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Abstract— Mobile robots and robot teams can leverage mul-
tiple views of a scene to improve the accuracy of their maps.
However non-uniform noise persists even when each sensor’s
pose is known, and the uncertain correspondence between
detections from different views complicates easy “multiple view
object detection.” We present an algorithm based on Expec-
tation/Maximization (EM) Clustering that permits a principled
fusion of the views without requiring an explicit correspondence
search. We demonstrate the use of this algorithm to improve
mapping performance of robots in simulation and in the field.

Index Terms— Vision and Recognition, Mapping, Distributed
Robots and Systems, Sensor Fusion

I. INTRODUCTION

Fusing multiple views of a scene yields an analysis is
generally more accurate than any one view alone. This
is crucial in unstructured environments where occlusion,
shadows, and aspect changes thwart attempts at universal
recognition algorithms. In particular, multiple-view object
detection offers an alternative that improves performance and
increases a system’s chance at finding the correct objects.
This duplication could involve a mobile sensor in a static
environment — by looking back at an area that it has already
seen a robot gathers additional information that it can use to
increase the accuracy of its maps — or a team of robots
that view the same scene from several angles and ranges.
Also several inexpensive, static detectors can combine data to
approximate the precision of a single more expensive sensor.

Multiple-view object detection involves finding attributes
of the real objects that maximize the likelihood of the
observed detections. Researchers have already shown that
a team of robots can track a single object accurately by
employing Kalman filtering over multiple views [1], [2]. This
paper addresses the more complicated problem of tracking
multiple detections. Here techniques like Kalman filtering
only suffice when the correspondence between objects from
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different views is known. Finding these associations is hard
because the number of possible correspondences scales ex-
ponentially with the number of objects. Data association is
now the most difficult part of the estimation.

Finding correspondences in multiple views from a mobile
platform is the elegant dual of tracking moving objects from
stationary sensors. It is not surprising then that the data
association problem is a fundamental issue in the tracking and
surveillance field. A complete survey of tracking techniques
is outside our scope, but a brief overview gives insight into
the point correspondence problem.

Fig. 1. The exploration rover used for the field experiment, shown here
in the Atacama Desert of Chile. A pan-tilt camera mount permits improved
object detection through “fly-by” imaging from multiple angles.

Searching through all possible correspondences between
detections is intractable, so practical tracking methods ap-
ply various constraints to narrow the search. For a single
camera, tracking multiple objects, one can limit possible
correspondences to a small spatio-temporal window around
each detection and use assumptions of constant motion or
appearance to resolve ambiguities. Techniques like Multiple



Hypothesis Tracking [4] prune the correspondence search by
considering only high-probability associations. Joint Proba-
bilistic Data Association [5] accomplishes the same task with
a probabilistic weighting of associations.

The multiple view case is more difficult because corre-
spondences must also account for transformations between
features as viewed from different angles. Many solutions
register object positions using scene geometry [6]. A more
general method treats correspondence as a “weighted graph
matching” where points from neighboring views are associ-
ated in pairs that minimize some distance metric [7]. Finally,
a host of heuristic methods use assumptions about proximity
and motion to match points in neighboring images [3].

Unfortunately the particular challenges of robot mapping
limit the use of these algorithms for multiple-view object
detection. Tracking solutions assume that the views of a scene
are ordered so that consecutive frames differ only by a small
amount. To avoid combinatorial explosion they search for
correspondences only within neighboring frames. However a
mobile robot mapping a large area may obtain widely sep-
arated views. A multiple-view algorithm for robot mapping
should be able to take account of all views simultaneously
to find an optimum.

This paper discusses an algorithm based on a Gaussian
mixture model [8] and Expectation/Maximization (EM) clus-
tering [9] that finds a fast maximum-likelihood solution
without resorting to an explicit correspondence search. It
begins with a well-localized robot that observes a scene
containing many objects, and builds an optimum object
map by estimating correspondence probabilities between all
observations and objects simultaneously. Computation scales
according to O(mnq), where m is the number of views, n is
the number of detections in each view, and q is the number
of objects in the model.

The following section presents the basic idea behind
multiple-view EM. Then we suggest a practical algorithm
that applies multiple-view EM to realistic cases with false
negatives and non-overlapping data. Finally we demonstrate
the algorithm’s use in simulation and a simple field experi-
ment (Figure 1).

II. MULTIPLE-VIEW EXPECTATION / MAXIMIZATION

Consider a set V = {v1, v2, ..., vm} of views of the
scene. For each view vi an object detector provides a list
of n probable detections Xi = {xi1, xi2, ..., xin}. Some are
false positives while others correspond to real objects in the
environment. Often there are duplicates — two detections
from different views that actually refer to the same real
object. Each detection xij is associated with a real-valued
vector of p features — the object’s position and size, for
example — that are subject to sensor inaccuracy.

We represent real objects in the scene as multivariate fixed-
width Gaussian probability densities in this feature space. The
task is to find a scene model M consisting of the q Gaussian
means {µ1, µ2, . . . , µq} which has the highest probability
of generating the observed detections. For simplicity of
example we assume that sensor noise and detection likelihood
is the same for each object and uniform over the entire
feature space. The probability of an object at µk generating
a detection xij is proportional to the object’s probability
density function,

P (xij |µk) ∝ G(xij , µk) (1)

where G(xij , µk) is the value at xij of a Gaussian distribution
centered on µk. In a scene with many objects the probability
of a Gaussian at µk having generated a detection depends on
the locations of other objects (Fig. 2). We use the standard
notation P (µk|xij) to represent the posterior “membership
probability” that the object at µk is responsible for having
generated xij :

P (µk|xij) =
G(xij , µk)

q∑
h=1

G(xij , µh)

(2)

A traditional maximum-likelihood approach for fitting µk

would treat detections as independent samples and ignore
important information about which view generated each
detection (Fig. 3). If we assume that each object generates
a single detection per view then the membership probability
given other detections in the view, written P (µk|xij , Xi),
should sum to unity for each cluster over the detections in
Xi. While finding appropriate values for these probabilities
is difficult, we can approach a solution by parameterizing
P (µk|xij , Xi) in order to minimize the error:

δ2 = ([
∑

j

P (µk|xij , Xi)]− 1)2 (3)

Our parameterization simply weights the Gaussian compo-
nent at µk with a different mixing factor βik for each view
vi.

P (µk|xij , Xi) =
βikG(xij , µk)

q∑
h=1

βihG(xij , µh)

(4)

To force the sum of conditional probabilities toward 1 we
define βik to increase as the difference δ is positive and
decrease it if δ is negative. A logistic transform keeps the
mixing coefficient bounded and positive.

βik =
1

1 + exp(
∑

j

P (µk|xij , Xi)− 1)
(5)



The result of the adaptive mixture weights is a “soft normal-
ization,” where membership probabilities shift to ensure that
all objects contribute equally to the detections in every view.

If membership values were known with certainty it would
be possible to calculate the most probable positions of the
objects in feature space. Because the objects have fixed-width
Gaussian distributions we could express their maximum-
likelihood locations as weighted sums of the detections:

µq =

∑
i

∑
j

P (µk|xij , Xi)xij∑
i

∑
j

P (µk|xij , Xi)
(6)

These membership probabilities are not known in general.
However, we can estimate their values using expressions (4) -
(6) that permit Expectation Maximization [2]. By estimating
the membership probabilities P (µk|xij , Xi) and optimum
means µk in turn one can reach a local maximum to the
data likelihood.

Fig. 2. A scene where two objects are imaged from two views which results
in four different observations. The triangles represent the objects as observed
in the first view; the circles represent objects detected in the second view.

Fig. 3. A traditional mixture model treats detection memberships as
independent. This results in non-intuitive estimates for object locations (large
open circles at µ1 and µ2).

Fig. 4. With normalization all of the objects contribute equally to each
view. This associates object µ2 with observation x12 and yields a more
reasonable position estimate.

In practical applications false positives and negatives
might make it difficult to choose the appropriate number
of clusters. One could test different numbers of clusters
using cross-validation with additional views that have been
reserved exclusively for that purpose. In the simulations
of section III we employ a simpler strategy which places
a cluster center on each detection of a single view. The
complete algorithm is as follows:

initialize with a µk for each detection from view 1
do:

for all clusters µk and detections xij:
1) calculate every P (xij |µk) with (1)
2) calculate every βik with (5)
3) calculate every P (µk|xij , Xi) with (4)

for all clusters µk:
update cluster means according to (6)

while any µk has moved by an amount > ε

III. EXPERIMENTS

We provide two experiments to measure the improvements
offered by multiple views. The first uses a simulated envi-
ronment with idealized sensor noise. Next we provide more
realistic results with field tests from a robotics expedition in
the Atacama Desert of Chile.

A. Simulation Results

Consider a scene containing objects arranged at regular
intervals on the unit circle (Fig. 5). These generate detections
in separate views where each detection is perturbed by
some amount of Gaussian noise. The experiments that follow
test various single- and multiple-view detection techniques
with this scene. In each case we calculate model error by
matching each real object in turn with the closest remaining
unmatched cluster. The total error score for the scene is the
sum of squared distances between objects and their associated
estimates.

Figure 6 shows performance with varying noise levels for
three detection techniques. The test consisted of 50 trials with
four views of the scene available for each trial. One detection
method ignored the multiple views entirely, simply assigning
a cluster to each detection in the original. Another utilized
a traditional EM clustering without normalizing coefficients.
Finally, the third method implemented the multiple-view EM
algorithm described above. In each case the Gaussian widths
were set according to the level of sensor noise. The experi-
ment suggests that multiple views yield greater benefits for
high noise levels, and either multiple-view method provides
a better estimate of the objects’ locations than a single view
considered alone.



Curiously, the multiple-view constraint does little to in-
crease accuracy over standard EM. The improvement is
statistically significant; multiple-view EM achieved lower
error in 42 out of 50 trials. This corresponds to a chi-square
value of 11.56 and suggests with over 99.9% confidence
that multiple-view EM outperforms regular EM for the task.
Nevertheless, the magnitude of the improvement is small.
This implies that scenarios like those detailed in Fig. 2 may
be unusual occurrences.

Figure 7 shows a second simulation that held the noise
level fixed while varying the number of views between
one and five. Most of the the performance benefit comes
from a single additional view; sum-squared error improves
dramatically at first, and additional views after the second
provide a smaller benefit. Nevertheless, there is a significant
difference between the accuracy of models constructed with
two views and five, suggesting that a large number of views
may still be useful for applications requiring extremely high
accuracy.

These simulations are unlike field conditions in several
ways. In practice detector error is not perfectly Gaussian,
nor is it independent from one view to the next; the difficult
objects will generate noisy data for most or all of the views in
which they appear. False positives are also likely. Neverthe-
less, it is encouraging that most of the performance benefits
in this simple case are realized with the first additional view
of the scene. It suggests that multiple-view detection need
not demand an inappropriate amount of a field robot’s time
(or in the case of static sensor networks, an excessive number
of nodes) to yield detection accuracy benefits.

Fig. 5. A plot of detections using multiple views generated by perturbing
objects on a unit circle by Gaussian noise. The small shapes correspond
to the detections from different views while the large circles correspond to
cluster centers found by EM.

B. Field Results

In order to test the system in field conditions we applied the
multiple-view detection algorithm to the problem of mapping
science targets during robotic planetary exploration. In future
Mars missions, autonomous geology would permit rovers to
make intelligent decisions about what experiments to perform
and what data to return to Earth. In particular, accurate maps
of the locations of rocks would be a valuable asset to an
autonomous rover geologist. Several aspects of this task make
it a good candidate for multiple view detection. First, finding
geological targets autonomously is difficult — in the case
of rocks, detectors often identify less than 80% of the real
targets [10]. Second, the environment is static; we can assume
it does not change between images from different locations.

The rover platform employed for the experiment was Zoë,
an exploration robot constructed at Carnegie Mellon Univer-
sity (Fig. 1). Zoë is a wheeled platform featuring a suite of
cameras that offer a 21-degree field of view with a resolution
of 1280x960 pixels. They are mounted on a 2-meter mast
with a pan-tilt unit that provides full 360-degree coverage
of the environment. The cameras and pan-tilt unit are free
to operate while the rover is in motion, permitting “fly-by”
imaging of the terrain during an autonomous traverse.

The test was performed during navigation tests in the At-
acama Desert of Chile. A data collection script caused Zoë’s
cameras to image a rocky patch of ground during an extended
drive action. The sampling locations occurred several meters
apart (Figs. 9 and 10). A science target detection algorithm
[10] running off-board identified the rocks in each image.
Finally, the detections from both views were registered to a
world coordinate frame (Fig. 8). The feature space consisted

Fig. 6. Object detection error for four views of the synthetic scene with
varying amounts of noise.



of the position, in latitude and longitude, of each rock.
After registration, multiple view EM was applied to the

two views. Because the number of objects in the scene
was unknown, the procedure began with a cluster on every
detection. With each iteration of EM the number of clusters
was reduced adaptively by merging any that had collapsed
to the same point. Finally, the detected rocks were projected
back in to the image to provide a visual representation of
performance. Fig. 11 shows a traditional detection using
only the rocks discovered from the first view. The gray
area represents the ground visible from the second image.
Each white circle within the region corresponds to a positive
detection.

Fig. 12 illustrates detections from the two views syn-
thesized using the multiple view EM algorithm. Within
the common field of view the additional image improves
accuracy; single view detection finds 31 rocks while the two
fused views correctly detect 48 rocks.

IV. CONCLUSIONS

In this paper we explored techniques for boosting detector
accuracy by fitting a world model to detections from multiple
locations. The method uses a modified EM clustering algo-
rithm to solve the data association problem for an arbitrary
number of views. This technique is general enough that
it could be extended to other more sophisticated mapping
and detection scenarios. Most environments will exhibit non-
uniform noise — the detection of distant objects is generally
more uncertain than near objects. Variable-width Gaussian
distribution functions might alleviate this problem.

Fig. 7. Object detection error with varying numbers of views. Notches
represent confidence intervals of 95% for the median, while boxes show the
extent of upper and lower quartiles.

Much object recognition work to date focuses on detecting
objects from a sensor snapshot of the world at a single spatial
and temporal location. This has the advantage of simplicity:
the object recognition task can be insulated from other issues
like robot localization and mapping. Despite this we believe
that accuracy benefits can be gleaned by fusing data from
multiple locations and times. Multiple view object detection
is a general technique that holds the potential to improve
accuracy without changing the basic detection method.
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Fig. 9. The initial view from position 1 showing a rocky patch in the
Atacama desert.

Fig. 10. An additional image captured from position 2. The rover traveled
approximately 2 meters between the views.

Fig. 11. Rock detection using only the first view. The gray area represents
the terrain visible to the second view. Circles show the locations of detections
after projection back into the image.

Fig. 12. Synthesis of detection results from both views. Detection locations
from two images were combined using the EM Clustering method.


