes
In this paper we presented the computation of the correctigil, ytended Kalman Filter and therefore the standard solu-

of the map when a robot closes a loop. The computationy|§y) - This computation points out a very important result:
carried out for three different methods based on the stochasfig " <orrelation between the robot and the landmarks are
map approach. The first is the standaid(" solution of e estimated by the standard solution. In particular, the true

SLAM which updates a fully correlated covariance Mgsqrrejation decreases exponentially with respect to the heading
trix, namely with a computational requiremef N?). The error of the robot.

second one is an approximation of the standard approach

which upda’[es 0n|y the correlations among landmarks C|oseThe simulations confirm the results stated in the preViOUS
to each other. For this approximation we suggested a metH®ftions, namely that the approximated solution performs
to compute the correlations between the robot and all tR#nilarly to the standard one.



Acknowledgments

This work has been supported by the two European projects
RECSYS (Real-Time Embedded Control of Mobile Systems
with Distributed Sensing) and BIBA (Bayesian Inspired Brain
and Artefacts) and the Swiss projeétN (Scheizerischer
Nationalfonds zur Forderung der Wissenschaftlichen Scien-
tifique).

REFERENCES

[1] K.O. Arras, N. Tomatis, B.T. Jensen and R. Siegwart, “Multisensor on-
the-fly localization: Precision and reliability for application®pbotics
and Autonomous Syster84, pp. 131-143, 2001.

[2] Y. Bar-Shalom, T.E. Fortmann,, “Tracking and data association, mathe-
matics in science and engineering”, Vol 179, Academic Press, New York,
1988.

[3] J.A. Castellanos, J. Neira, J.D. Tardos, 2004, Limit to the Consistency of
EKF-based SLAM , Intarnational Conference on Autonomous Vehicles
(IAV), Lisbon Portugal, 2004

[4] K.S. Chong, L. Kleeman, “Accurate Odometry and Error Modelling for
a Mobile Robot,"International Conference on Robotics and Automation
vol. 4, pp. 2783-2788, 1997.

[5] J.L. Crowley, (1989). World Modeling and Position Estimation for a
Mobile Robot Using Ultrasonic Ranging. IEEE International Conference
on Robotics and Automation (ICRA), Scottsdale, AZ.

[6] Dissanayake, Newman, Clark, Durrant-Whyte and Csorba, 2001, A
Solution to the Simultaneous Localization and Map Building (SLAM)
problem, IEEE Trans. On Rob. And Aut. Vol 17, No.3, June 2001

[7] J.J. Leonard, H.F. Durrant-Whyte, “Directed Sonar Sensing for Mobile
Robot Navigation,’Kluwer Academic Publisher®ordrecht, 1992.

[8] A. Martinelli, N. Tomatis, A. Tapus and R. Siegwart, “Simultaneous
Localization and Odometry Calibrationfhternational Conference on
Inteligent Robot and Systems (IROSQ3y Vegas, USA

[9] P.M. Newman, J.J. Leonard and R.J. Rikoski, “Towards Constant-Time
SLAM on an Autonomous Underwater Vehicle Using Syntheic Aperture
Sonar,"International Symposyum of Robotics Research (ISRRQ3pber
2003, Siena, ltaly.

[10] A. Papoulis, Probability, Random Variables, and Stochastic Process
McGRAW-HILL INTERNATIONAL EDITIONS, 1991

[11] Smith, Self, et al. (1988) "Estimating uncertain spatial relationships in
robotics” Uncertainty in Artificial Intelligence ZElsevier Science Pub:
435-461.

[12] S. Thrun, D. Koller, Z. Ghahramani, H.F. Durrant-Whyte and A.Y.
Ng., “Simultaneous mapping and Localization with Sparse Extended
Information Filters,"Proceedings of the 5th Int. Workshop on Algorithmic
Foundations of Robotics\ice, France, 2002.



